INPUT/OUTPUT OPERATIONS
6 (TrRAP #3

Input and output QDOS procedures fall into two major categories. First,
there are those that are concerned with the actual allocation of
channels for devices and files. Second, there are those that actually
perform input and output operations on the allocated channels. The first
category comprises the TRAP #2 calls, as discussed in Chapter 5. The
second category comprises the TRAP #3 calls which we will discuss now.

6.1 Timeouts

All TRAP #3 procedures require a timeout to be specified. The timeout
period is a multiple of the monitor frame rate (i.e., 50/60 Hz). A
timeout period of unity is therefore equivalent to 20 ms for a 50 Hz
timebase, and 16.666 ms for a 60 Hz timebase,

If a routine is called with the timeout set to zero, the call will
return immediately after attempting its task, regardless of whether or
not it succeeded. A positive timeout will make the call return
immediately on completion, or at the end of the timeout, whichever
occurs first. A maximum timeout period of 32767 times the unit timebase
period is permitted. This gives a maximum period of 10 minutes,
55.3 seconds for a 50 Hz timebase, and 9 minutes, 6,1 seconds for a 60Hz
timebase. A timeout value of -1 signifies that an indefinite period is
required. No other negative value should be used,

The IO.FBYTE procedure is a worthy example. Suppose the procedure was
being used to input a byte (character) from the keyboard. If a timeout
of zero is used, the procedure will return a character if one is
waiting, or return the error ERR.NC (not complete) if no character
exists, Fither way, an immediate return is made, A positive timeout will
force the routine to look for a character for the specified length of
time. If a character is entered within the time, an immediate return is
made with the character. If no character arrives within the time
specified, the routine will return at the end of the timeout with the
ERR.NC error. A timeout of -1 will force the procedure to wait until
complete, that is, wait until a character is entered.

6.2 Important principles

It must be remembered that QDOS supports multi-tasking and, therefore,
there may be more than one job trying to get access to a particular

83

channel, If your job call requests access to a channel that is already
being waited on, one of two things will happen. If your timeout was
given as zero, your call will return immediately as incomplete., If your
timeout was not zero, your job will get re-scheduled until such time as
the I/0 channel request can be serviced. Note particularly that your
specified timeout period commences from the moment your job obtains
access to the channel, and not from the moment the original request was
made. This means, of course, that the actual timeout period may be
longer than the programmed timeout.

Incompletion of a job has important side-effects when dealing with
output. In such cases, incompletion means that the QDOS procedure could
not finish outputting its data. Any data not sent, because of an
incomplete return from a procedure, must be re-sent at some later stage.
The case of single character (byte) output is trivial; you would simply
re-send the byte., When a string of characters is being sent, the QDOS
procedure will return a count of the number of characters actually sent.

The input and output of large amounts of data should be handled
carefully, It is inefficient to perform such I/0 a byte at a time. The
QL comes with a large amount of RAM and reasonable decisions over the
use of memory buffers should be made. Characters would then be imported
and exported in as large a block as possible at any one time,

6.3 Screen channel definition blocké

Approximately 707 of QDOS TRAP #3 procedures are related to screen
operations, The procedure to redefine a window (SD.WDEF) is one example,
All of the procedures require a channel ID to be specified. The topic of
channel IDs and screen channels is, therefore, so important that we will
look at these in some detail.

THE CHANNEL ID

A channel ID 1is a long-word holding two bits of information (no pun
intended!). First, in the high order word of the ID, there is a tag
value., This wvalue will get incremented each time a channel is opened.
Second, in the low order word of the ID, there is a channel index code.
This code is wused internally by QDOS. For information only (you would
never normally use the fact), the channel value, stored in the 1ID,
multiplied by four will supply an appropriate index into a channel table
(see Fig.6.1).

When the machine is first switched on, there are three screen channels
open. In SuperBASIC the channels are designated #0, #1, and #2. The
actual correspondence between these SuperBASIC screen channels and the
QDOS channel IDs will be as follows:

84

SuperBASIC # QDOS 1D

HEX. DENARY
TAG CHAN.
0 0000 0000 0
1 0001 0001 65537
Z 0002 0002 131074

If, for example, SuperBASIC channel #2 is re-opened, it will still be
channel #2 as far as SuperBASIC is concerned, but its internal QDOS 1ID
will be $00030002 (denary 196610).

