
G'&

INPUT/OUTPUT OPERATIONS
(TRAP #3)

rnput and output QDoS procedures fa11 into two major categories. First,
there are those that are concerned with the actual allocation of
channels for devices and fl1es. second, there are those that actually
perform input and output operati-ons on the allocated channels. The first
category comprises the TRAP #2 calls, as discussed in Chapter 5. The
second category comprises the TRAP #3 calls which we will dlscuss now.

6.1 Timeouts

All TRAP #3 procedures requlre a tineout to be specifled. The rimeout
period is a multiple of the monitor frame rate (i.e., 50/60 Hz). A
timeout period of unity is therefore equivalent to 20 ms for a 50 Hz
timebase, and 16.666 ms for a 6O Hz timebase.

rf a routine is called with the timeout set to zero, the call will
return imnediately after attempting its task, regardless of whether or
not it succeeded. A positlve timeout will make the call return
immediately on completion, or at the end of the timeout, whichever
occurs first. A maximum tlmeout period of 32767 tlmes the unlt ti,mebase
period is permitted. This gives a maximum period of l0 mlnutes,
55.3 seconds for a 50 Hz tlmebase, and 9 minutes, 6.1 seconds for a 6OHz
timebase. A timeout value of -1 signifies that an indefinite period is
required. No other negative value should be used.

The IO.FBYTE procedure is a worthy example. Suppose the procedure was
being used to input a byte (character) from the keyboard. If a Limeout
of zero is used, the procedure will return a character if one is
waiting, or return the error ERR.NC (not conplete) if no character
exists. Either way, an immediate return is made. A positive timeout will
force the routine to look for a character for the specified length of
time. If a character is entered uithin the time, an immediate return is
made with the character. If no character arrives within the time
specified, the routine will return at the end of the ti.meout with the
ERR.NC error. A timeout of -1 will force the procedure to waiL until
complete, that is, h'ait until a character is entered.

6.2 Important principles

It must be remembered that
there may be more than

supports multi-tasking and, therefore,
job trying to get access to a parEicular

QDOS
one

channel. If your job call requests access to a channel that is already
being waited oor one of tvro things will happen. If your timeout was
given as zero, your call L'ill return immedi.ately as incomplete. If your
timeout was not zero, your job will get re-scheduled until such time as
the I/0 channel request can be serviced. Note particularly that your
specified timeout period commences from the moment your job obtalns
access to the channel, and not from the moment the original request hras
made. This means, of course, that the actual timeout period may be
longer than the programmed timeout.

Incompletion of a job has important side-effects when dealing with
output. In such cases, incompletion means that the QDoS procedure could
not finish outputting its data. Any data not sent, because of an
incomplete return from a procedure, must be re-senl at some later stage.
The case of single character (byte) outpuE is trivial; you would slmply
re-send the byte. l{hen a string of characters is being sent, the QDOS
procedure will return a count of the number of characters actually sent.

The input. and output of large amounts of data should be handled
carefully. It is inefficient to perform such I/0 a byte at a time. The
QL cones with a large amount of RAM and reasonable decisions over the
use of memory buffers should be made. Characters would then be imported
and exported in as large a block as possible at any one time.

6.3 Screen channel defrnition blocks

Approxlmacely 7OZ of QDOS TRAP #3 procedures are related to screen
operations. The procedure to redefine a window (SD.hIDEF) is one example.
All of the procedures require a channel ID to be specified. The topic of
channel IDs and screen channels is, therefore, so important thaE we will
'l_ook at these in some detail.

THE CHANNEL ID

A channel ID is a long-word holdi.ng two bits of information (no pun
intended!). First, in the high order word of the ID, there is a tag
value. This value will get incremented each time a channel is opened.
Second, in the 1ow order word of che ID, there is a channel index code.
This code is used internally by QDOS. For information only (you would
never normally use the fact.), the channel value, stored in the ID,
multiplied by four will supply an appropriate index into a channel table
(see FjC.6.1)

When the machine is first switched on, there are three screen channels
open. In SupeTBASIC the channels are designated #0, #1, and #2. The
actual correspondence between these SupeTBASIC screen channels and the
QDOS channel IDs will be as follows:

i

F
;.

