
j6809 CODE/MACHINE CODE

PEST CONTROL

We continue to develop the debugger
program, which we began on page 758.
First, we must complete the set of routines
that we need for the module that handles
input and output, and then construct the
module itself.

There are four more routines to develop for the
I/O module: GETHX2, GETHX4, PUTHEX and
PUTCR. The first two processes are used to get
hexadecimal digits from the keyboard: G ETH X2
gets a two-digit hex number and GETHX4 gets a
four-digit number. The first thing we must do,
when designing these routines, is decide whether
we will insist on two or four digits always being
entered (which is easier to program but less user-
friendly), or allow fewer characters followed by a
Return. A further problem is whether to allow the
use of a backspace character to delete characters
already entered.

We will use the simplest method for the G ETH X4
routine: four digits must be entered, and the
backspace will not be allowed. The 16-bit value
(signifying an address) can be returned in the D
register.

G ETH X2 is more of a problem if we consider the
circumstances in which it will be used. Eight-bit
quantities will have to be entered for the function
to inspect and change memory (command M),
which involves accessing an address. The contents
of this address are displayed, and the user may
then enter a Return (to move on to the next
location in sequence) or a two-digit hex number
(which will be stored at that location)or some other
character (a dot, for example, to exit to the
command level). We can add the two extra valid
characters to the end of the string of valid hex
digits. GETH X2 must then accept either two hex
digits or a Return or a dot. The eight-bit value can
be returned in B and we must use A to indicate
which of these situations has arisen. A will have the
value 0 if a two-digit number was entered, 1 if a
Return was entered, or -1 if a dot was entered.
These values enable us to test the value in A
without having to compare it with another value.

Let's assume for the moment that the following
declarations have been made for this module:

HEXCHSFCC'0123456789ABCDEF'
DOTFCB
RETURNFCB 13 (ASCII code for Return)

We can pass 16 as the length of the string for
GETH X4, where we only need the hex digits, and 18
as the length for G ETH X2, where we need the other
two characters as well.

THE GETHX2 ROUTINE
Data:

Next-Character is the ASCII code in A
Offset into Valid-Character table in B
Hex-Value is an eight-bit value, constructed in B
Flag is either 0, 1 or-1 in A

Process:
Get Next-Character
IF Character is a dot (Offset = 16) then

Set Flag to —1
ELSE if character is a Return (Offset = 17) then

Set Flag to 1
ELSE

Save Offset temporarily
Get Next-Character (hex digits only valid at
this point)
Construct Hex-Value

ENDIF
The final coded form of G ETH X2 is given on page
779. The coding of the G ETH X4 routine is now
made slightly easier by using parts of this routine.
By making H X4 an alternative entry point to the
GETHX2 routine, we can call that routine and
ensure that only valid hex digits are accepted —
provided we load B with 16 before the call. Thus,
the process for getting four hex digits is made
considerably less complex.

THE GETHX4 ROUTINE
Data:

Hex-Number is a 16-bit value to be returned in D
Most-Significant-Byte and
Least-Significant-Byte are both eight-bit values to be

returned in B

Process:
Get Most-Significant-Byte
Save Most-Significant-Byte temporarily
Get Least-Significant-Byte
Construct Hex-Number

The routine is given, in its final form, after the
G ETH X2 code.

The routines for displaying characters are less
complicated to design. For the PUTH EX routine, we
will assume that the eight-bit number we require is
to be found in B.

THE PUTHEX ROUTINE
Data:

Numberis the eight-bit value found in B
Offset is the four-bit offset put into HEXCHS

Process:
Extract most significant four bits of Number as

Offset

THE HOME COMPUTER ADVANCED COURSE 777


