
0 PROGRAMMING PROJECTS/ADVENTURE GAME

SPECIAL ASSIGNMENT

Drop It!
The logic of the DROP routine
is similar to that of the TAKE
routine (see page 846), but
only the validity of the object
and its presence in the
player's inventory need be
checked before the DROP
command is executed. The
main inventory is then
updated to show a new
location for the object, and the
object name is deleted from
the player's inventory

In the last instalment of our adventure game
project we designed routines to enable the
player to pick up objects. Now we must
develop the corresponding routines that
allow the player to drop any objects he may
be carrying. We also look at the first of the
'special' locations.

The DROP subroutine bears many similarities to
the TAKE routine described on page 846. Indeed,
we can use the same object checking routines that
were developed for use with the TAKE command.
Three checks on the object are made during the
TAKE routine. The first is designed to test whether
or not the second part of the command phrase
contains a valid object. This is done by checking

ENTRY

object
al id>M Efrot

FXll -

1
object

s
 held 	Ir

by the playr

?

EXIT

Output message
you drop the object

Record current

position of object in
main inventory

Seek and delete
object description

from player's
personal inventory

EXIT

each word of the command phrase systematically
against the object names in the inventory array -
IVS(,). If a match is found then a variable, F, is set,
giving the position of the matched object within
the array. This validity check must also be used in
the DROP routine to establish whether the object
exists and, if it does, to determine its position in the
inventory.

The second check used in the TAKE routine is
also used in the DROP routine; this tests whether
the player holds the object specified in the
command in the inventory of carried objects -
IC$O. Obviously, a player cannot drop an object
that he is not carrying! The third test used in the
TAKE routine checks to ensure that the object to be
picked up is at the player's current location, as
determined by the position variable, P. However,
as the object to be dropped must be held by the
player, its position will not appear in the main
inventory, and this third test is, therefore, not
needed by the DROP routine.

Assuming that both tests result in a favourable
outcome, then the following changes must be
made to both the main and the player's
inventories:

1) The position of the object to be dropped will
now be specified by F. The current position, P, must
be entered in the main inventory array in position
IV$(F,2).
2) The object description must be deleted from the
player's personal inventory of objects carried,
ICS(). This is best done by searching through the
array until the appropriate object is found and
replacing it with a null string.

The logic of the DROP routine is shown in the
flowchart. Here is the listing for the routine in the
Haunted Forest game:
3900 REM ***s DROP S/R **s*

3918 GOSUB5300:REM VALID OBJECT

3920 IF F0 THEN SN$-"THERE Is 	.GO5U85508:

RETURN

3930
3940 REM ** IS OBJECT IN CARRIED INVENTORY sa
3950 OVF (IOSUBS4SO
3960 IF HF-0 THEN SI'YOU DO NOT HAVE THE +IV*
(F.1) IOOSUB5500RETURN

3970
3980 REM as DROP OBJECT as
3990 SN$YOU DROP THE +IV$(F,1)!GOSUBSSOe
4000 IV$(F,2)-STRS(P)IREM MAKE ENTRY IN INVENTORY

4010
4020 REM ** DELETE OBJECT FROM CARRIED INVENTORY

**

4030 FOR JITO2
4040 IF IC$(J) , IV$(F.1) THEN IC$(J):J.2

4050 NEXT J
4860 RETURN

It can be seen that one of the major advantages of
programming in modules is that the same routines
can be accessed for different purposes. By using a
system of flags, decisions can be made within short

Er re r toes sage

866 THE HOME COMPUTER ADVANCED COURSE