SUpeTBASIC # QDOS rD
HEX.

TAG CHAN.
0000 0000
0001 0001
0002 w2

o
1

2

DENARY

0
65s37

131074

rf, for example, SuperBASrc channel #2 is re-opened, it wirl stil1 be
channel #2 as far as superBASrc is concerned, but its internal QDos rDwill be $00030002 (denary 196610).

rt is important to reallse that, in practice, you should never need to
know. thls correspondence. hlhen writing pure assembly languageapplication programs you wilr always have ä copy of the QD0S channei rö,
and that is all you need. rf you are passing a superBASri channer numberover to an assembly language utility, the utility will collect the
standard channel integer (i.e., #0, #1, etc.) and use it to calculatethe internal QDOS channel ID (see Chapters g and l1).

SCREEN CHANNELS

QDos maintains a channel resource management table, which holds suchinformation as the hlghest known channel number, and so on (seeFig.6.1). Two poinrers wirhin thi.s rable, sv_cHBAS and SV cHTop, polntto the base and top of the channel table reEpectively. Tt. pointerswithin Lhe channel table (long-words) päint, i; Eurn, to thecorresponding channel definitlon blocks. Figure 6.1 shows the layout ofscreen channel definition blocks.
If it is a requirement of an applications program to obtaininformation about a particular screen channel, it sho;ld be obtained bycalling your tget the informationr subroutine via the TRAP #3 extendedoperation procedure (sD.EXTOP; D0=9). The sD.EXTop call will assume rharyour subroutine is a standard device driver and perform a couple ofimportant operations. Flrst, it will pass the baäe of the

"y"tu,yi.i?!1": (SV_BASE) to the subroutine in register A6. Second, regisrer
A7 will be set to the supervisor stack in

"uch a way that you may use upto 64 bytes of stack space within your subroutine. ilote tirat youi
subroutine acLually w111 be lulning in supervisor mode. Third, the
channel rD passed over to sD.ExrOp in registÄr A0 will be converted to apolnter (ln A0) to the base of the corresponding channel definitionb1ock. These operations provide your subroutiie with vital pointerinformation in a very neat and convenient manner. hlhen the return fromsubroutine (RTS) instruction is executed at the end of your subroutine(note: RTS not RTE), register A0 r+ill be reset ro the channel rDspecified on entry to SD.EXTOP.

Channel r€sourc€
managem€nl table

(A6 = SV_BASE)

$70 (46)

$72 (A6)

$74 (A6)

$78 (A6)

$7C {A6)

(offsr)

s(xr

$18

$lA

$rc

$rE

$20

$22

$24

$26

$28

$2A

$32

$36

$3A

$lE

$12

$4-l

144

$45

$46

$4?

$48

$49

$4A

$50

ß56

WINDOW TOP LHS (X)

(Y)

wtNDow stzE (x)

(Y)

BORDER WIDTH

CURSOR POSITION (X)

(Y)

CURSOR INCREMENT (xi

(Y)

FONT ADDRESSES

SCRFEN

PAPER COLOUR MASX

STRIP COLOUR MASK

INK COLOUR MASK

CHARACTER ATTRIBTJTE:

CURSOR FLAG (O= off)

PAPER COLOUR

STRIP COI-OTJR

INK COLOUR

BORDER COLOUR

NEW LINE STATUS

FILL MODE (0= off)

CRAPIIICS wlNDOW (y)

(x)

GRAPHICS S('AI-E FAOOI

SD-XMIN (word)

SD,YMIN {word)

SD-XSlzE (word)

SD-YSIZE (word)

SD-BORWD
(word)

SD,xPOS (word)

SD-YPOS (word)

SD-XINC (word)

sD-YINC (word)

SD-f:ONT
(2 x lonS)

SD,SCRB (long)

SD-PMASK (long)

SD-SMASK (bns)

SD IMASK (long)

SD-CATTR (byte)

SD-CURF (byte)

SD-PCOLR (bytc)

SD-ScoLR (byt€)

SD-ICOLR (hyie)

SD-BCOLR (byte)

