
MEE

ThE
ROUTINE

TO BE

EXECUTED

CODE/MACHINE CODE

character passed in A to the screen at the current
cursor position, unless that character is a carriage
return (ASCII 13), in which case it will clear the rest
of the line and position the cursor at the beginning of
the next line. The cursor is represented by the
underline character (`_') in this example.

SPACEEQU 32ASCII code for space
CREQU 13ASCII code for carriage return
HOMEIOU $E000Start of screen memory
LENGTHEQU 1024Size of screen memory (16 lines x 64

characters = 1024)
CURSOR IOU 5E400 SE400 and $E401 together point to

the current address of the cursor in
screen memory area

0110 51000
CURCHRFCB 95Underline character (ASCII 95)
—

Subroutine to clear screen
LDA # SPACESpace character in A
1DX # HOMEPoint cursor to beginning of screen
STX CURSORStore current cursor position at

CURSOR (i.e. SE400, SE401)
111B # LENGTHSize of screen in B

LOW/STA [CURSOR]Store a space in current cursor
position

INC CURSORIncrement cursor position
DECBDecrement amount of screen

memory remaining between cursor
position and end of screen memory

BGT LOOP1Next space, until no more screen
memory remains

SIX CURSORCursor back to home position
LDA CURSORASCII code of cursor character in A
STA [CURSOR]Store cursor character in current

cursor position
RTS

'• 'Subroutine to display character in A, if displayable
-

CMPA SPACESpace is the first printable character
in ASCII

BIT NOTPIf accumulator contains ASCII value
less than 32, this is non-printable, so
GOTO NOTP

STA [CURSOR]Store in current cursor position
INC CURSORIncrement cursor position

CHKEOSLOX # HOMECheck for end of screen
LEAY LENGTH,X End of screen in Y
CMPY CURSORIf cursor position exceeds end of

screen then ...
BGT FINISHwe have reached the end of the

screen, so GOTO FINISH
•

—
Subroutine to scroll screen

SCROLLLEAY 64,XY is one line length from X (end of
screen memory)

LOB # LENGTHCalculate amount to scroll
SUBB #64Subtract 64 from length

LOOP2IDA ,Y+Move characters back one line (notice
auto-increment — see page 618)

STA ,X+
DECB
BGT LOOP2Loop until scrolling complete
LOU CURSORCursor to start of last line
SUBD #64
STD CURSOR
BRA FINISH

—
Subroutine to check for carriage return"

NOTPCMPA # CRIs this non-printable character a
carriage return?

BNE FINISHIgnore if not
WO CURSORYou can work out how this gives the
ANDB # %11100000 start of the next line (notice binary

AND-mask)
ABDO #64
STD CURSOR
BRA CHKEOSCheck if end of screen

FINISHUM CURSORCursor character in A
STA [CURSOR]Store in current cursor position
HIS

JUMP TABLE

g
R392IM MUL

PEW
:.RTS

1

:-=:''X
n

MEMORY

SFODS

SWF

SF100X

B

MEMORY

The jump table in this example is a list of 128 two-byte
address pointers located between $F000 and $FOFF.

,ch of these pointers contains the start address of a
tine somewhere in memory. To execute any of these
tines we need only load the B accumulator with a
ction code ($01, for instance) which identifies the

sired routine (located at SO9EE in this examp(e) and
n JSR to the so-called 'entry routine', start address

- FOFF here. We assume that these routines are in ROM
(because they are partof some ROM-based software
such as the operating system) so we will be able to look
up the function code and the entry routine start address
in the programmer's manual.

The entry routine multiplies the function code by
two, and uses it as an offset to the table start address to
find the desired routine's address pointer: the pointer to
routine S01 is located at SF002, for example

.. ==$F000+2401), routine $02's pointer is at SF004
$F000+2402), and so on. The pointer is then used
the entry routine in an indirect branch instruction to
ss control to the actual routine at SD9EE. Notice that
e entry routine branches to (rather than calls) the

,ecution routine, so that when RTS is encountered,
ntrol will pass back to the point in the program from
ich the entry routine was first called.

:. The advantage of a jump table (especially when
`used with an entry routine) is that it allows
programmers to redesign and relocate the routines that
it addresses, while still permitting programs written
before such revisions to run on the new system: the
function codes and the address of the entry routine are
kept constant throughout the life of the system, but the
contents of the jump table address pointers (and even
the location of the jump table itself) may change at will.

THE HOME COMPUTER ADVANCED COURSE 639

/ .2
bv •
g3(

