
Spectrum
In direct mode enter:
LET R - OP=FEEK (23730) +
256 PEEK (237311
LET RTOP-RTOP-N
PRINT -ATOP- -:FTOP
where N is the number of
bytes you wish to reserve for
your program. Your reserved
space starts at 1+RTOP

USI:WDEANED GRAPHICS

RESERVED SPACE

BASIC SYSTEMS

WORKSPACE

BaC PROGRAM

AN)YAPoARLS

OPERATING SYSTEM

OPERATING SYSTEM

BAuts PFE)CRAM

AND VARIABLES

SCREEN MEMORY

503FB

CASSETTE

10 BUFFER

so c
OPERATING SYSTEM

WBRN SPACE

i

Warning
You must adjust these
nemory pointers immediately
after turning on your machine
Nhen :here is no BASIC
grogram in memory

I Q.
N
W
it

0
H

I)-

_.J

PART 8/MACHINE CODE

bytes. The machine code can be saved as a file for
later use, or loaded immediately into memory for
execution.

In performing the assembly for us, the
assembler can be made to perform other tasks
that we've been doing by hand — attaching the
location addresses to each line of the program,
for example. Another pseudo-op, ORG, does this
for us. It is added to the program like this:

Z8o
0000 ORG SA000
A000 BYTE1 EOL S0009
A000 P7 AND A
A001 3E 42 LD A$42
A003 CE 07 ADC A S07
A005 3209 CO LD BY-E1 A
A008 C9 RET

Notice that the location address attached to the
first line of the program is $0000, but the address
of the following line is $A000, which reflects the
effect of the ORG statement. Furthermore, notice
that no machine code bytes appear on the lines
containing pseudo-ops, precisely because they are
not parts of the program and are not to be
translated into machine code. Because they are
features of the assembler program rather than
elements of the CPU instruction set, pseudo-ops
do differ from one assembler program to another.
EQU, for example, is sometimes replaced by
and ORG by .='. The effect is the same, however,
and we shall continue to use ORG and EQU as if
they were standard.

It may have occurred to you, while reading
about assembler directives, that we've been using
a pseudo-op almost from the start of the series:
'S, the hex marker. This is no more than a
directive to the assembler that what follows is to
be treated as a hexadecimal number. Similarly,
`#', introduced in the last instalment, is the
`immediate data' marker, signifying that what
follows is an absolute quantity rather than a
pointer or a symbol. Taking this a little further we
could in fact regard Assembly language itself as
no more than a series of pseudo-ops. Indeed,
there's nothing to stop you inventing your own
mnemonics for the machine code instruction set,
provided they correspond one-to-one with that
set. One very popular assembler program for the
Vic-20 does just that: it uses a non-standard
version of 6502 Assembly language, largely for
the sake of formatting the Vic's 22-column screen.

In this course, we shall continue to use what
we've been using so far — the Assembly language
mnemonics published by the chip manufacturers
— but it does no harm to be reminded from time
to time that everything that we call machine code
is symbolic. The CPU is indifferent to everything
except voltage patterns on its input/output pins,
so how we describe those patterns is entirely a
matter of convention.

Having finished with pseudo-ops for the
moment, let's return to inspecting our program for
other points of interest. In particular, let's
compare the translations here to the LDA and LD A

instructions with their translations in our earlier
programs. Previously we wrote:

AD???? LDA $???? (6502)
3A ? ??? LD A,($????) (Z80)

meaning `load the accumulator from the byte
whose address is ????'. The load-the-accumulator
op-code in translation is SAD (6502) and S3A
(Z80). Compare this with the second line of the
current program, which incorporates the
instruction `load the accumulator with the
immediate value $42'. Here the op-codes are $A9
and S3E, for the 6502 and Z80 respectively. But
why are they different? Possibly you've figured it
out for yourself. Although were doing the same
class of operation (transferring data into the
accumulator) in both programs, the source of that
data differs. Therefore, to the CPU, they're
different operations, and have different op-codes.

In the first version, data is to be loaded from a
byte whose address is given. Nothing is stated or
implied about the contents of that byte; the CPU
is instructed simply to copy those contents into
the accumulator. The three machine code bytes,
AD ?? ?? and 3A????, are decoded by the CPU to
mean `interpret the two bytes following this op-
code as the absolute address of the data source'.

In the second version, the data to be loaded
into the accumulator is actually in the byte
following the op-code, so the two machine code
bytes, A9 42 and 3E 42, are decoded by the CPU to
mean `interpret the byte following this op-code as
the data source'. Something in the op-code (A9 or
3E) tells the CPU to load the accumulator from
the next byte. Since its program counter always
contains the address of the next instruction to be
executed, the CPU can calculate the address of
the source byte, and then do a simple `load the
accumulator from an addressed byte' operation.

This reinforces the point that the operations of
the CPU are mostly very simple, uncomplicated
procedures. One whole class of its operations
(about a fifth of its entire repertoire) consists of
operations that involve copying data from an
addressed byte into one or other of its internal
registers. These `primitive' operations all involve
one task — to transfer data from memory to a
CPU register — and all that distinguishes one
instruction from another is the format in which
the address of the source byte is presented.

Digging this deep into CPU micro-operations is
potentially confusing at first, but well worthwhile
for the unifying insights it brings later. Such
insights are unnecessary if all you want to do is
write Assembly language programs for the sake of
speed and efficiency. To do that you need only
pick up the idea, learn the instruction set, get a
few programming tips, and start right in. If you
want to understand what you're doing, however,
you'll want to do more than just add another
programming language to your range, and you'll
find that understanding how one processor works
makes learning other Assembly languages
enormously easier and more interesting.

Commodore 64
Use the cassette buffer at
$033C to $03FB

THE HOME COMPUTER ADVANCED COURSE 157