It is important to realise that, in practice, you should never need to
know this correspondence. When writing pure assembly language
application programs you will always have a copy of the QDOS channel ID,
and that is all you need. If you are passing a SuperBASIC channel number
over to an assembly language utility, the utility will collect the
standard channel integer (i.e., #0, #1, etc.) and use it to calculate
the internal QDOS channel ID (see Chapters 8 and 11),

SCREEN CHANNELS

QDOS maintains a channel resource management table, which holds such
information as the highest known channel number, and so on (see
Fig.6.1). Two pointers within this table, SV_CHBAS and SV_CHTOP, point
to the base and top of the channel table respectively., The pointers
within the channel table (long-words) point, din turn, to the
corresponding channel definition blocks. Figure 6.1 shows the layout of
screen channel definition blocks,

1f it is a requirement of an applications program to obtain
information about a particular screen channel, it should be obtained by
calling your 'get the information' subroutine via the TRAP #3 extended
operation procedure (SD.EXTOP; D0=9). The SD.EXTOP call will assume that
your subroutine is a standard device driver and perform a couple of
important operations. First, it will pass the base of the system
variables (SV_BASE) to the subroutine in register A6. Second, register
A7 will be set to the supervisor stack in such a way that you may use up
to 64 bytes of stack space within your subroutine. Note that your
subroutine actually will be running in supervisor mode., Third, the
channel ID passed over to SD.EXTOP in register AO will be converted to a
pointer (in AO) to the base of the corresponding channel definition
block. These operations provide your subroutine with vital pointer
information in a very neat and convenient manner. When the return from
subroutine (RTS) instruction is executed at the end of your subroutine
(note: RTS not RTE), register A0 will be reset to the channel ID
specified on entry to SD.EXTOP.

85

Figure 6.1 Screen channels and definition block

86

Channel resource
management table

(A6 = SV_BASE)

$70 (A6) Current value of SV_CHTAG
channel tag
$72 (A6) c*;;gnf:f;‘ R SV_CHMAX
$78 (A6) Pointer to base of SV_CHBAS
channel table -l
$7C (A6) P‘;;]';'s;e'{’t;‘;l]’e"f SV_CHTOP
(offset)

$00 } }
$18 | WINDOW TOP LHS (X)| SD_XMIN (word)
SIA (Y)| SD_YMIN (word)
SIC | WINDOW SIZE (X)| SD_XSIZE (word)
SIE (Y)| SD_YSIZE (word)
$20 | BORDER WIDTH fﬁ;ﬁ?RWD
$22 | CURSOR POSITION (X)| SD_XPOS (word)
$24 (Y)| SD_YPOS (word)
$26 | CURSOR INCREMENT (X) | SD_XINC (word)
$28 (Y)| SD_YINC (word)
$2A | FONT ADDRESSES fz‘);ﬁ‘gﬁ‘g[
s3] £ RN PRERROK SD_SCRB (long)
$36 | PAPER COLOUR MASK SD_PMASK (long)
$3A | STRIP COLOUR MASK SD_SMASK (long)
$3E | INK COLOUR MASK SD_IMASK (long)
$42 | CHARACTER ATTRIBUTES| SD_CATTR (byte)
$43 | CURSOR FLAG (¢ = off) SD_CUREF (byte)
$44 | PAPER COLOUR SD_PCOLR (byte)
$45 | STRIP COLOUR SD_SCOLR (byte)
$46 | INK COLOUR SD_ICOLR (byte)
$47 | BORDER COLOUR SD_BCOLR (byte)
$48 | NEW LINE STATUS SD_NLSTA (byte)
$49 | FILL MODE (¢ = off) SD_FMOD (byte)
sl GRATIICS WINDOW 5y | SD. YORG {fioat)
$50 (X) | SD_XORG (float)
$56 | GRAPHICS SCALE FACTOR| SD_SCAL (float)

f

Incremented each time
a channel is opened

Window
data - block
definition

channcel 1D

INDEX into channel
table is 4 x channel’

channel table

(offset)
Pointer to channel (0 $00
Pointer to channel | $04
Pointer to channel 2 SOR
. S0C
.
.

