
PROGRAM
DATA AREA

LJNKED
ROUTINE 1 DISK UBRARY

The Missing Link

addr 1 

addr 2

EXTERNAL ROUTINES
DECLARATION

LDBit sioo

LDA?
CLR?
JSR

-Akin
n

ORA?
JSRn
RELOCATABLE CODE
(semi-assembled)

LIBRARY RI UTINE 1

UNKED

UNKING LOADER

EXECUTABLE PROGRAM

6809 CODE/MACHINE CODE

Li 
FREE TRANSFER

As the tutorial section of our 6809
Assembly language course draws to a close,
we begin to take a more general look at the
techniques of machine code programming.
Our first topics are relocatable code,
instruction lengths and timing routines.

A program that is written using relocatable, or
position-independent, code can be placed at any
position in memory and run without any changes
having to be made. This is particularly important
in multi-tasking or multi-user systems where
several programs may be loaded into memory at
the same time, and in order to ensure efficient use
is made of memory space, the operating system
must be able to load them at the most convenient
place. Even in simpler, single-user systems it is
usually important to be able to maintain
subroutine libraries and to construct a program
out of self-contained modules, in which case the
position of a routine in memory may vary.

Most processors deal with this by using what is
known as a linking loader. The assembler
produces relocatablc code, which leaves out all
references to actual addresses in memory; it is the
job of the linking loader to insert the addresses as it
loads the program into memory. Since it is the
loader itself that handles the addresses, it is
straightforward to ensure that transfers of control

between different modules are handled correctly.
In this way, sections of code can be written in
different languages that all compile or assemble to
the same relocatable code; thus, for example,
PASCAL programs can call I-OR FRAN library routines.
This approach can also be used with the 6809, and
indeed it is necessary if modular construction is
used. The 6809 makes the process a lot easier by
allowing fully relocatable code to be written
directly, so there is no need for the extra stage of
inserting addresses.

The key to writing relocatable code is to refer to
all addresses by means of an offset from the
program counter (PC). There are two ways in
which a program can use an address: as data and as
the destination for a transfer of control. Branch
instructions (BRA, BSR, etc.) calculate their
destinations as offsets from the PC and should be
used for all transfers of control within the user
program. The absolute transfer instructions (J MP
and JSR) should be used only for destinations that
will always be at the same place in memory, such as
operating system routines.

The more difficult task is to make all the
references to a data position independent, and the
6809 achieves this by allowing the PC to be used
for indexing. The instruction:

LDA OFFSET, PC

will add the (signed) offset to the current value of
Linking Loader
In large systems, machine code
programs are actually loaded
into memory by the Linking
Loader. This operating system
utility takes the semi-assembled
machine code (containing no
absolute addresses) from the
assembler, and determines the
best ORG address for it from the
current state of the system. It
uses this address to replace the
symbolic addresses that the
assembler left in the program
with absolute addresses, and
then links to the program any
library routines requested by the
programmer; these routines are
loaded from the library disk and
attached to the program.Their
absolute call addresses can then
replace the symbolic addresses
in the program. Finally, the
Loader passes the complete
program to the operating system
for execution

THE HOME COMPUTER ADVANCED COURSE 717


