
CURRENT PROGRAM

}NTERRUPT

:•—n

NMI VECTOR

SWI VECTOR

IRO VECTOR

FIRO VECTOR

vow* o
,

INTERRUPT VECTOR
ADDRESS

ROM

OGIUM MEMORY

POINTER

CURRENT PC CONTENTS

STACK

IRO SERVICE SIR

RTI

6.777777777

MEMORY

JMP NMI SIR

JMP SWI S/R

JMP IRO S/R

JMP FIRO SiR

RAM

igaismai
6809 CODE/MACHINE CODE.'jjj

SUSPENDING
OPERATIONS— We briefly introduced the concept of
'interrupt handling' w hen we reviewed the
Toshiba HX-10 (see page 669). These are
messages that interrupt the task that a
processor is currently performing, in order
to convey important information to it.
Here, we explore the interrupt mechanism
in detail.—
One common application of interrupts is when
we are dealing with input from the keyboard. If a
program directly accesses the keyboard — usually
via the operating system — to obtain the next
input character, then any key that is pressed while
the program is doing something else will be lost.
Even when the processor is fully engaged in
processing keyboard input, it is still possible for it
to lose a character, especially one that follows a
character that needs extra processing, such as a
carriage return.

The solution is for the keyboard to interrupt
the processor whenever a key is pressed, so that
the processor stops what it is doing and performs
an 'interrupt service routine'. This takes the
character that has just been input and places it in
a section of memory reserved as a keyboard
buffer. The processor can then return to whatever
it was doing and carry on as though nothing has
happened.

Whenever the operating system keyboard
input routine is called, it does not look at the
keyboard directly but takes the next character out
of the buffer instead (waiting for one to appear if
the buffer is empty). This mechanism enables the
user to 'type ahead' of what actually appears on
the screen, and should ensure that no characters
are lost.

There are, however, two possible problems.
The user may type so quickly that the buffer fills
up faster than the program can deal with the
input, thus causing the buffer to overflow. The
solution to this requires a compromise between
allowing sufficient memory for an adequate-sized
buffer and not wasting too much valuable
memory space. The second problem arises with
thosê users who feel uncomfortable when a
character does not appear on the screen
immediately a key is pressed. They may keep
pressing the key, and thereby generate dozens of
characters that then go into (and again may
overflow) the buffer. This problem is usually
solved by familiarity with the computer.

Another useful application for interrupts
occurs when output is sent to a printer — which is
often one of the most time-consuming operations

a micro needs to perform. During printing, the
processor may be required to work for 100
microseconds while it sends a character to the
printer, and then wait thousands of microseconds
for the printer to process that character. A
spooling system is one answer to this: it places the
files to be printed in a queue, and part of the first
file in the queue is loaded into another buffer area
of memory. The port that serves the printer will
interrupt the processor whenever the printer is
ready for another character to be sent. The
interrupt service routine will then send the next
character from the buffer, or (if the buffer is
empty) load the next section from the file at the
head of the queue into the buffer. In this way,
printing can be going on in the background, while
the processor is free to get on with something else.

TYPES OF INTERRUPT
There are some operations that the processor
performs — such as accessing disks — where
being interrupted can cause data loss or some
other catastrophe. There must be, therefore, a
mechanism for masking interrupts so that the
processor can ignore any that occur during a
particularly sensitive operation. If this is the case,
it is preferable that a note is made to indicate that
the interrupt has occurred, so that it can be dealt
with later.

Conversely, if we are dealing with a disk
interface that is interrupt-driven, then its

Interrupt One
When an interrupt occurs, the
processor completes execution
of the current instruction, and
stacks the current contents of
the program counter. The
interrupt vector address
appropriate to the interrupt is
then loaded into the program
counter, and control passes to
that address — usually in ROM.
This address points to another
address — usually in RAM —
where a JMP instruction directs
control to the actual interrupt
service routine. This is
terminated by the RTI
instruction, which passes
control back to the main
program via the return address
on the stack. Since the JMP
instruction is stored in RAM, it
can be found and changed by
the programmer so that on an
interrupt, control passes first to
a special-purpose user routine
and then to the normal service
routine

THE HOME COMPUTER ADVANCED COURSE 697

It&


