

by a con

¥

1. Checking the feasibility of
turning the idea into a program
or package. Usually performed

similar standing.

sultant or person or

5. Testing the end result against
sensible test data. Performed by
a selected target end user.

analyst.

2. Taking the viable idea and
turning it into a series of
systems operations units.
Performed by a systems

6. Production of full
documentation.

3. Taking the output from (2)
and producing a detailed
program specification.
Performed by a systems coder.

7. Installing the program or
package.

Performed by the installation
team or the end user (dependent
upon the complexity of the end

result).

coder.

4. Programming the final result
from the specification.
Performed by a programmer or

8. Maintaining the end product

such that any errors or
omissions are corrected post
haste. Performed by a

maintenance team.

Over the next eight weeks, this
section of the programming course
will be devoted to helping you put the
questionsthat help youin developing
good program design habits.

Inthis first part, forexample, we
showyou howthe simple process of
gettingupand going toschoolis
actuallyacomplicated process when
youtryanddescribeitindetailtoa
computer. Thereare many things the
computer would need to knowin
ordertorecognise the idea of simply
‘waking up' or ‘takingabath’—such
as‘'whatisabath’,and ‘whatisa
school’.

By thetimeyou'vefinished this
programming courseyoushould be
able to deal with more weighty
guestions than telling your computer
howtotakeabath. Youshould be
ableto approachthe problem of, say,
designing a Mastermind game and
knowthat the firstthingyou haveto
decide is howto generate six random
numbers, allow for the guesses of
the player, check the guessesofthe
player, produce a message saying
thatthe player has either failed or
succeeded and thenthe appropriate
actionforeachofthose
eventualities.

MICROPAEDIA 234

PROGRAMMING
OUT PROEBLEMS

fyou have a problem, and that problem makes
Iany logical sense, you should be able to

program a computer to help you solve it. The
problem can be everything from working out how
to make a Space Invader appear onthe screen of
your micro to calculating the average monthly
mileage of your car,

The method of solving the problem by
computer is commonly known as a program. In
the following eight weeks, we'll be looking at just
what goes into developing workable programs.
This study will come in three parts: Program
Design — the business of how you go about
putting a program together (the discussion of
which begins further down this page); Program
Structure — the best ways to actually order
commands and instructions in program,
Program Tools — the aids which make design
and structuring of a program easier.

A program, in its crudest sense, is a set of rules
and guidelines to produce a solution to a
problem. Commercial software companies, who
produce programs for a living, often find that it
helps to divide up the work when planning a
program.

It is divided into clearly defined areas and
appropriate staff are assigned to each part of the
task in hand. But, what are those clearly defined
areas, and who are the people respensible for
them? (Figure 1).

Obviously, for those of us working at home on
our small machines, we do not tend to have

-recourse to such a large team of people and, as

such, we are expected to perform all the
functions outlined above ourselves. For the
purposes of this article we shallignore functions
410 8 as it is assumed that you will be capable of
these.

Let us look at the first three sections as
mentioned above.

1. Feasibility and viability. Let us assume
you have found or defined a problem, whether it
be simple or complex, whether it be agame ora
package. The first requirement is to look at the
problem in a global sense. This means taking a
step back from the absolute problem and
breaking itinto three distinct areas. What inputis
required, what output is required and how does
the output relate to the input? You must
rememberthatthe mostimportant person to take
into consideration while developing any program
is the end user. He or she will be the person
spending most of their time and effort using the
program, so make life easy for them.

A major consideration at this point is to decide
whether or not the problem you have defined is
capable offitting the resources or equipment that
you have access to. If not, thenitis not viable, so
give up or break the problem down even further
— thereby opting for the package approach and
repeat this procedure until each problem is

PULL OUT & KEEP

- — o — P—— R, 2
g S Tk A R Lo 7 Wi gy
i g 1 Lo L

reduced to a manageable size.

