
$0100

S015F

$01FF

PROGRAM MEMORY

SICK POINTER

$0100

$0150
$015E
S015F

$01FF

is conventional to talk about the next free byte in
the stack as the top of the stack, and to imagine
the stack growing upwards. In both the Z80 and
the 6502, however, the stack pointer is
decremented by a push, so that the stack top is
actually at the lower memory address than the
stack bottom. This is less confusing if we describe
the stack as 'rising towards zero'.

The first program fragment is also typical of
programs using the stack in that the number of
push instructions is exactly counterbalanced by
the number of pops. This is not essential, but
failure to observe this harmony of opposites when
writing subroutines may result in an incorrect
return from the subroutine and consequent
program failure. This is one of the commonest
bugs in Assembly language programs, but can be
fairly easily traced by comparing the number of
pop and push instructions in a program.

The Z80 version of the routine differs
noticeably from the 6502 in one major respect:
the 6502 pushes only single-byte registers onto
the stack, while the Z80 always pushes a two-byte
register. When you push or pop the Z80
accumulator, you also push or pop the contents
of the processor status register, because the CPU
treats these two single-byte registers as one two-
byte register called the AF (accumulator-flag)
register. The power of the Z80 derives greatly
from its ability to handle two-byte registers.

It is a good programming habit to start
subroutines by pushing the contents of all CPU

registers onto the stack, and popping them off the
stack immediately before returning from the
subroutine. This ensures that the CPU after the
subroutine call is in exactly the same state as it
was before it, and means that any of the registers
can be used in the subroutine with no fear of
corrupting data essential to the main program.
For example, consider this program subroutine:

At!
6502 280

LOC1 LD

ADC

A,LOC1

A,$6CSUM ADC #$6C

GSUB JSR SUBRO CALL SU BRO

TEST BNE SUM JR NZ,SUM

EXIT RTS RET

SUBRO PHP PUSH AF

PHA PUSH HL

TXA PUSH DE

PHA PUSH BC

TYA PUSH IX

SUBR1 PHA PUSH IV

SU BR2 STA LOC2 LD (LOC2),A

LDA #$00 LD A,S00

IVSUBR3 PLA POP

TAY POP IX

PLA POP DE

TAX POP BC

PLA POP HL

SU BR4 PLP POP AF

RTS RET

Here, the effect of the instructions between
SU BRO and SUBR1 is to push the current register

STACK POINTER

RFEI1111

PROGRAM COUNTER

E946

NEXT FREE BYTE

AFTER

PROGRAM COUNTER

F000

NEXT FREE BYTE

46

E9

StackThe S_ _
The Stack is essential in
handling subroutine calls
(such as the 6502's JSR).
When the 'jump to
subroutine'instruction is first
loaded, the program counter
contains the address of the
next instruction in the
program (SE946 here, the
address of the CLC
instruction): this address is
'pushed onto the stack
causing the stack pointer to be
changed to point to the next
free byte of stack space
(S015D here), and the
operand of the jump
instruction (SF000 here) is
loaded into the program
counter as the address of the
next instruction, thus causing
a branch in program flow

258 THE HOME COMPUTER ADVANCED COURSE

