OEBD 01

4E 60 44

52
meaning: opc 0, which takes two data bytes; then
opc 4E, which also takes two data bytes; then opc
52, which isn’talegal opc, causing the equivalent of
a syntax error in the processor. This demonstrates
how an initial misunderstanding generates a series
of gross logical errors in the program execution.

This also clearly shows some other important
points about machine code: it really is unfriendly
to the user (at least, in the beginning) in that it is
difficult to read and write; it is highly sequential
with nothing but the order differentiating one
instruction from the next; and it is literal as only a
machine can be, obeying wrong instructions as
readily as it will correct ones, and rejecting only
syntax errors.

Some of the unfriendliness can be avoided by
writing alphabetic mnemonics instead of the
numeric op-codes while the program is being
developed, and only resorting to op-codes when
the program is actually loaded intomemory. These
mnemonics constitute the processor Assembly
language, and translating them into numerical op-
codes is called assembly or assembling. Notice that
there is a direct one-to-one correspondence
between the set of Assembly language
mnemonics, and the set of op-codes: although
Assembly language isa higher-level language than
machine code, the difference is minimal.

If we rewrite the machine code fragment above
in 6502 Assembly language, then it looks like this:

0000 A9 OE LDA #SOE
0002 €D 01 4E STA S4EM
0005 €0 RTS

while the same sequence of operations in Z80
Assembly language looks like this:

0000 3E OF LD A SOE
0002 32 01 4E LD (S4E01),A
0005 C9 RET

The first column shows the hex address in memory
of the first byte of the line — the opc A9in the 6502
list, for example, is in byte0; the page byte 4E in
both lists is in byte4, and so on. The next column
may contain one, twoor three bytes, and shows the
machine code listing. The third column starts with
an Assembly language mnemonic, and shows the
Assembly language version of the machine code.
Don't bother trying to puzzle it all out now, it's
enough that you've seen an Assembly language
list, and can observe the differences and
similarities between the Z80 and 6502 versions.
You might also notice that the address in the
second line appears in conventional lo-hi form in
machine code, but ‘normal’ hi-lo form in
Assembly language.

In the next instalment of the course we'll start to
examine op-codes in detail, and take a look at the
architecture of the microprocessar.

Hexadecimal Convertor

To convert the Mempeek program of page 59 so that
byte contents are displayed in hexadecimal rather
than dacimal, make the following changes:

BBC Micro
Add:
3000 DEF FPROCHAPRIMNT ¢ DECHLMS

2100 LOCAL X%
3200 X$="D123454787AECDEF"

3300 HE=INT(DECNUM 1&) :LE=DECNLIM-HE*14
2400 BE=MIDE(¥% HB+1,1 0 +MIDE(HE LE+L 10+

3500 PRINT &%;
2400 ENDPROC

and change line 600 to:
A00 PROCHXPRIMT @ FRMD

Spectrum

Add:

10 LET xg="01Z234378FABCDEF"T

000 REMx*xzxsx#HEK BYTE S R#=xxsxs
2100 LET HE=INT (PFESL&D:
200 LET BE=NF{HE+1)+:%FLE-1 0"
3300 FRIMT B#®:

2400 RETURM

and change line 600 to:

00 GOSUER Z000

Commodore 64

Add:

10 LET #3="0{2345:783AB00EF

000 REM¥*=x*3HEX EYTE S/ Rx#swsxs
2100 HE=IMNTLPK 1) 1L E=PK-HE=14

3200 BE=MIDECXE ,HE+1 L ) +MIDS (X3 LB+1 104"

2200 PRINT B%:
400 RETURM
and change line 600 to:
&00 GOSUR 2000

These changes will cause the contents of the
memory to be displzyed in hexadecimal. The start
address and number of bytes should still be entered
in decimal

LET LE=FE-HE=®14

THE HOME COMPUTER ADVANCED COURSE %9