2. Taking each problem in turn. It is now
required to convert theminto an overall picture of
the final job, defining each major area of
operation and their relationships to each other.
This is needed so that the completed product
remains consistent throughout.

3. The real work starts here! Narmally, the
functions of the system analyst and the systems
coder are combined into one individual or team
— purely for consistency and ease of com-
munication. But it is still best to work on these
functions as separate entities until you have
gained enough experience in problem decoding
and understanding. The requirement of the
system coder is to take each major operating
area and then translate them into an absolute
detailed series of instructions for the program-
mer to program from.

In a software house, these instructions tend to
take the form of a flowchart, definitions of the
types of data to be input and also the formats of
the output. Armed with such information. anyone
with even the smallest amount of programming
skill can churn out a program that will do the job.
Variations in speed and efficiency are alldown to
individual skills of the programmer, but that is
another topic altogether.

Letus look ata problem. Itis something that we
have all done, so we are all familiar with it. At the
lowest level (ie. least detailed), it is as follows.
(See Figure 2).

The options listed at the bottom of the box at
Figure 2

- -

right are only five of the possible decisions to be
made following waking up. If your answers to the
first four are ‘yes' then you progress to the next
action otherwise you may wish to go back to
sleep, read a book, do some homework or a
whole variety of other things. For any of these
actions you have inserted a delay into the
proceedings, therefore, youneedto keep looking
at the time (or use an alarm clock) to indicate
when your next decision has to be made.

Each action must be uniquely defined, each
decision must be identified and all possible
answers must be catered for. Each result of an
action or decision must be clearly labelled. Any
calculations that have to be performed should be
defined both in detail and also, should be wholly
described so that errors do not occur. All of these
things tend to be overlooked by the lone
programmer, usually due to the fact that time and
expedience is of the essence, and, anyway no
one elseis going to use the programare they? So
what does it matter if a few errors slip through?

It does matter. This statement may seem
somewhat contentious, but the reasoning behind
itis that if you get into the habit of dismembering
each problem as it arises then you will find that
after a few statements, it starts to become the
natural way of looking at problems.

And of course one side effect of doing things
tidily is that you produce programs quicker and
more efficiently whilst also allowing you the
capability of being able to describe problems to
others in a clear and concise fashion.

SOLVING
iITSTEP

Inthe series of pictures below, you'll
segthe stepsnecesary to perform the
action of going to school in the
morning, and how you might de-
scribe this to a computer.

. Wakeup.

. Getoutofbed.

Bathe.

. Have breakfast.

. Leave home.

. Travelto school (by any means).
. Arriveatschool.

imple reallyisn'tit?

Action 1 says 'wake up'. Is it really
enoughjusttosay that? Not really, in
factthereare manyactions and
decisionsto be made even forthat
oneshort statement;
Isittimetogetup?
Isitaschoolday?
Areyou wellenoughtogotoschool?
Areyou going to goto school?
Haveyou oversliept?

(For more see main story atright).

235 MICROPAEDIA

Introduction—Just as most books
begin with an introduction or preface,
most programs will start by explaining

the program is going to do.

in one or two Remark statements what S

Index —The collection of REM
statements that signal the start and
each subroutine can be considered a
form of index entry. Although they
aren’t arranged at the end like a book,
these REM still perform the function of
allowing you to find something quickly
and easily.

Table of Contenis—The beginning of a
well-structured program should not
look significantly different from the
table of contents at the front of a book.
Just as all the chapters in abook are
listed at the beginning of abook, a
structured program will have all its
procedures or subroutines ‘called’ at
the front end of the program.

Chapters — The chapters of abook are
not unlike the subroutines or
procedures that make up the building
blocks of a computer program.

Glossary—The glossary in many non-
fiction or technical books carries out
the job of defining the terms that are
discussed in the book. Variable names
are the ‘terms’ in a computer program
and the section of a program that
defines variables performs much the
same function as aglossary.

