
As the next step towards understanding
the fundamentals of machine code
programming, we must examine the way
computers organise and manage their
memory. Here, we look at the constraints
imposed on both memory pagination and
the operation of the CPU by the machine's
use of the binary system.

In the first instalment of the Machine Code course
we gave an analogy of the way in which a
computer stores information in the form of
electric current. We used the example of a factory
where each worker had an individual switch
pattern that lit up four light bulbs in the manager's
office, thus identifying who was at work. This
showed how information (i.e. the name of the
person who is working) could be represented by
using a flow of electricity.

In our example, we found that by using four
switches and bulbs we could represent the
numbers from 0 to 15. In other words, there were
only 16 possible patterns. However, if we had
used eight switches and bulbs instead, then we
could have made 256 unique patterns (2x2x2)<
2X2X2X2X2=256) and, therefore, have been
able to count from 0 to 255.

In your home computer, memory is arranged in
individual banks of eight switches, and each of
those eight-snitch banks is called a byte. In
general, the CPU handles information one byte at
a time, which means, in effect, that it can only
add, compare, and store numbers between 0 and
255. This might seem to limit its arithmetical
capabilities, but that isn't the case. If you think
about doing a sum like 63951 + 48770 = ? then
you will see that you actually manipulate the
individual digits one at a time. Similarly, the CPU
can perform arithmetic on large numbers using
one byte at a time.

Because it has eight switches, a byte is a place
where an eight digit binary number can be stored.
Each of these binary digit positions is called a bit
— the smallest possible unit of information. A bit
in a byte is either ON or OFF, a binary digit is
either 1 or 0.

It's often important to talk about individual bits
in a byte, so the convention is to number the bits 0
to 7 from right to left in the byte. If a byte contains
the binary number 00000001, then we say that
bitO is 1, or that bitO is ON, or that bitO is SET; all
the other bits are 0, or OFF, or CLEAR. Thus in
the binary number 01001000: bit3 is SET, bit6 is
SET, bit4 is OFF, bit? is 0, bitO is CLEAR, and so
on. In a byte, bitO is also called the Least

36 THE HOME COMPLIER ADVANCED COURSE

MACHINE CODE/ PART 2

PAGED MEMORY

Significant Bit (LSB), and bit? the Most
Significant Bit (MSB).

Computer memory, then, can be conceived as a
long strip of squared paper, eight squares wide,
and thousands of squares long: each row of eight
squares is a byte, each square is a bit in a byte.
Memory is useless if you can't locate items in it, so
each of the bytes has an identifying label called its
address; the address isn't written anywhere on the
paper (or in the byte), it's simply the number of
the byte in memory, counting from the start of
memory. The first byte, therefore, has the address
0, the next byte has address 1, the next has address
2, and so on. If you want to write something in
byte43, then you start at the bottom of the
memory (at byte0) and count through the bytes
until you reach byte43.

When you get there nothing will identify that
byte as byte43 except for its position — you've
counted forward from byte0, you've reached 43,
so this must be byte43. The bytes of memory are
actually minuscule banks of eight-transistor
devices (one device per bit, eight devices per byte)
etched into the chips inside your machine, and
they are identical in everything except their
physical position.

However, there is one drawback to this
method. This system of memory addressing
would be fine if there were only a few hundred
bytes. The CPU can count from 0 to 100 in
fractions of a millisecond; but computers have
thousands of bytes, and counting from 0 to 20000
must take some appreciable time, even for a
microprocessor. The way a computer overcomes
this problem is by dividing memory into pages,
just as books are.

If we continue to think of computer memory as
a strip of squared paper thousands of squares long
and eight squares wide, we can imagine cutting
that strip on the boundary of every 100 bytes (i.e.
cut across the boundary between byte99 and
byte100, cut across the boundary of byte199 and
byte200, byte 299 and byte 300, and so on). Each
of the strips of paper between the cuts is now a
page of 100 bytes. Page0 starts at byte0 and
continues to byte99; pagel starts at byte100 and
continues to byte199, page2 is byte200 to
byte299, etc. Now to find any byte, say byte3518,
we don't have to count 3518 bytes from the start
of memory because we can see from the address
that this byte must be on page 35. Therefore, we
need only count 35 pages from the bottom of
memory, and then count the bytes from the
bottom of that page until we reach byte 18 on the
page, which must be byte3518. Try it with a strip
of squared paper if you haven't followed this.