"o Y O

6.4 Colour

A number of the TRAP #3 procedures allow a colour to be specified as one
of their parameters. Setting the ink colour (SD.SETIN) is one example of
this. Three colours are used by the screen drivers. There is the 'paper’
colour which is the background colour; the 'ink' colour which is the
main printing and graphical plotting colour; and the 'strip' colour used
for highlighting.

The solid colours which may be specified for the two screen modes are
as follows:

Mode 8 (256) Mode 4 (512)
0 - black 0 - black
1 = blue 1 - black
Z = . red 2 - red
3 — magenta 3 - red
4 - green 4 - green
5 - cyan 5 - green
6 - yellow 6 - white
7 - white /4 - white

In addition to the solid colours there are four stipple patterns that
can be specified. Stipple patterns exist within a 2x2 pixel matrix, and
can be selected by setting appropriate bits in the colour byte (see

Figi6.2).
e T8, DR 3 Spen gD

Colour

byte % ¢ b

s = stipple type

¢ = XOR of stipple colour
and base colour

b = base colour

0 0 E One in four
(100 m Horizontal bars
S E Vertical bars
] E Checker-board

Figure 6.2 Exploded view of colour byte

Bits 7 and 6 will specify the stipple pattern as shown. Bits 0 to 2
specify the base colour (Q.s7)5 and bits 3 to 5 hold a wvalue
corresponding to the XOR (exclusive_OR) of the base colour and the
stipple pattern colour. Suppose we want a base colour of blue and a
stipple colour of yellow. The base colour has the binary wvalue '001',
and the stipple colour the binary value '110'. The XOR of these two

87

values is the binary value 'l111', and it is this value that must be put
into bits 3 to 5 of the colour byte. If we also wanted a checker-board
type of stipple, the whole colour byte would be binary encoded as 'll
111 001', which is the denary colour 249,

This method of encoding the pattern colours enables the standard solid
colours to be obtained quite naturally. For example, take the solid
colour green (value 4). This has a colour byte binary pattern of '00 000
100'. The stipple pattern is type O (one dot in four). The XOR value is
zero and, therefore, the stipple colour must be 4 (binary 100), which is
green! This gives us a base colour and a stipple colour that are the
same, and hence we get our solid colour.

6.5 Use of 68000 registers

The TRAP #3 procedures are accessed with register DO (byte) indicating
which particular call is required. This register is used also to return
an error status (long-word) to the calling process. If the error code
returned is not zero then an error has occurred. Small negative error
codes are used to indicate standard errors. These error codes are listed
in Appendix C. If the trap call invoked some form of additional device
driver, the error code returned can be a pointer to a specific error
message. In order that the two types of error return code might never be
confused, the pointer type error code is in fact a pointer to an address
$8000 below that of the true error message. Potentially, all QDOS
routines can return the error 'ERR.BP' (-15), signifying 'bad
parameter'. The full descriptions of the TRAP #3 procedures state which
additional errors can be returned. It would of course be wise to check
for any errors after the trap call has been made.

In addition to the use of register DO, data registers Dl to D3 and
address registers A0 to A3 are variably used to pass values to and from
the QDOS procedures. When the appropriate registers have been set for
any one call the appropriate routine is accessed by simply executing the
TRAP #3 instruction. In cases where the data size qualifier (i.e., '.B',
'.W', or '.L') is not specified within the description, the default is
long-word (i.e., '.L").

The channel ID, which specifies the channel to be used for the I/0
transfer, 1is always passed as a long-word in AO, and is never modified
by the TRAP #3 procedure, The timeout is always passed as a word in D3,
and it also is never modified by the call. If register Al points to an
array of bytes on entry to the TRAP #3 procedure, on exit from the
procedure Al will be pointing to the next byte in the array. Registers
D2 to D7, AO, and A2 to A7 are always preserved by the I/0 procedures.

88

IO.PEND $00 (0)

Check for pending input

Entry parameters: D3.W Timeout
AO Channel ID
Return parameters: none

Affected registers: D1, Al
Additional errors: NC (-1) not complete (no pending input)

NO (-6) channel not open
EF (-10) end of file

Description
This trap call can be used to check for pending input on a channel. Note

that only a check for input is performed; the input channel is not
modified in any way, and no input of data is performed.

89

IO.FBYTE

Fetch a byte
Entry parameters:

Return parameters:
Affected registers:

Additional errors:

Description

This procedure will fetch a byte from the specified input channel.