Structured programming means
many things to many people, but all
programmers would probably agree
that it means at least an ordered
approach to programming. In this
section of our programming course,
we will look in detail at program
structure — starting with things that
are common to all programs and
progressing to the point where you'll
feel confident enough to participate
in the current debate regarding
program structure and how it should
evolve,

In the next couple of weeks, we'll
be looking at how flowcharts, sketch
code and other structuring aids can
help you think about the best ways to
structure your programs. You'll
quickly see that the art of structuring
a program comes down to not much
maore than making a series of yes or
no decisions.

The ‘Yes or No' philosophy of
computing is otherwise known as
Boolean logic, which we'll also
examine in detail in later sections of
this course.

MICROPAEDIA 236

STRUCTURE
SURVEYED

writing programs yourself rather than just

running the demonstration programs or com-
mercial packages. You may have used the
manual to familiarise yourself with the com-
mands that your computer will recognise and
respond to, like displaying a message on the
screen, doing maths or using the sound and
colour facilities. One thing you may not have
done is to structure a program before you started

I fyou own a'micro, you will probably have tried

‘typing itin.

Learning a programming language is similar to
learning a spokenone. You can use your manual
as a primer to find information about the words of
the language and the rules of grammar and
syntax with which to construct statements
(‘phrases’ in my analogy) which your computer
will understand and respond to correctly.

But your manual will not give you very much
information about how to start writing a program
— that is, how to use the basic tools to build a
complex process.

The majority of manuals serve only as
introductions to the trade of programming.
Conseqguently, many enthusiasts are unable to
find useful sources of ideas and instruction in the
arcane art, and teach themselves as best they

can. And many do a very good job of it.

But just as you wouldn't expect to be able to
write a decent letter in a foreign language using
only a phrase book for guidance, so most
would-be programmers fall short in the structure
of their programs. Forthis you need aguide tothe
art of programming and these are few and far
between.

Whether you are a complete novice or reckon
yourself to be a good programmer, you will find
these articles useful for producing programs
which do exactly what you want them to do. They
should not require much debugging (in terms of
both effort and time), you will be able to modify
them quite easily, and they should possess that
elusive quality — ‘elegance’.

Getting started

There are a few major concepts which you
should take pains to bear in mind while you are
developing a program. The first and most
important of these is that a program should be
considered as a set of modules, and not just a
sequence of numbered statements. The second
is that it should have a structure, rather like a
story has an introduction, characters, chapters,
footnotes perhaps, and an ending. Your program

should have an initialisation sequence, recog-
nisable variables, subroutines and REM state-
ments.

The next point to bear in mind is that you must
control exactly what goes on in your program.
This ranges from preventing the interpreter
butting in with messages like ' ERROR—REDQ’,
or even prematurely ending your program with a
‘division by zero' error, to carefully designing the
screen format of information displays and so on.

It may seem like a chore and even something
of an anachronism to have to do all this on paper
first, after all, the micro is supposed to do away
with such primitive note-making. But you will find
that the dividends that result from time spent at
the design-stage will more than amply repay the
effort you have taken.

There are at least two stages to go through in
theinitial design of a program. The first of these is
defining the overall ‘problem space’ — the ‘plot".
Is the program to be a game, an educational tool
or a ‘systems’ utility? If it is to be an educational
aid, what age and ability range is it to be aimed
at? If agame, is it to be text or graphics oriented,
are instructions to appear on-screen or in a
separate document? Such questions may seem
obvious but it is surprising how many program-
mers do not seem to have thought of them until
half-way through the program and have then had
tomake clumsy patches to cope with the change
in direction.

Once the basic framework has been sorted out
you should draw up a block diagram to show the
gross internal structure of the program. To begin
with you will have to have an ‘initialisation’
sequence. This is where you declare the
variables, arrays and so on that you are going to
use. Declaring a variable simply means writing
suchlinesas "10LET X = 25". Inmany dialects of
Basic, you don't actually have to dothis. You can
introduce a new variable half-way through a
program-without any problems. If the variable
hasnotbeengiven a value before, theinterpreter
will automatically give it the value zero. Most
other languages force you to state all the
variables (andin some cases constants) thatyou
aregoing to use, evenifthey are to have aniriitial
value of zero or, in the case of a string, null. Itis
good practice to decide on such things as
variable names, initial values and so on and to
state them in the first few lines of a program. To
continue the literary analogy, the variables are
the characters of the program.

