
4 # SOFTWARE/SOFTWARE PRODUCTION

Intelligent Software
Specialising in strategy games
such as chess, IS uses IBMs
and Apples, with its own
specially-developed interfaces,
to develop software. Dividing
programs into their machine-
dependent and universal
segments makes it easier for IS
to support a range of
computers and dedicated
chess-playing machines

languages known as cross-compilers or cross-
assemblers, which permit the work to be done on a
micro that uses an 8086 processor, for example,
while the programs that are produced will work on
machines with Z80 processors. These cross-
compilers are high-level languages (like BASIC),
which makes them easy for the programmer to
use, but the programs they create are written in
machine code. Skilled machine code
programmers scrutinise the programs that are
developed, and often succeed in further
optimising them.

Clearly, a development system has an
enormous advantage over the home micro. A
disk-based assembler, or one making use of
expanded RAM space to store larger tables, will
work more efficiently than an assembler that has
to be wound in off tape and operates in the
confines of a home micro. Debugging routines can
be added into the development version of the
code, with no worries about the code being too big
for memory. It is also far better to work on a
business computer that has a good keyboard,
sharp display and disk drives.

A firm that makes use of this technique of
program development is Intelligent Software (IS),
founded in 1981 out of a pooling of experience
between David Levy, the chess specialist, and
Robert Madge's ANT Microware. The company
specialises in strategy games, mostly written on
contract for all the popular home micros. They
also develop the software side of dedicated chess
machines. Although there are no rapid combat
displays in games like chess and bridge, a great
deal of computation goes on behind the scenes.
So, like arcade games, strategy games also need
the speed of assembler-written software.

As well as using the target machines themselves
for development, IS uses IBM PCs and Apples
with specially developed interfaces to allow code
to be exchanged across its range of machines. The
company is often involved in conversion projects
— transferring a chess game, say, from one
computer to another — so its programmers have

ADVANCED COURSE

learned to write code in a form that is easily
segmented. One level of segmentation that proves
useful when the time comes to hand code from one
processor to another is the division of the program
into playing code and input/output code. The I/
0 code on the new machine will have different
port or memory addresses, and will perhaps be
strategically different too (polling replaced by
interrupts, and so forth). Ingenuity may well be
required to get round the hardware limitations, but
there won't be a forbidding quantity of input/
output. Playing code, on the other hand, will be
there in abundance, but because it is isolated from
the hardware (except, of course, the processor) its
conversion will be straightforward.

IS wants to avoid restricting programmers'
inventiveness, so there are very few 'house rules' to
govern the writing of code. One important point
that they insist on, though, is that source code
includes numerous comments, so it is always clear
what the routines are doing.

Where programmers are working at home for a
software house, each developing his or her own
project, there is little pooling of resources. In this
case, individuality is preserved at the cost of a great
deal of duplicated effort, because the code for
similar routines has to be reinvented by each
separate programmer.

One software company, Psion, is making use of
computers even larger than the IBM PC. Among
British software houses writing for the home
computer games market, Psion is unique in doing
the bulk of its development on minicomputers.
The company's hardware installation alone is
worth a quarter of a million pounds.

Psion began as a company by developing
software for the ZX81 — and used ZX81s to do it.

Visions
Programmers working from
home on the target machines
provide the bulk of Visions'
programming effort. After the
game concept and scenarios
have been decided, the
component routines are
developed in native Assembly
language (Z80 or 6502) using
assemblers such as HiSolt
DevPak on the Spectrum

382 THE HOME COMPUTER