90

$01 (1)

D3.W Timeout
AO Channel ID

D1.B Byte fetched
D1, Al
NC (-1) not complete

NO (-6) channel not open
EF (-10) end of file

IO.FLINE $02 (2)

Fetch a line (terminated by ASCII <LF>)

Entry parameters: D2.W Length of buffer
D3.W Timeout
AO Channel ID
Al Base of buffer
Return parameters: D1.W Number of bytes fetched
Al Updated buffer pointer

Affected registers: D1, Al

Additional errors: NC (-1) not complete
BO (-5) buffer overflow
NO (-6) channel not open
EF (-10) end of file

Description

When dealing with console input, this procedure has special properties.
First, the characters read from the keyboard will be echoed in the
appropriate window. Second, the standard cursor keys (LEFT and RIGHT)
can be used for simple editing as follows:

LEFT - move cursor left

RIGHT - move cursor right

CTRL-LEFT - delete character left
CTRL-RIGHT - delete character under cursor

Note that the cursor, within the specified window, will only be enabled
for the duration of the procedure call, The count of the number of bytes
fetched, as returned in D1, will include the line terminator (ASCII
<LF>) if it was found.

The line-feed terminator may not be found if the timeout is exhausted,
and will never be found if the buffer overflows. In such cases the
cursor will be left enabled.

On exit, the pointer in register Al will point to the byte following
the last character entered.

91

IO.FSTRG $03 (3)

Fetch a string of bytes

Entry parameters: D2,W Length of buffer
D3.W Timeout
AO Channel ID
Al Base of buffer
Return parameters: D1.W Number of bytes fetched
Al Updated buffer pointer

Affected registers: D1, Al

Additional errors: NC (-1) not complete
NO (-6) channel not open
EF (-10) end of file

Description

This procedure will fetch a string or block of bytes from the specified
input channel, The bytes fetched will not be echoed on the screen, even
if the channel device is a window. A return will be effected either when
the timeout is exhausted or when the buffer becomes full.

92

IO.EDLIN $04 (4)

Edit a line (console only)

Entry parameters: D1.L Line/cursor parameters
D2.W Length of buffer
D3.W Timeout

AO Channel ID

Al Pointer to end of line
Return parameters: D1 Line/cursor parameters

Al Pointer to end of line

Affected registers: D1, Al

Additional errors: NC (-1) not complete
BO (-5) buffer overflow
NO (-6) channel not open

Description

This is similar to the procedure IO.FLINE ($02) except that an initial
line, on which to start the editing, is supplied to the user. On entry,
register D1 must hold two words of information about the line. The high
order word must contain the current cursor position (O..n), and the low
order word must specify the total line length. The line specified should
not contain the terminating character (ASCII <LF>). Only the part of the
line starting from the current cursor position up to the end of the line
will be given to the user.

On exit, the procedure will have updated the parameters in registers
D1 and Al to correspond to the edited line. Valid terminating characters
are <LF>, <CURSOR-UP>, and <CURSOR-DOWN>. The terminating character will
be included in the line (and hence the line length) when the procedure
returns. Note that the pointer in register Al always points to the
character byte following the last character entered.

93

IO.SBYTE $05 (5)

Send a byte
Entry parameters: D1.B Byte to be sent
D3.W Timeout
AO Channel ID
Return parameters: none

Affected registers: D=

Additional errors: NC (~1) not complete
OR (-4) out of range
NO (-6) channel not open
DF (-11) drive full

Description

This procedure will send a byte out to the specified output channel.

Special provisions exist for the output of a 1line-feed (<KLF>) to a
screen or console device. First, a newline is inserted on receipt of the
line-feed terminator, or when the cursor reaches the right-hand side of
the window. If the cursor is suppressed, the newline will be held
pending. To release it one of the following may be performed:

1. another byte may be sent

2. the character size may be changed

3. the cursor may be enabled

4. the cursor position may be requested

If the cursor is explicitly positioned, the pending newline will be
cancelled. Note especially that an explicit newline will replace an
impiicit one, thus providing sensible output with no unwanted blank
lines,

The error code ERR.OR (~4) will be returned if any newline operation has
taken place.