SD-NLSTA (byte)

SD-FMOD (byte)

SD YORC (floar)

SD-XORC (noar)

SD-SCAL (float)

data - hkrk

Figure 6.1 Screen channels and definition block

rNDrx int) chrnn.l

86

6.4 Colour

A number of the TRA' #3 procedures alrow a colour to be specified as oneof their parameters. setting the ink corour (sD.sETrN) i"'on.^.*urpr. orthis. Three colours are useä by the screen drivers. TÄere rs tt,. ti.p".;
colour which is rhe background corour; the 'inki

-..iä".-
,iiän is rhe

1ain. gr11ti1g and graphical plorting colour; and rhe ;"t.ifi-;orour
usedfor highlighring.

The solid colours which may be specified for the tvo screen modes areas follows:

Mode 8 (256)
o - black
I - blue
2-red
3 - magenta
4 - green
5 - cyan
6 - ye11ov
7 - white

the solid colours there are four stipple patternsStipple patterns exist within a 2x2 pixe:.,' matrlx,by setting appropriate bits in thä colour byte

Mode 4 (512)
O - black
I - black
2-red
3_red
4 - green
5 - green
6 - white
7 - shite

fn addiEion to
can be specified.
can be selected
Fig.6.2).

that
and

(see

Colour
byte

0 Bir

c = XOR of stipple colour
and tr,aw colour

b = bas colour

One in lour

Ho.izontal baß

Vertical ban

Chcckcr-board

00

0l

l0

tl

Figure 6.2 Exploded view of colour byte
Bits.7 and 6 will specify rhe stipple pattern as shown. Bits 0 to 2specify the base c'olour (0. .7),

"no bits 3 to 5 h;i; a varuecorresponding to the xoR (excluslve_0R) of the base colour and thestipple pattern colour. Suppose -we want a base colour of blue and astipple colour of yellow. The base corour has Lhe binary value r00rr;
and the stipple col0ur the binary value r110r. Th; ion .i rhese rh,o

s c b

values is the binary value t1l1r, and it is this value that must be put
into bits 3 to 5 of the colour byte. If we also wanted a checker-board
type of sti-pple, the whole colour byte would be binary encoded as t11

111 001r, which is the denary colour 249.
This method of encoding the pattern colours enables the standard solid

colours to be obtained quite naturally. For example, take the solid
colour green (value 4). This has a colour byte bl-nary pattern of t00 000
100t. The stipple pattern is type 0 (one dot in four). The XOR value is
zero and, therefore, the stipple colour must be 4 (binary 100), which is
green! This gives us a base colour and a stipple colour that are the
same, and hence rn'e get our solid colour.

6.5 Use of 68000 registers

The TRAP #3 procedures are accessed with register D0 (byte) indicating
which particular call is required. This register is used also to return
an error status (1ong-word) to the calling process. If the error code
returned is not zero then an error has occurred. Small negative error
codes are used to indicate standard errors. These error codes are listed
in Appendix C.. If the trap call invoked some form of addi,tional device
drlver, the error code returned can be a pointer to a specific error
message. In order that the two types of error return code might never be
confused, the pointer type error code is in fact a pointer to an address
$8000 below that of the true error message. Potentially, all QDOS
routines can return the error tERR.BPf (-15), signifying rbad

parametert. The fu11 descriptions of the TRAP #3 procedures state which
additional errors can be returned. It would of course be wise to check
for any errors after the trap call has been made.

In addition to the use of register D0, data registers Dl to D3 and
address regislers A0 to A3 are variably used to pass values to and from
the QDOS procedures. lr/hen the appropriate registers have been set for
any one call the appropriate routine is accessed by simply executing the
TRAP #3 instruction. In cases where the data size qualifier (i.e., r.Bt,
t.Wt, or t.Lr) is not specified within the description, the default is
long-word (i.e., r.Lr).

The channel ID, which specifies the channel to be used for the I/O
transfer, is always passed as a long-word in A0, and is never modified
by the TRAP #3 procedure. The timeout is always passed as a word in D3,
and it also is never modified by the call. If register Al points to an
array of bytes on entry to the TRAP #3 procedure, on exit from the
procedure A1 will be pointing to the next byte in Ehe array. Registers
D2 to D7, A0, and A2 to A7 are always preserved by the I/O procedures.

