
ADVENTURE GAME/PROGRAMMING PROJECTS

subroutines that are not acted upon until control is
returned to the routine that called the subroutine.
A good example of the use of this type of program
structure is the validity test described earlier. This
subroutine is called by both the TAKE and DROP
routines. In each case, the subroutine makes a
decision as to the validity of the object part of the
command phrase. However, the flow of the
program is not altered until a RETURN is effected to
either the TAKE or DROP routines. Only after
returning is the value of the flag, F, set by the
validity test subroutine and the appropriate
branch made. One criticism of this technique is
that we are effectively testing the same condition
twice - once to set the flag value, and again to test
the value of the flag. Although this is true, the
added flexibility and ease of debugging achieved
by employing this technique usually outweighs the
slightly longer execution time that results.

SPECIAL LOCATIONS
We are now at the point in our project where we
have completed the programming of the game's
skeleton; that is, the programming that allows the
player to carry objects and move around in the
adventure world. We can now move on to the next
phase of design in which we consider the 'special'
locations where objects are put to use, perils are
met and where the player's ingenuity and skill are
tested.

Before we look in detail at the programming of
the routines for one of the special locations in the
Haunted Forest, let's consider the additions to be
made to the main program loop in order to detect
special locations. These two lines must be inserted
into the listing:
257 GOSUB2700REM IS P SPECIAL. 7

258 IF SF-1 THEN 360:REM NEXT INSTRUCTION

Line 257 calls a subroutine to see if the current
location is special. If this is the case then a 'special
flag', SF, is set to one. This means that when control
is eventually returned to the main program loop,
the part of the main loop dealing with instructions
can be avoided. The subroutine that decides
whether the current location is special or not is:

2766 REM s*s* IS P SPECIAL S/R ****

2705 SF0:REM UNSET SPECIAL FLAG

2716 REM ** OTHER SPECIAL LOCATIONS **

2720 ON P 60SU84590.4590.4796.4580

2730 RETURN

You will recall that, when we designed the original
map for the Haunted Forest, we numbered the
four special locations first (see page 766). We can,
therefore, simplify the selection of the appropriate
subroutine for each special location by making use
of the ON. . GOSU B command. As can be seen by
the way it is used in line 2720, this command is
followed by a series of line numbers, and the
appropriate line number is selected according to
the value of P. If P is one, for example, the
command will GOSUB to the first line number from
the list; if P is two, then the second line number will
be used for the GOSUB call, and so on.

There are four line numbers, one for each of the

special locations in Haunted Forest. If P exceeds
four, then control simply passes to the following
line. If each of the four subroutines that can be
called from line 2720 sets an SF flag, then the fact
that P was a special location can be flagged. If no
routine is called, the SF flag will remain set at zero,
indicating that P is just an ordinary location. The
ON. . GOSUB command is clearly an economical
alternative to a series of IF. . . THEN statements
testing the value of a variable and branching to
different subroutines accordingly.

THE TUNNEL ENTRANCE
Two of the special locations in the Haunted Forest
are the two entrances to a tunnel (locations 1 and
4). To deal with the simple scenario of the player
wishing to enter the tunnel, we need to construct
carefully a routine that handles the normal
commands and allows the player to enter the
tunnel or retreat back down the path.
4586 REM *4*4 TUNNEL ENTRANCE S/R 4*4*
4600 SF1

4565 $N*$YOU HAVE ARRIVED AT THE MOUTH OF A LARGE

TUNI'EL • I GOSUB5560

4610 SN$YOU CAN ENTER THE TUNNEL OR RETREAT

ALONG THE PATH :GOSUB5500

4626

4625 PRINT: IlPUTINSTRUCTIONS; 15$

4630 005UB2500:REM SPLIT INSTRUCTION

4635 IF F0 THEN 4625:REM INVALID INSTRUCTION

4637 605UB3000:REM MORI.L INSTRUCTIONS

4646 IF t.F1 THEN RETURNIREM PLAYER RETREATS

4645 IF VF1 THEN 46251REM INSTRUCTION OBEYED

4650 REM 4* NEW INSTRUCTIONS 4*
4655 IF VB$- ENTER THEN GOSUB 4700:RETURN

4660 IF VB$="RETREAT AND P-4 THEN MF-1:P6:RETURN

4565 IF VB$.RETREAT AND Pi THEN N=1IP=9IRETURN

4557 5NS I DON'T UNERSTANC I GOSUBS506IOOTO 4625

The routine starts by setting SF to one to indicate
that a special location has been reached. After
displaying a message on the screen, describing the
tunnel entrance and the options open to the
player, an instruction is asked for. Once again,
rather than re-inventing the wheel each time we
wish to analyse an instruction, we can take
advantage of the modular construction of the
program to call up the 'split instruction' and
'normal command' subroutines developed for use
in the TAKE and DROP routines. By considering
carefully the states of the various flags set by these
two subroutines, we can transfer control within
our new routine as required. Let's consider these
flags individually.

The F flag set by the 'split instruction' routine
indicates whether the instruction passed to it has a
valid format. If the instruction is a one-word
command not recognised by the routine, then F
takes the value zero - in which case we will want
to loop back to get another instruction.

The MF flag is set by the 'normal command'
routine if a description of a location is required -
this happens when a GO or LOOK command is
issued. A RETURN to the main program loop will
allow the new location to be moved to, in the
former case, or the same location to be described
and the special routine re-entered, in the latter
case.

The VF flag is also set by the 'normal command'
routine. A value of one indicates that the

THE HOME COMPUTER ADVANCED COURSE 867