94

PR

I0O.SSTRG $07 (7)

Send a string of bytes

Entry parameters: D2.W Number of bytes to send
D3.W Timeout
AO Channel ID
Al Base of buffer
Return parameters: D1.W Number of bytes sent
Al Updated pointer to buffer

Affected registers: D1, Al

Additional errors: NC (-1) not complete
NO (-6) channel not open
DF (-11) drive full

Description

This procedure will send a string of bytes out to the specified channel,

Special provisions exist for the output of a line-feed (<KLF>) to a
screen or console device, First, a newline is inserted on receipt of the
line-feed terminator, or when the cursor reaches the right-hand side of
the window. If the cursor is suppressed, the newline will be held
pending. To release it one of the following may be performed:

1. another string may be sent

2. the character size may be changed

3. the cursor may be enabled

4. the cursor position may be requested

If the cursor is explicitly positioned, the pending newline will be
cancelled. Note especially that an explicit newline will replace an
implicit one, thus providing sensible output with no unwanted blank
lines.

95

SD.EXTOP

$09 (9)

Call an extended operation

Entry parameters:

Return parameters:

Affected registers:

Additional errors:

Description

This trap call provides a
in supervisor mode.
to device driver rules.

routine

is outside
points.

The registers available for

importing, and the
simply the case that
corrupted in the
user-supplied device

96

the scope of this book,

D1 Parameter (if required)
D2 Parameter (if required)
D3.W Timeout

AO Channel ID

Al Parameter (if required)
A2 Address of routine

D1 Parameter (if used)

Al Parameter (if used)

Dl Al

NC (-1) not complete

NO (-6) channel not open

mechanism for accessing a user supplied
The routine specified on entry must conform
A detailed description of device driver routines
but Sec.6,3 discusses the pertinent
for

parameter passing (i.e., the three

two for exporting) do not have to be used. It is
the values in these registers will not become

'interface' between the TRAP routine and the
driver,

SD.PXENQ $0A (10)

Return window size & cursor position in pixel coords.,

Entry parameters: D3.W Timeout

AO Channel ID

Al Base of enquiry block
Return parameters: (Updated enquiry block)

Affected registers: Al

Additional errors: NC (-1) not complete
NO (-6) channel not open

Description

An enquiry block is required for this procedure call, consisting of four

words:
Block offset Use
$00 Window size (X)
$02 Window size (Y)
$04 Cursor position (X)
$06 Cursor position (Y)

The top left-hand corner of the window will have the coordinates [0,0].
If a newline is pending on the specified window channel, it will be
activated (i.e., released).

97

SD.CHENQ

$0B (11)

Return window size & cursor position in character coords.

Entry parameters: D3.W Timeout

AO Channel ID

Al Base of enquiry block
Return parameters: (Updated enquiry block)
Affected registers: Al
Additional errors: NC (-1) not complete

NO (-6) channel not open

Description

An enquiry block is required for this procedure call, consisting of four

words:

Block offset Use

$00 Window
$02 Window
$04 Cursor
$06 Cursor

The top left-hand corner of the
If a newline is pending on
activated (i.e., released).

98

size (X)
size (Y)
position (X)
position (Y)

window will have the coordinates

[0,0].

the specified window channel, it will be

SD.BORDR $0C (12)

Set border width & colour

Entry parameters: D1.B Colour
D2.W Width
D3.W Timeout
AO Channel ID
Return parameters: none

Affected registers: D1

Additional errors: NC (-1) not complete
NO (-6) channel not open

Description

This procedure will redefine the border of the specified window. A
border is, by default, of zero width. When the border is set up it wild
lie inside the window limits, and the vertical edges will be of double
width. All subsequent screen calls will use the reduced window size
(except a subsequent call to SD.BORDR). The cursor will be homed if the
border width is changed.

The standard colour codes are as described in Sec.6.4. There is also the

colour $80 (128) which is treated as a special case, and will create a
transparent border, leaving the original border contents intact.