If your characters aren't consistent throughout
a novel, then there’s a good chance it won't be
believable to a reader. The same situation
applies to computer programs: variables should
maintain their integrity throughout and should
be different enough not to be easily confused
(see box, above right).

The sections or subroutines in a program can
be likened to the chapters of a book. In a properly
structured program, the first few lines of the
program should not be too dissimilar from the
table of contents in a book (see diagram).

In some versions of the Basic programming
language, the building block subroutines of a
program are known as procedures and can be
written as self-contained units which can be
called up from the beginning of a program.

This allows you to break down various routines
into common and useful procedures, saving
yourself much time and effort.

£
-

There is nothing worse than being faced with one of your old programs and finding that you
can't remember much about it. 1t is a curious fact that while writing a program you can
become completely at one with the detail, to the extent that you know exactly what value a
variable has at any given point and what it represents in terms of the internal micro-world of
your program or the outside world of the screen, yet only a short time later are completely
stumped on reading lines like:

100 IF PQ <= CVAND HG — 5 * (RG—2)=96 THEN GOTO 675.

This brings you to two points which are of such importance that they bear mention both
here and later so that you don't forget them:

1 Make full use of REM statements — in complex routines nearly every line needs
explanation,

2 Usevariablenames or labels that bear some relation to what they represent. While thisis not
all that easy using most home micros implementations of Basic (because you are limited to
the first two characters) such labels as Z7 or Y3% are psychologically meaningless before they
are used.

Be careful here as it can be easy to confuse labels that are too similar. Far exampie, NR for
the ‘“Number of Records’ in a data-base file could be confused with RN meaning 'Record
Number’. This is yet another argument for deciding on the exact ‘names before you write or
codethe proper program. Some languages allow you up to eight characters, which makes life
easier. Some extensions of the Forth language allow you up to 32 characters. although |
imagine that entering them gets mare than a bit tedious.

The first few lines of your program might be represented in a block-diagram quite simply as
'DEFINE VARIABLES'.

This conceals a multitude of ideas at the next level of design. which is an intermediate step
between a concept and its coding in the programming language It might conceal such ideas
as.

M Set BSE as the ASCII code for BackSpace — CHRS(8)
W Define Number of Goes as 10
Set up an array ‘L’ to hold line numbers for PRINT
W AT commands
These ideas might later be encoded as:
10 LET BS§ = CHRS(8)
15 REM BACKSPACE
20 LETNG = 10
25 REM NUMBER OF GOES
30 0IM L{18)
35 REM USE 'I" AS A GENERAL PURPOSE
LOOP COUNTER ANYWHERE
40FORI=1T016
oLy =32*(1-1)
60 NEXT
65 HEM (IR SRR R R RN ERREE] 'PR{NTAT L{:{}
PRINTS ON Xth LINE
Note that REM statements are put on separate lines.

It may seem obvious that RN doesn't equal NR,
but when you're naming variables in a
computer program the obvious has to be made
maore than obvious.

For instance, it may seem a good idea to call
the variable that keeps track of the number of
records in a file NR — and it could seem an
equally good idea to call the identity number for
arecord as RN.

The two variables — RN and NR — are
keeping track of two different things in the
program, but they look so much alike that you
could quite easily confuse them when trying to
debug or list a program.

A better way to handle this problem would be
to make sure variables names are easily
recognisable as relating to the appropriate
variable, and do not look or sound so much like
one another that you're likely to confuse them.

S0, in the case of our RN and NR example,
you could rename them as RCN (record
number) and NMR (number of records).