88

IO.PEI,ID $00 (0)

Check for pending input

Eotry parareters: D3.W Timeout
A0 Channel ID

Return parameters: none

Affected registers: D1, At

Additional errors: NC (-l) nor complere (no pending i.nput)
N0 (-6) channel nor open
EF (-i0) end of flle

Description

This trap call can be used to check for pending input on a channer. NoLc,thar only a check for input is performedl tne input channel is notmodified in any way, and no input of data is performed.

IO.FBYTE $0r 111

Fetch a byte

Entry paraoeters: D3.t{ Timeout
A0 Channel ID

Return paraneters: D1.B ByCe fetched

Affected registers: D1, A1

Additional errors: n"C (-1) not complete
N0 (-6) channel nor open
EF (-10) end of file

Desc ri pt ion

Th.is procedure will fetch a byte from the specified input channel.

IO.FLINE $02 (2)

Fetch a line (terminated by ASCII <IJ>)

Entry paraoeters:

Description

when dealing hrith console input, this procedure has special properties.First, the characters read from the keyboard wiil be eciroed in the
appropriate window. second, the standard cursor keys (LEFT and RrGHT)
can be used for simple edj-ting as follows:

_T

Return parateters:

Affected registers:

Additioaal errors:

IJFT
RICftT

ClTI-IJF'T
CITL-nIGBT

D2.W Length of buffer
D3.hI Tirneout
A0 Channel ID
Al Base of buffer

Dl.Lt Number of byt.es fetched
Al Updated buffer pointer

Dl, A1

NC (-1) not complete
BO (-5) buffer overflow
NO (-6) channel not open
EF (-10) end of file

- move cursor left
- trove cursor right

delete character left
delete character under cursor

Note that the cursor, within the specified window, wilr only be enabled
for the duration of the procedure ca1l. The count of the number of bytes
fetched, as returned 1n Dl, will include the line terminator (Ascrr
<LF>) if it hras found.

The line-feed terminator may not be found if the timeout is exhausted,
and r.iil1 never be found if the buffer overflows. rn such cases the
cursor will be left enabled.

0n exit, the pointer in reglster A1 will point to the byte following
the last character entered.

91

IO.FSTRG $03 (3)

Fetch a string of bytes

Eatry parareters: D2.VI
D3.W
AO

A1

Return paraueters:

Affected registers:

Additional errors:

Length of buffer
Timeout
Channel ID
Base of buffer

Dl.!'l Number of bytes fetched
A1 Updated buffer pointer

D1, A1

NC (-1) not complete
NO (-6) channel not open
EF (-10) end of file

Description

This procedure will fetch a string or block of bytes from the specified
input channel. The bytes fetched will not be echoed on the screen, even
if the channel device is a r+indow. A return r+ill be effected either when
the timeout is exhausted or when the buffer becomes fu1l.

92

I
IO.EDLIN $04 (4)

Edit a line (console only)

Entry paraleters:

Return paraneters:

Affected registers:

Additional errors:

Ilescription

This is similar to the procedure IO.FLINE ($02) except that an initial
1ine, on which to start the editing, ls supplied to the user. On entry,
register Dl must hold two words of information about the 1ine. The high
order word must contain the current cursor posltion (0..n), and the 1ow
order word must specify the total line length. The line specified should
not contain the terminating character (ASCII <LF>). Only the part of the
line starting from the current cursor position up to the end of the line
will be given to the user.

On exit, the procedure will have updated the parameters in regisLers
Dl and A1 to correspond to the ediEed line. Valid terminating characters
are (LF), <CURSOR-UP>, and (CURSOR-D0WN>. The terminating character vill
be included in the line (and hence the line length) r.rhen the procedure
returns. NoEe that the pointer in register A1 always points to the
character byte following the last character entered.