99

SD.WDEF $0D (13)

Define a window and its border

Entry parameters: D1.B Border colour
D2,W Border width
D3.W Timeout

AO Channel ID
Al Base of window block
Return parameters: none

Affected registers: D1, Al

Additional errors: NC (-1) not complete
OR (-4) range error - window too big
NO (-6) channel not open

Description

This call is used to redefine the shape and position of a window, The
original contents of the screen will not be changed or moved, but the
cursor will be set to the top left-hand corner of the new window,

A window definition block consisting of four words must be set up
before the TRAP call is made, and should contain:

Block offset Use

$00 Window size (X)
$02 Window size (Y)
$04 Window origin (X)
$06 Window origin (Y)

The window origin corresponds to the top left-hand corner of the defined
window,

100

SD.CURE $0E (14)

Enable the cursor

Entry parameters: D3.,W Timeout
AO Channel ID
Return parameters: none

Affected registers: D1, Al

Additional errors: NC (-1) not complete
NO (-6) channel not open

Description
This procedure will enable the cursor in the specified window channel,

Note that the cursor will automatically be enabled when a 'read line'
(TO.FLINE) or 'edit line' (T0.EDLIN) procedure is invoked,

101

SD.CURS

Suppress the cursor
Entry parameters:

Return parameters:
Affected registers:

Additional errors:

Description

$OF (15)

D3.W Timeout
AO Channel ID

none
D1, Al

NC (-1) not complete
NO (-6) channel not open

e ———— e ———————

This procedure will disable the cursor in the specified window channel,
Note that the cursor will automatically be disabled when a 'read 1line'
(IO.FLINE) or 'edit line' (IO.EDLIN) procedure terminates normally,

102

SD.POS $10 (16)

Move cursor absolute using character coordinates

Entry parameters: D1.W Column position
D2.W Row position
D3.W Timeout
AO Channel ID

Return parameters: none
Affected registers: D1, Al
Additional errors: NC (-1) not complete

OR (-4) range error - not in window
NO (-6) channel not open

Description

This procedure will position the cursor at a specified absolute
position. The top left-hand corner of the window is position [0,0],

If a newline is pending, it will be cleared by this call. The original
cursor position will not be altered if an error occurs.

103

SD.TAB $11 (17)

Tabulate
Entry parameters: D1.W Column position
D3.W Timeout
AO Channel ID
Return parameters: none

Affected registers: D1, Al

Additional errors: NC (-1) not complete
OR (-4) range error - not in window
NO (-6) channel not open

Description

This procedure will position the cursor at the specified tab-stop
position. The specified position may be anywhere on the current cursor
Line,

If a newline is pending, it will be cleared by this call. The original
cursor position will not be altered if an error occurs.

104

SD.NL $12 (18)

Newline

Entry parameters:

Return parameters:
Affected registers:

Additional errors:

Description

This procedure will force a newline to be given in the specified

channel,

D3.W Timeout
AO Channel ID

none
bl, Al
NC (-1) not complete

OR (-4) range error — not in window
NO (-6) channel not open

window

If a newline is pending, it will be cleared by this call. The original
cursor position will not be altered if an error occurs.

105

N

SD.PCOL $13 (19)

Cursor back

Entry parameters: D3.W Timeout
AO Channel ID
Return parameters: none

Affected registers: D1, Al

Additional errors: NC (-1) not complete
OR (-4) range error - not in window
NO (-6) channel not open

Description

This procedure will backspace the cursor non-destructively (i.e., the
cursor will not rub out the previous character),

If a newline is pending, it will be cleared by this call. The original
cursor position will not be altered if an error occurs.

106

SD.NCOL

Cursor forward
Entry parameters:

Return parameters:
Affected registers:

Additional errors:

Description

$14 (20)

D3.W Timeout
AO Channel ID

none
D1, Al
NC (-1) not complete

OR (-4) range error - not in window
NO (-6) channel not open

This procedure will move the cursor forward one character position,

non-destructively,

If a newline is pending, it will be cleared by this call. The original
cursor position will not be altered if an error occurs,

107

SD.PROW

Cursor up
Entry parameters:

Return parameters:
Affected registers:

Additional errors:

Description

$15 (21)

D3.W Timeout
AO Channel ID

none
D1, Al
NC (-1) not complete

OR (-4) range error - not in window
NO (-6) channel not open

This procedure will move the cursor up one line non-destructively, The
column position of the cursor will be unchanged.

If a newline is pending, it will be cleared by this call, The original
cursor position will not be altered if an error occurs,

108

SD.NROW $16 (22)

Cursor down

Entry parameters: D3.W Timeout
AOQ Channel ID
Return parameters: none

Affected registers: D1 el

Additional errors: NC (-1) not complete
OR (-4) range error - not in window
NO (-6) channel not open

Description

This procedure will move the cursor down one line non-destructively, The
column position of the cursor will be unchanged.

