
the fields, But here's a way to `cheat' if you want to
use multi-dimensional arrays and your BASIC

cannot handle them.
The trick is to treat all the elements that would

be in the multi-dimensional array as though they
were elements in a one-dimensional array. For
example, a two-dimensional array with three rows
and five columns would be dimensioned like this:
DIM A(3,5) and would contain a total of 15
elements: A(1,1) to A(3,5). The same information
could be held in an ordinary subscripted array like
this: DIM A(15). Everywhere that a two-
dimensional array referred to A(R,C), we would
substitute A(UR-1) *5+C).

If we use a separate string array for each field,
we have to decide how to D I M ension the arrays.
The simplest way is to use a fixed array size, but
this limits the total number of records we can store
in the database. A better approach would be to set
the array size according to how many records there
are in use. Not all dialects of BASIC, however, allow
string arrays to be as big as you would like. Even if
they did, a large number of records in the database
could soon use up all the available memory in the
computer. Here is a program that will enable you
to find out the maximum number of elements your
computer will allow. Many versions of BASIC,

however, will allow as many elements in an array
as you want, right up to the point where all
available memory is used up. Each time the
program asks you `WHAT ARRAY SIZE2' enter a
larger value until you eventually get an error
message. The CLEAR in line 100 has the effect of
eliminating the array at the end of each pass.
Without this statement, you would get an error
message in line 30 through attempting to re-
dimension an array.

10 READ DS
20 INPUT "WHAT ARFAY SIZE";A
30 DIM N$(A)
40FORL=1TOA
50 LET NS(L) = DS
60 NEXT L
70FORL=1 TOA
80 PRINT L, NS(L)
90 NEXT L
100 CLEAR
110 GOTO 10
120 DATA "HOME COMPUTER COURSE"
130 END

0 Basic Programming

'1

Even if only 40 characters were allowed in each
element, with five fields per record, and if there
were 256 elements set aside for each array, the
amount of memory required to hold all the data
within the main memory becomes prodigious. If
one byte is required for each character to be stored,
we would need 51,200 bytes (5X40X256 bytes)
for the data alone. It is obviously not practical to
use up so much main memory on the data, and
that's why separate data files are used.

Unfortunately, as we have already suggested,
file handling routines can be a little difficult to use.
If we wish to avoid using external files, the only

alternative is to put the data in a DATA statement so
that it is always present in the program. Apart from
the strain this imposes on the computer's memory
capacity, this technique makes modification to the
data extremely tedious and prone to error.
Therefore it is preferable to use external data files.
Once you have tried a few short programs to write
data to and from external files, however, the whole
process will become much clearer and easier to
understand. By way of illustration, we have
chosen two very different machines and versions
of BASIC to supplement our short daily
temperature program given in Microsoft BASIC.

These are for the Sinclair Spectrum and the BBC
Micro. Both these versions of BASIC differ
considerably from our usual Microsoft BASIC, and
readers are referred back to the `Basic Flavours'
boxes in earlier parts of the Basic Programming
course for details on some of these differences.

In Spectrum BASIC, OPEN# and CLOSE# are
reserved for use with the Microdrive. When
cassette storage is used, special versions of the
SAVE and LOAD commands are needed. The
ordinary SAVE command is used for storing
programs and program variables on tape (and, of
course, ordinary data in DATA statements). Arrays
can be saved on tape using the SAVE-DATA
statement. This takes the form:

SAVE filename DATA array name()

The filename is the name given to the file
(TEMP.DAT in the Microsoft program). The array
name is simply the name of the string array
followed by a pair of closed and empty brackets.
To SAVE the daily temperature results, we would
first have to create a D I M ensioned string array and
write the data into it, perhaps using READ-DATA
statements. To make the difference between the
filename and array name more apparent, we will
call the array cS and the filename will be
"TEMPDAT".

10 DIM c$(14,4)
20 FOR x=1 TO 14
30 READ cS(x)
40 NEXT x
50 DATA 113.6,2,9.6,3,11.4,4,10.6,5,11.5.6,11.1,7,10.9
60 SAVE "TEMPDAT' DATA c$()
70 STOP
80 LOAD "TEMPDAT" DATA c$O

90 FOR L=1 to 14 STEP 2
100 PRINT "DAY':cS(L),cS(L+1)
110 NEXT L
120 STOP

Line 60 saves all the data in the string array c$ in a
data file with the filename TEMPDAT. The program
will then stop at line 70, and you should rewind the
tape. The keyword CONT will restart the program.
Line 80 reverses the process and stores the data in
TEMPDAT in the c$ array.

The BBC Micro has one of the most
sophisticated dialects of BASIC available on home
computers. It allows structured programming with
such advanced features as a REPEAT-UNTIL

318 THE HOME COMPUTER COURSE