D1.L Llne/cursor parameters
D2.W Length of buffer
D3.W Timeout
A0 Channel ID
A1 Pointer to end of line

Dl Line/cursor parameters
A1 Pointer to end of line

Dl, Al

NC (-1) not complete
B0 (-5) buffer overflow
N0 (-6) channel not open

93

IO.SBYTE $05 (5)

Send a byte

Entry pararneters:

Return para[eters:

Äffected registers:

Additional errors:

Description

This procedure will send a byte out to the specified outpuL channel.Special provisions exisr_for rhe ourpur of a fi"._t""ä--flip>l to ascreen or console device. First, a neroline 1s inserted on.Ä..ipa of theline-feed terminator' or r.rhen the cursor reaches the right-hanc
"iou ofthe window. If ah: cur€or is sirppressed, Ehe newline will be heldpending. To release it one of the foliäwing may be performed:

1. another byte may be sent
2. the character size may be changed
3. the cursor may be errublud
4. the cursor po"ition may be requested

rf the-cursor i-s explicitly positioned, the pending newline wirl becancelled. Note especi.ally that an explicit n."iin" viii-reprace animplicit one, thus providing senslble output wlth no unvanted blanklines.

The error code ERR.oR (-4) will be returned if any nervline operatlon hastaken place.

Dl.B Byte to be sent
D3.Id Timeout
A0 Channel ID

none

Dl, Al

NC (-1) not complete
OR (-4) our of range
NO (-6) channel not open
DF (-11) drive fu11

94

IO.SSTRG $07 (7)

Send a string of bytes

Entry parateters:

Return paraleters:

Affected registers:

Additional errors:

Description

This procedure will send a string of bytes out to the specified channel.
Special provisions exist for the output of a line-feed ((LF)) to a

screen or console device. Fi,rst, a newllne is lnserted on recei.pt of the
line-feed terminator, or when the cursor reaches the ri.ght-hand side of
the windor+. If the cursor is suppressed, the newline vill be held
pending. To release it one of the following may be performed:

1. another string may be sent
2. the character size may be changed
3. the cursor may be enabled
4. the cursor position may be requested

If the cursor is explicitly positioned, the pending newline wi.ll be
cancelled. Note especially that an explicit newline r,rill replace an
implicit one, thus providing sensible output with no unwanted blank
1ines.

D2.V1 Number of bytes to send
D3.W Timeout
A0 Channel ID
A1 Base of buffer

Dl.hI Number of bytes sent
A1 Updated poinEer to buffer

Dl, A1

NC (-1) not complete
NO (-6) channel not open
DF (-11) drive full

i

:

I

l

rl

',,i

i

95

SD.EXTOP $oe (e)

Call an ertended operation

Entry parareters:

Return parateters:

Affected registers:

Additional errors:

91 Paramerer (if reguired)
y? Parameter (if reguired)
D3.l{ Tlmeour
A0 Channel ID
A1 Parameter (if required)
A2 Address of routiRe

Dl Paramerer (if used)
A1 Parameter (if used)

Dl , Al

NC (-1) not complere
NO (-6) channel nor open

Description

This.trap-ca11 provides a mechanism for accessing a user suppliedroutine in supervisor mode. The routi6e specified oi .nary-ru"t conforinto device driver rules. A detailed descriplion or ee"ice-diivJr routinesis. ourside rhe scope of rhis book, but Sec.6.3 di".;;;.;-;;I pertinentpoinLs.
The registers available for parameter passing (1.e., the three forimporring, and the.rwo for exportini; a" iot'rruu"'to-bl used. rt issimply the case that the values i; the;e registers r,r,itl not be,comecorrupted in the t interface t between the TRAP routine and theuser-supplied device driver.

96

'ütltt!

SD.PXENQ $0A (10)

Return yindov size & cursor position in pixel coords.

Entry paraoeters:

Return para[eters:

Affected registers:

Additional errors:

Description

An enquiry block is required for thi-s procedure ca1l, consisting of four
words:

Block offset

$m
$02
$04
$06

D3.W Timeout
A0 Channel ID
A1 Base of enquiry block

(Updated enquiry block)

AI

NC (-l) not complete
N0 (-6) channel not open

Use

lrlindov size (I)
I{indov size (I)
Cursor position (I)
Cursor position (Y)

The top left-hand corner of the window will have the coordinates [0,0].If a ner.rline is pending on the specified window channel, it will be
activated (i.e., released).