If a newline is pending, it will be cleared by this call. The original
cursor position will not be altered if an error occurs.

109

oD . PEXPY $17423)

Move cursor absolute pixel using pixel coordinates

Entry parameters: D1.W X coordinate
D2,W Y coordinate
D3.W Timeout
AO Channel ID

Return parameters: none
Affected registers: D1, Al

Additional errors: NC (-1) not complete
OR (-4) range error - not in window
NO (-6) channel not open

Description

This procedure will position the cursor at a specified absolute
position. The top 1left-hand corner of the window is position [0,0].
Pixel coordinates should correspond to the top left-hand corner of the
required character rectangle,

If a newline is pending, it will be cleared by this call. The original
cursor position will not be altered if an error occurs.

110

SD.SCROL $18 (24)

Scroll entire window

Entry parameters: D1.W Distance to scroll
D3.W Timeout
AO Channel ID

Return parameters: none

Affected registers: D1, Al

Additional errors: NC (-1) not complete
NO (-6) channel not open

Description

This procedure will scroll the whole of the specified channel window. An
upward scroll can be obtained by specifying a negative distance. The
distance to scroll is always specified in terms of pixels. Vacated pixel
rows will be filled with the 'paper' colour.

The cursor position will not be altered.

114

SD.SCRTP $19 (25)

Scroll top of window

Entry parameters: D1.W Distance to scroll
D3.W Timeout
A0 Channel ID

Return parameters: none

Affected registers: D1, Al

Additional errors: NC (-1) not complete
NO (-6) channel not open

Description

This procedure will scroll the top part of the specified channel window,
An upward scroll can be obtained by specifying a negative distance, The
distance to scroll is always specified in terms of pixels. Vacated pixel
rows will be filled with the 'paper' colour.

The top part of the window is defined as the area of the window above

(and not including) the cursor line. The cursor position will not be
altered,

112

SD.SCRBT $1A (26)

Scroll bottom of window

Entry parameters: D1.W Distance to scroll
D3,W Timeout
AO Channel ID

Return parameters: none

Affected registers: D1, Al

Additional errors: NC (-1) not complete
NO (-6) channel not open

Description

This procedure will scroll the bottom part of the specified channel
window, An upward scroll can be obtained by specifying a negative
distance. The distance to scroll is always specified in terms of pixels,
Vacated pixel rows will be filled with the 'paper' colour,

The bottom part of the window is defined as the area of the window
below (and not including) the cursor line. The cursor position will not
be altered.

113

SD.PAN $1B (27)

Pan entire window

Entry parameters: D1.W Distance to pan
D3.W Timeout
AO Channel ID
Return parameters: none

Affected registers: D1, Al

Additional errors: NC (-1) not complete
NO (-6) channel not open

Description

This procedure will pan the whole of the specified channel window. A pan
to the left can be obtained by specifying a negative distance. The
distance to pan is always specified in terms of pixels. Vacated pixel
positions will be filled with the 'paper' colour.

The cursor position will not be altered.

114

SD.PANLN $1E (30)

Pan cursor line

Entry parameters: D1.W Distance to pan
D3.W Timeout
AO Channel ID
Return parameters: none

Affected registers: D1, Al

Additional errors: NC (-1) not complete
NO (-6) channel not open

Description

This procedure will pan the whole of the current cursor line in the
specified channel window. A pan to the 1left can be obtained by
specifying a negative distance, The distance to pan is always specified
in terms of pixels. Vacated pixel positions will be filled with the
'paper' colour.

The height of the cursor line will depend upon the character font size
(i.e., either 10 or 20 pixel rows). The cursor position will not be
altered.

115

SD.PANRT $1F (31)

Pan RHS of cursor line

Entry parameters: D1.W Distance to pan
D3.W Timeout
AO Channel ID
Return parameters: none

Affected registers: DL, Al

Additional errors: NC (-1) not complete
NO (-6) channel not open

Description

This procedure will pan the whole of the right-hand side of the current
cursor line in the specified channel window. A pan to the left can be
obtained by specifying a negative distance. The distance to pan is
always specified in terms of pixels. Vacated pixel positions will be
filled with the 'paper' colour,

The height of the cursor line will depend upon the character font size
(i.e., either 10 or 20 pixel rows). The right-hand end includes the
character at the current cursor position. The cursor position will not
be altered.

116