—

237 MICROPAEDIA

| The first two sections in this
programming course show you
how to go about designing and
structuring programs, while this
section helps you to become
familiar with the tools to carry out
those tasks.

In most cases, the tools will be
computer languages which inter-
pret the commands and ideas from
‘keywords' specific to a language
such as Basic into the series of 0s
and is (known as binary numbers)
that make up the ‘machine code’
language that's understood by
your computer.

On the following three pages,
are examples of some of the
popular computing languages o
giveyouan idea of how diverse they
can be. Over the next eight weeks,
we'll take a close look at many of
the languages and give lots of
program examples foryoutotry for
yourself.
| The most popular home com-
| puting language in Basic (Begin-
ner's All-purpose Symbolic In-
struction Code) and it will be well
represented in the examples for
you to type inio your computer.
Basic resides in most computers
as information stored on a silicon
chip built into the machine. When
the computer is ‘powered up’, it
immediately recognises the pre-
sence of Basic and puts a message
on the screen telling you that
you're operating in Basic.

The process is the
workhorse of the computer
and more orlessdefinesthe
identity of the machine.
Popularcomputers
generally use B-bit or 16-bit
processors, thefirsttype
being the mainstay of home
computersandthelatter
being morecommonin
expensivebusiness
machines. The pictures
showthe 6502 and the 6809
processors — both B-bittype
—usedinpopular micros.
The6502isthe processorin
the Apple, Atariand BBC
microsand many other
machines. The6809is less
widely used butmakesan
appearanceintheDragon
and Tandy Color Computer.
InaBasicsystem, the
processor takesinformation
fromthe Basic interpreter
and then acts on it.

PROCESSOR
CONTROL

perform any task a computer needs a
I sequence of instructions to follow.

The task itself must be broken down into
smaller and smaller parts until a level is reached
where the parts of the task are equivalent to the
program words available on the computer. The
breaking down of the problem into simple tasks
that the computer can actuponis one ofthe major
jobs of anyone who wants to program a computer.

Fortunately, thecomputeritselfisabletohelpa
great deal. It does this by starling from the
opposite end of the problem from the program-
mer. The computer system is able to execute
preset sequences of instructions that allow it to
perform fairly complex tasks. For instance,

printing a character to the VDU is a complex |

procedure but since it is used in most programs

there is always a print or write command in every |

high-level language.

Long series of short commands can be
sequenced to give the basis of a programming
language. The computer and the programmer
therefore meet at a mid-point, which should be
optimised to save the time taken to write the
program, the speed with whichthe program runs,
and the space that the program occupies in the
memory. This optimisation is done by choosing
the appropriate programming language for the
job, ie the correct software tool.

A programmer should not stick to one
language. He should choose the most appropri-
ate one for the job. As will be seen, some
languages are more suited to certain kinds of
work than others.

Allcomputer systems are, at theiriowest level,

LASSSSS

asetof switches, logic gates and memory. These
allneedtobe controlledin the correct sequences
to enable operations to be performed. For
instance, to add a number into a register, various
switches must be set, gates opened, and
flip-flops flipped to allow the operation.

The basic procedures of a processor are
controlled by a very low level language known as
micro-programming. The micro-program in-
structions are as basic as: open this gate, clock
that counter, etc. These instructions are then
grouped together by the manufacturer into
machine code operations.

The machine code languageis alittle higherup
on the scale as it allows operations such as
addition to take place within only one instruction

The way in which micro-program instructions
are grouped together is what makes a Z80
processor (used in the Sinclair Spectrum
computer) different from a 6502 processor (used
in the BBC Micra). The more complex proces-
sors, such as the 68000 and the Z8000, allow
even higher level operations to be performed at
machine-code level. In these larger processors,
it is not unusual to have machine-code instruc-
tions for multiplication, division and even string-
handling.

From the machine-code level, itis up to you to
specify how the system operates. Programs can
either be written directly in machine code, or in
one of the many standard high-level languages
such as Forth, Basic, Pascal or Fortran.