SD.CHENQ $08 (1r1

!l

il Retura yindov size & cursor position io character coords.
I
I

Entry parareterss

Return paraDeters:

Affected regiaters:
I

Additiolal errors:

Ilescription

An enquiry block is
words:

D3.LI Timeout
A0 Channel fD
A1 Base of enquiry block

(Updated enquiry block)

A1

NC (-1) not complete
NO (-6) channel not open

required for this procedure ca11, corrsisting of four

Use

l{indor size (I)
tlindor size (I)
Cursor position (I)
Cursor position (l)

Block offset

$m
$oz
$o4
$06

The top left-hand corner of the window vill have the coordioates Io,o].rf a nevline is pending on the specifi-ed window channel, i.t r+i1l be
activated (i..., released).

98

SD.BORDR $OC (L2)

Set border ridth & colour

Entry paraneters:

Return parateters:

Affected registers:

Additional errors:

Ibscription

This procedure will redefine the border of the specifled r..indor,. Aborder is, b"y default, of zero width. when the bordär is set up it will
lie inside the window limits, and the verti-cal edges will be of double
width. All subsequent screen ca11s will use ihe reduced window size(except a subsequent call to SD.B0RDR). The cursor wi.11 be homed if the
border width is changed.

The standard colour codes are as described in sec.6.4. There is also thecolour $80 (128) which is treated as a special case, and wiLl create a
transparent border, leaving the original border contents intact.

Dl. B Colour
D2.tt l.iidrh
D3.W Timeout
A0 Channel ID

none

D1

NC (-1) not complete
N0 (-6) channel not open

r,

sD.wDEF $On (13)

Define a rindoy and its border

Entry paraneters:

Return para[eters:

Affected registers3

Additional errors:

Ilescription

Thi-s call is used to redefine the shape and position of a r+indow. Theoriginal contents of the screen will not be changed or moved, but Lhecursor will be set to the top left-hand corner oi the new winäow.A window definition block consisting of four rords rust be set upbefore the TRAP call is made, and should iontuiru

j
:.1

E

d

il

H
ri

ril

,iJgt

fl
n

H
t{
fi

I
i
t,
I

li

Dl.B Border colour
D2.bl Border width
D3.W Timeout
A0 Channel ID
A1 Base of window block

none

Dl, A1

NC (-1) not complete

9l t-1) range error - window too big
NO (-6) channel not open

Block offset Use

Ilindov size (I)
l{indov size (I)
Windor origin (I)
hlindou origin (I)

The-window origin corresponds to t.he top left-hand corner of the defined
windor+.

$oo
$02
$04
$06

100

sD.cuRE $oE (L+7

Enable the cursor

Entry parameters: D3.W Timeout
A0 Channel ID

Return para-meters: none

Affected registers: D1, Ai

Additional errors: NC (_1) nor_ compleLe
N0 (-6) channel n,.r ,perr

Description

This procedure will enable the cursor in the specifieci windov channer..Note that the cursor will automatically ie enabred when a rread rinei(I0.FLINE) or terJir tine' (I0.EDiifvJtpl"."orre is jnvcked.

101

sD.cuRS $oF (15)

Suppress Ehe cursor

Entry parameters: D3.lJ Timeout
A0 Channel fD

Return parameters: none

Affected registers: Dl, Al

Additional errors: NC (-l) not complete
N0 (-6) channel not open

Description

This procedure will disable the cursor in the specifled window channel.Nole that the cursor will automatically be disabled when a rread linet(r0.FLrNE) or tedir liner (ro.EDLrN) piocedure termlnates normallv.

t02

SD.POS $ 1o (16)

Move cursor absolute using character coordinates

Entry parameters: Dl.I{ Column position
D2.Vl Row position
D3.W Timeout
A0 Channel ID

Return parameters: none

Affected registers: Dl, A1

Additional errors: NC (-1) not complete
0R (-4) range error - not in window
N0 (-6) channel not open

Description

Thls procedure will position the cursor at a specified absolute
position. The top left-hand corner of the window is positlon [0,0].

