
OE 8D 01
4E6044
52

meaning: opc 0 E, which takes two data bytes; then
opc 4E, which also takes two data bytes; then opc
52, which isn't a legal opc, causing the equivalent of
a syntax error in the processor. This demonstrates
how an initial misunderstanding generates a series
of gross logical errors in the program execution.

This also clearly shows some other important
points about machine code: it really is unfriendly
to the user (at least, in the beginning) in that it is
difficult to read and write; it is highly sequential
with nothing but the order differentiating one
instruction from the next; and it is literal as only a
machine can be, obeying wrong instructions as
readily as it will correct ones, and rejecting only
syntax errors.

Some of the unfriendliness can be avoided by
writing alphabetic mnemonics instead of the
numeric op-codes while the program is being
developed, and only resorting to op-codes when
the program is actually loaded into memory. These
mnemonics constitute the processor Assembly
language, and translating them into numerical op-
codes is called assembly or assembling. Notice that
there is a direct one-to-one correspondence
between the set of Assembly language
mnemonics, and the set of op-codes: although
Assembly language is a higher-level language than
machine code, the difference is minimal.

If we rewrite the machine code fragment above
in 6502 Assembly language, then it looks like this:

0000 A9 0E LDA #SOE
0002 ED 01 4E STA $4E01
000560 HIS

while the same sequence of operations in Z80
Assembly language looks like this:

0000 3E OE LD A,SOE
0002 32 01 4E LD ($4E01),A
0005 C9 RET

The first column shows the hex address in memory
of the first byte of the line — the opc A9 in the 6502
fist, for example. is in byteO; the page byte 4E in
both lists is in byte4, and so on. The next column
may contain one, two or three bytes, and shows the
machine code listing. The third column starts with
an Assembly language mnemonic, and shows the
Assembly language version of the machine code.
Don't bother trying to puzzle it all out now, it's
enough that you've seen an Assembly language
list, and can observe the differences and
similarities between the Z80 and 6502 versions.
You might also notice that the address in the
second line appears in conventional to-hi form in
machine code, but `normal' hi-lo form in
Assembly language.

In the next instalment of the course we'll start to
examine op-codes in detail, and take a look at the
architecture of the microprocessor.

PART 5/MACHINE CODE .

Hexadecimal Convertor
To convert the Mempeek program of page 59 so that
byte conterts are displayed in hexadecimal rather
than decimal, make the following changes:

BBC Micro
Add:
:300A DEF PRGI_H::x::FF'INT(C:DECNI_IM:}
:3 if'

A
L.UCHL X%%

:32C10 .;:::#_ 1 2=4507 ,?ABI-:DEF

330 U HE=INT isDECNIJM/1 o:::L.E:=DECNIJM1—HE*1•_
riii 6$=MI E:$(X$•. HE+1 ; +r`tI C:$C<$•,LEe 1 , 1)+"

3500 PRINT E,%:
_;. viii EPNNDPROC:

and change line 600 to:

rr=:uc_H::::PR:IhIT::F•k:'::;

Spectrum
Add:
i iJ LET :x= 234=,7 ==r1E=UEF"
_f:i) ! REM* *****HEX E T E tiiN* **ts **

:3100 LET HE,=il'•JT (PK/1•' . LET LEFf;:--Et1 _
_ : fI 0 LET

=3:00 FR: INT E:$
_: 4110 RETURN I1RN

and change line 600 to:
Gi=SU2, 0i-,CI

Commodore 64
Add:
iii LET ="0i2_ __• E',_DEF
3000 F'Eh•1*****}HEX E'iTE SR******
100 HE NT'; F'F;/1t•:' :LE,-P'F'–HE:*1._

320') Fj'' •= i ' iD < X' rl Lam+ r ! .i + M 1
1
.

•' ('•, :- E;i• 1 S) + I

_: is i i F R I l' .iT E'1:•
:3461.1 FETiIF,r.;

and change line 600 to:
0 i3OSI JE: 3000

These changes will cause the contents of the
memory to be displayed in hexadecimal. The start
address and number of bytes should still be entered
in decimal

THE HOME COMPUTER ADVANCED COURSE 99

L_