Which one is selected depends on the task to
be performed and the various other constraints
discussed in the introduction.

NS\

- g o W O W

o R e s s l_'-L'l—l,L e e, —'T.J

|
MICROPAEDIA 238

£
|

vy A T - e T TR T gy

)

Example Assembler
program for BBEC
micro assembler.

10
20
20
4.0)
S0
&0
70
a0
S0
100 FOR
110 [UPT- L

120, FROG

1230 LDA PLEN sBET LENGTH
140 LSKR & +DIVIDE BY TWOD
130 STA CTRiSTORE IN CTR
162 LDALED

170 8TA SPTR 5 ZERD
180 {.DA FPLEN
190 STh EPTR
sFUT LENGTH
BEC ER TR
CPAR

LEX SPTR
LDA BUFF, X &
LEX EPTR
cME BUFF, X 5 EMPAR
BEGR NEG §IF NOT
SAME THEN END
LBA CTR

BER IE@ 17T
FALINDROME AT
DEC: TR

DEC EFTR

INE SFTR

JMF CRAR

« NEG

LDa £ASC("N")
JSR &FFEE sQUTRUT
CHAR TO SCREEN FOR NO
RTS
- IER
LA £ASC("Y"™) *,
JSR &FFEE §OUTRPUT k
CHAR TO SCREEN FOR YES
290 RTS

400 1

410 NEXT T%

420 CALL PROG

| 430 END

On the first electronic computers, all
programming was done in machine code,
all of which was worked out by hand.
Fortunately, it was soon realised that a
computer was capable of doing much
more of the legwork involved in putting
together a machine code program. From
this, the idea of assemblers was born.

Assemblers use mnemonics, easy-to-
remember names, for each of the machine
code instructions available on a particular
processor. They are also used to calculate
the number of bytes separating points in
the program that would otherwise have to
be worked out by hand.

Places in the program are normally
marked by labels. These are words that tell
the assembler to mark places in the

DIM PROG 200
DIM BUFF 20
DIM SPTR 1
DIM EFTR 1
DIM FLEN 1
DIM CTR 1
INFUT"ENTER WORD "
$BUFF =A%
PPLEN=LEN (A%$)
T%=0 TO =

A%

STEF 3

SPTR

IN EFTR
195
200
210

230

220 GET CHAR

230
240

250

THE
2860
0 15 A
IER

280
220
SO0
310
320
330
Z240

350
3460
S70
S80

: 15 EQUAL

Assemblers are also used to perform
error-checking on the mnemonics to aid
the programmer in‘long pieces of code.

Assemblers allow easier contact to be
established between the programmer and
the machine. This is mainly because most
people find it easier to remember and
make patterns from words than they do
with numbers.

The main advantages of assembly
languages are:-
B The program generally runs fast.
B The programis compact compared with
high level languages.
B Itis very efficient for the computer to run
assembled programs.

The main disadvantages are:-
B Writing complex programs can be
difficult and time-consuming.
W Assembly language programs are
generally specific to one processor. They
will not normally work on other processors
and so are not portable.
B For complex programs they are fairly
inefficient from a programmer's point of
view, because of the above disadvan-
tages.

Animprovement on normal assemblers
is the macro-assembler.

FORTH EXAMFPLE FROGRAM.
(Written on Acornsoft
FORTH but should work
on most forths)
(PALINDROME)
: EQUAL CE SWaFP CE = 4

VARIABLE TFOINT
VARIABLE BFOINT

: PALIN (ADDR LEN)

2DUF + 1- TFPOINT !

2/ CTR ! BPOINT !
BEGIN

BFOINT
CTR @ 0=
AMD
WHILE

@ TFOINT @ EQUAL
NOT

~1 TEOINT

1 BPOINT +!
w1 =1 TR

REFEAT

CTR @ 0= IF

" 18" ELSE .