If a newline is pending, it will be cleared by this call. The origirral
cursor position will not be altered if an error occurs.

103

SD.TAB

Tabulate

Entry parameters: D1.W Column position
D3.W Timeout
A0 Channel ID

Return parameters: none

Affected registers: Dl, A1

Additional errors: NC (-l) not complere
0R (-4) range error - not in winriow
N0 (-6) channel not open

Description

This procedure wirl position the cursor at the specified t-ab-stopposition. The specified positi.on may be anywhere on the currenl cursor1ine.
rf a newline is pendj.ng, it wirl be cleared by this ca1l. The originalcursor position will not be altered if an e,rror occurs.

$11 (17)

SD.NL $12 (18)

Nevline

Entry parameters: D3.\{ Tlmeout
A0 Channel ID

Return paraneters: none

Affected registers: Dl, 41

Additional errors: NC (-1) not complete
0R (-4) range error - not in window
N0 (-6) channel not open

Description

This procedure will force a newllne to be given in the specified window
c hannel .

If a newline is pending, it w111 be cleared by this cal1. The original
cursor position will not be altered if an error occurs.

SD.PCOL $13 (1e)

Cursor back

Entry paraneters: D3.W Timeout
A0 Channel ID

Return parzrmeters: none

Affected registers: Dl, Al

Additional errors: NC (-i) not complete
0R (*4) range error - not in window
N0 (-6) channel nor open

Drescription

This procedure w111 backspace the cursor non-destructively (i.e., thecursor will not rub out the prevlous character)
rf a newline is pending, it will be cleared by thls call. The originalcursor posltj.on will not be allered if an error occurs.

106

SD.NCOL $1+ (20)

Cursor forvard

Entry parameters:

Return paraneters:

Affected registers:

Addicional errors:

D3.W Timeout
A0 Channel ID

none

D1 , A1

NC (-1) nor complere
0R (-4) range error - not in window
N0 (-6) channel not open

Description

Thls procedure will move the cursor
non-destructively.

If a newllne is pending, ir will be
cursor position will not be altered if

forward one character position,

cleared by this call. The original
an error occurs.

107

SD.PROW $15 (27)

Cursor up

Entry parameters: D3.l,J Timeorrr
A0 Channel ID

Return paraoeters: none

Affected registers: D1, A1

Additional errors: NC (-1) not complete
0R (-4) range error - not in window
N0 (-6) channel nor open

Description

This procedure wirl move the cursor up one rine non-destructlvely. Thecolumn poslt.ion of the cursor will be unchanged.
Jf a newlrne is pending, it will be cleareJ by this call. The originalcursor positlon will not be altered if an error occurs.

108

SD.NROW $10 (22)

Cursor down

Entry parameters: D3.l,r' Timeout
A0 Channel fD

Return parameters: none

Affected registers: Dl, A1

Additional errors: NC (-1) not complete
0R (-4) range error - not in window
N0 (-6) channel not open

Description

This procedure will move the cursor down one line non-destructivery. Thecolumn positlon of the cursor will be unchanged.
rf a newline is pending, it will be cleareä by this ca1l. The originalcursor position will not be altered if an error occurs.

|-

llove cursor absolute pixel using pirel coordinates

Entry parareters:

SD.PIXP $rz Q3)

Return parareters:

Affected registers:

Additional errors:

Dl .l.J X coordinate
D2.W Y coordinate
D3.ht Timeout
A0 Channel ID

none

Dl, A1

NC (-1) not complere
0R (-4) range error - not in r+indor.r
N0 (-6) channel not open

Ibscription

This procedure will position the cursor at a specified absoluteposition. The top left-hand corner of the window is position [0,0].Pixel coordinates should correspond to the top left-hand äorner of therequired character rectangle.
rf a newline is pending, it will be cleared by this cal1. The originalcursor position r.rill not be altered if an error occurs.

