
MACHINE CODE/OPERATING SYSTEMS

Graphics Via OSWRCH
18 MODE 1
28 FOR IY.=OT02STEP2
38 PX=&C08
40 (OPT IX
50 LOA #18
55 JSR &FFEE
60 LOA ff0
65 JSR &FFEE
70 LOA #1
75 JSR &FFEE
80
90 LOA #25
95 JSR &FFEE
100 LDA #5
185 JSR &FFEE
110 LOA $0
115 JSR &FFEE
120 LOA #100
125 JSR &FFEE
130 LOA #8
135 JSR &FFEE
148 LDA #188
145 JSR &FFEE
158 RTS
160):NEXT I'.
178 CALL &C00

VDU drivers is that they expect five bytes after the
value 25 is sent as the first byte; if these bytes are
not received, then strange things can happen. This
applies to all VDU driver operations that require
more than one byte to be sent.

VDU23 is another very versatile VDU driver
command. It is used to define user-generated
characters. For example, VDU23,224, 255,255,
255,255,255,255,255,255 will define the character
224 (usually undefined) as a solid block.
Characters 224 to 255 in Modes 0 to 6 can be
redefined by the user with this command. Indeed,
using the VDU23 command in conjunction with
one of the OS BYTE calls enables the user to redefine
other characters in the character set. Any
VDLJ23 calls that are not recognised by the OS -
such as V0U23,0.... - are passed through a
special vector at &226 and &227. By changing the
address contained in this vector, you can add your
own VDU23 command routines.

A more advanced use for the VDU23 command
is to enable the programmer to access the 6845
video controller chip. VDU23 commands take
the form:

VDU23,0,register,value,0,0,0,0,0,0

where register is the 6845 register to which you
want to write, and value is the value to be written to
the 6845. As an example of the use of VDU23 in this
way, the following program alters two of the 6845
registers: they tell the chip which area of the
computer's memory is to be used as video
memory. The program alters the start of video
RAM to address &0000. This shows the BBC OS
workspace on the screen, and various interesting
effects can be seen. Try adding a few lines of code,
dimensioning some arrays, etc. The routine is
written in BASIC but will easily convert to
assembler:

10 MODE 0
20 VDU23,0,12,0,0,0,0,0,0,0

30 VDU23,03,0,0,0,0,0,0,0

40 VDU28,0,10,30,0:REM set up a text window

5OCLS

There are two other OS calls that are related to
OSWRCH. These are: OSNEWL and OSASCII.
OSNEWL, when called at &FFE7, writes a line feed
and a carriage return to the screen. OSASCII, called
at &FFE3, is a variant on OSWRCH, and is useful for
text handling. When a character 13 is written via
this call, a line feed, or character 10, is also written
to the output screen. This should not be used,
therefore, if you are writing graphics commands to
the VDU drivers, since an extra CHR$(10) might be
generated, thus causing confusion.

Finally, *SPOOL and *EXEC are two commands
that enable output and input to the currently
selected filing system. *EXEC filename will cause a
file with the appropriate name to be opened, if
present, and its contents read in, as if from the
keyboard. *SPOOL writes characters to the ifie
named in the command, as if the characters

were being written to the output stream.
That concludes our introductory discussion of

the BBC Micro's operating system. In the next few
instalments we will pause to consider the use of
machine code routines to improve screen output
on the Commodore 64, before returning to our
extensive investigation of a range of operating
systems.

ASCII Control Codes Table

	

Code 	Extra Bytes 	 Description
needed

	

0 	0 	Does nothing

	

1 	1 	Sends the next character to the printer only

	

2 	0 	Turns the printer on

	

3 	0 	Turns the printer off

	

4 	0 	Writes text to the text cursor

	

5 	0 	Writes text to the graphics cursor

	

6 	0 	Allows VDU drivers to write characters to output

stream

	

7 	0 	Generates a short tone

	

8 	0 	Moves cursor one space left

	

9 	0 	Moves cursor one space right

	

10 	0 	Moves cursor one space down

	

11 	0 	Moves cursor one space up

	

12 	0 	Clears the text area of screen

	

13 	0 	Returns cursor to the beginning of current line

	

14 	0 	Paged mode turned on

	

15 	0 	Paged mode turned off

	

16 	0 	Clears the graphics area of screen

	

17 	1 	Sets text colour to colour whose code is the

following byte

	

18 	2 	Does a GCOL with the next two bytes to be sent to

the drivers. For example, sending 18,0,3 would
perform a GCOL 0.3 command

	

19 	5 	Defines the logical colours. See BBC user guide

	

20 	0 	Returns logical Colours to default values

	

21 	0 	Does not allow characters to be written to output

stream by the VDU drivers

	

22 	1 	Sets screen mode to mode of following byte.
Sending 22 and 7 will enable Mode 7. However.

HIMEM is not altered

	

23 	9 	Sends commands to the 6845 chip: programs

user-generated characters

	

24 	8 	Defines agraphics window

	

25 	5 	Performs PLOT command

	

26 	0 	Sets default text and graphics window

	

27 	0 	No effect

	

28 	4 	Sets up a text window

	

29 	4 	Sets the graphics origin

	

30 	0 	Returns the text cursor to top left of screen

	

31 	2 	Puts text cursor to the x,y position in the two
bytes following. For example, sending 31,1010

will set the text cursor to position 10,10 on the

screen

900 THE HOME COMPUTER ADVANCED COURSE