" I8 NOT " THEN
." A PALINDROME "

program to jump to or store information.

Forth is a high-level language that can
masguerade as a low-level language if
necessary. It is a rigorously structured
language, that is, structure is more or less
forced upon the programmer by the
language.

PULL OUT & KEEP

When writing a program in Forth, it is
necessary to break it down into more and
more detailed parts. These small parts are
defined from system words, words already
defined in the system. The definitions are
used in the definition of more definitions
and so until the program is complete.

The program is run by executing one
defined word which executes the words
that were used to define it, then these
words are executed in the same way and
the whole program is executed. The
method of calling predefined subroutines
is what makes Forth so fast and so
compact.

Forth has difficulties with handling
strings of characters. See the example
given, which works out whether the string
given to it is a palindrome, then compare
this with the Basic and machine code
versions of the same program. There is
guite a difference.

Forth’s main strength is its ability to
access memory locations gquickly and
easily, making it the ideal language for
interfacing a computer to the real world.

Example BASIC procr-am
19 REM FPALINDEOME FROVER
20 INFUT "ENTER W=D
S o
L
T e |
)
40 IF MIDECP%, T, 1)
PMIDE (RS LENF4Y

5 | ey) (L% I LR sl]
40 PRINT TE

0

ERD

One thing to look for in a language is
structure. If the language contains the
facilities to cope with procedures and
functions then for implementing large and
complex programs it can be useful,

These two structures allowthe task to be
broken down into blocks that are smaller
and thus easier to deal with. The sipall
blocks, once they work, can be used to
execute larger blocks. This process con-
tinues until the whole program can be run.

The lingua franca of microcomputers,
Basic, does not generally provide for a
great deal of structuring, although some
attempts have been made to introduce
more structure into the language, BBC
Basic being the most famous (or in-
famous).

The lack of forced structuring makes -
many Basic programs a nightmare to
understand, sometimes even by the
original programmer.

PASCAL PAL INDROME
TESTER

FROGRAM Fal. ERNDROME
(INFUT . OQUTFUT?

TYPE
STRING=FACKED ARRAY
[1..30] OF CHAR;

VAR
COUNT, 1,0
WOIRD :

t INTEGER
STRING;

BEGIN
WEITELN{" ENTER
SUSFECTED PALINDREOME 7))

COUNT =13
REFEAT
READ { WORDICOUINT Y) 3
COLIMT s =COLNT+1 8
INTIL WORDLCOUNT-—13=13;
1:=03
Az =000LINT 3
REFEAT
Ar=A—1;
Ta=I+1z
UNTIL (NOT (WORDLII) =
WORDEATY Y OR A=l
IF A=0 THEN WRITELR

{*THIS I6 A
FALINDROME®) 3

END

Pascal was originally written as a teaching
language but, because of its flexibility and
logical structure, it is now widely used as a
commercial programming language.

Itis a partially compiled language and its
main programming strengths lie in its
structuring and data typing, laying data out
inways that make it easily accessible. Asa
tool, it is ideal for most types of number-
crunching and data-processing. The main
disadvantage of Pascal is that it takes a lot
of memory to implement a system, and
every time an alteration has to be made to
the program the whole thing has to be
recompiled.

As a tool it is not much good for
interfacing to the real world although, as
with most languages, almost anything can
be done if enough time and effort is

devoted to it.

MICROPAEDIA 240

FROVER

| \
(W

The language Lisp has been around for a
long time and is being used in artificial
intelligence research. It is an extremely
flexible language with which almost any
task can be performed. Itis ideal for writing
database systems, as its data handling
facilities are excellent. Itis also very good
for writing compilers and interpreters.

Lisp's maindisadvantage inits compiled
form is that it is fairly slow but it is
interactive, so programming is easy. As a
softwaretoolthis language tends to be a bit
neglected — it can seem somewhat
complicated at first sight.