110

sD.scRoL $18 (2+1

Scro1l entire window

Entry parameters: Dl.id Distance to scroll
D3 .l4l Ti meout
A0 Channel ID

Return parameters: none

Affected registers: Dl, A1

Additional errors: NC (-1) nor complete
N0 (-6) channel not open

Descriptlon

This procedure will scroll the whole of the specified channel window. An
upward scrofl can be obtained bv specifying a negative distance. The
distance to scroll is always specified in terms of pixels. vacated pixel
rows will be fjlled with the tpapert colour.

The cursor position will not be altired.

SD.SCRTP $rg Q5)

Scroll top of yindov

F..try paraneters:

Return parareters:

Affected registers:

Additioaal errors:

Dl.ld Distance to scro11
D3.W Timeour
A0 Channel ID

none

D1, A1

NC (-1) not complete
N0 (-6) channel not open

Deecription

This procedure will scro11 the top part of the speclfied channer window.An upward scro11 can be.obtained Ly'specifying u'n.g.aiu"-Ji-"i.n.". Thedistance to scro11 is always speciiieä in ter;s of ii.xe1s. üacated pixelrows r.ril1 be fi11ed with the ,paperr colour.
- The top part of the window is äefined as the area of the windor+ above(?ld lot including) the cursor 1ine. The .u."or p""ili.r-"ir1 not bealtered.

t12

sD.scRBT $1A (26)

Scroll botton of window

EDtry parameters:

Return par€rmeters:

Affected registers:

Additional errors:

Description

This procedure will scro11 the bottom part of the specified channelwindow. An upward scroll can be obtalned by specifylng a negatlvedistance. The distance to scro1l is always speclfied-i.n termJ of pixels.
Vacated pixel rows wlll be fi11ed with the tpaper, colour.

The bottom part of the window is definäd as the area of the window
below (and not including) the cursor line. The cursor position will nor
be altered.

Dl.W Distance to scroll
D3.W Timeout
A0 Channel ID

none

Dl , A1

NC (-i) not complete
N0 (-6) channel not open

113

SD.PAN $18 (27)

Pan entire window

Entr1r para@eters: Dl.W Distance to pan
D3.1./ Tlmeout
A0 Channel ID

Return parameters: none

Affected registers: Dl, A1

Additional errors: NC (-1) not complete
N0 (-6) channel not open

Description

This. procedure will pan the whole of the specified channer window. A panLo the left can be obtained by specifying a negative distance. Thedistance to pan is always speciiied in terms of pixels. Vacated pixerpositj.ons will be fi11ed with the tpapert colour.

The cursor position will not be altered.

SD.PANLN $ 1E (30)

Pan cursor line

Entry paraneters:

Return parameters:

Affected registers:

Additional errors:

Dl.ld Distance to pan
D3.l{ Tirneout
A0 Channel ID

none

D1, A1

NC (-1) nor complere
N0 (-6) channel not open

DescriptioD

This. procedure will pan the whole of the current cursor line in thespecified channel r"rindow. A pan to the rert
-can--u.--äba.in.d

byspecifying a negative distance. ihe distance to pan is always specifiedin terms of oixels. vacated pixel positions will be fi11ed with thetpapert colour.
- The helght of the cursor line will depend upon the character font size(i.e., either 10 or 20 pixel rows)l in. .u."o. p""iai.r-"lt not bealtered.

115

SD.PANRT $1F (31)

Pan RIS of cursor line

Entry paraoeters:

Return paraletera:

Affected registers:

Additional er.rorss

D1.t{ Distance to pan
D3.I,J Timeout
A0 Channel ID

none

Dl, A1

NC (-1) not complete
NO (-6) channel nor oien

Description

This procedure wirl pan the whole of the right-hand side of the currentcursor line in the specified channel winäow. A pan to the left can beobtained by specifying a negative distance. The distance to pan isalvays specified in .terms of pixels. vacated pi*.r fo"itions will befl11ed with the tpapert colour.
- The height of the cursor line will depend upon the character font si.ze(i.e., either 10 or 20 pixel rows). Ttre rigtrt-tr""J-."J-ir.rudes rhecharacter at the current cursor position. The cürsor poriiiorr-- ,uirr notbe altered.

116

'- rütr;

ji

1
J
d
ü
ü

il
sL