It is obvious that there are many
programming languages available — so
many, infact, thatthereis notenough room
to cover them all. From those discussed, it
is easy to see what advantages and
disadvantages make a language suitable
orunsuitable for doing a particular job. The
chances are that you'll never find the ideal
language for your program.

The answer is either to make do with
whatever languages are around or write
your own language to do the job perfectly,
possibly using one of the other high-level
languages to write it with.

Macro assemblers allow a programmer to
set up predefined routines which perform
specific operations.

Here is a simple example:
MACRO.POP 2%:R1,%R2

STA %R2
EMACRO.

This routine allows two bytes to be
popped off the processor’s stack, with one
call. When assembled, the whole section
of code is placed into the program. This
makes assemblers almost high-level lan-
guages. Infact, the original Fortran was no
more than a souped-up macro assembler

| withthe predefined ‘macros’ makingupthe

language.

As macro assemblers became more
complex, they evolved into compilers.
Compilers are similar to assemblersin that
they convert a set of predefined instruc-
tions into machine code. They are also
capable of performing error-checking and
program optimisation.

Once a set of instructions has been
compiled, the compiled code canberun as
aprogram.

An alternative to compiling the instruc-
tions is to interpret them. With an interpre-
ter, the set of source instructions or
program steps is taken one at a time and
executed. Because of this step-by-step
nature, most interpreted languages such
as Lisp or Basic run more slowly than their
compiled equivalents.

The advantage of an interpreted lan-
guage over a compiled one is that it is
interactive. This means that it does not
needtoberecompiledeverytimeachange
is made to the program. This is the main
reason why most Basics are interpreted.
Any alterations to the program can be
made and the program can immediately
re-run, without all that tedious fiddling with
compiler space.

Present-day computers are able to
support many different languages, some
of which are compiled (Pascal, Fortran),
some of which are interpreted (Basic, Lisp
— for small applications), and some of
which are both (Forth).

Design: Nigel Wingrove

language.

programmer's art,

Contributors: Nigel Cross, Kenn Garroch, Bryan Smmr and Eﬂﬂf mehnmm
lllustrations and diagrams: JOHN &MLLETHND KEWN Fi\EFlBER

NEXT WEEK

In Part 2 of Everything Ynu Wanted to Know About Programming we look at grammar and
fluency in program design (in which you puvm part of a computer-age
introduce the concept of flow-charting with examples of how they help in structuring your

programs, and take a first look at one oftha most popular programming tools — the Basic

Eliza Doolittle),

And we take each of those subjects ahit further in the following weeks as the programming
COUrse covers more complex topics in the quest to give you a complete view of the

o

Irmm

be
one
tion
This

snNo
bler
ithe

ore
ers.
that
ruc-
also
and

een
nas

ruc-
pre-

and
step

uch |

their

lan-
it is
; not
nge
main
ated.
1 be
ately
with

g 1o
ome
ranj,
Lisp
e of

"
ic

ming

——— — —— ——————————— — S T T S I S S T T -

SUBSCRIPTION! :OIRDER QARD

::%?}“ VOL 1 NO.

SSUES) UK X
P N
({ Ml K I
M
I I
"
N
q
WA
W .
d
A 4 + + + 4
\ (
4 4 ! | } i +
L | — ']
¥ i . 4
1 A L
] y D 1 #
ol en £ '\ -\, |
' Q / Y "
I 41T TN 1 vi 1 S1ZE

IFEAEREEECS NS E R R EER R RN ERNT RET

NEWSAGENT ORDER CARD

[Id like to make si ir i t keeps
y copy of Perse ; |]

Please reserve me a weekly copy of Personal Comj

1 \AOINPpUutern

™ i~RELa A . ¥ =
News until further notice

B :
| I'l] collect it
™ L S e,
Ple > address below.

™Y

Name . —

i " = oy e
Address

FROGRAM FPaL ITNDROME

CIMNFUT QUTPUT) 3

TYPFE

STRING=FACEED ARRAY
[1..301 OF CHAaR;

YAk

COUNT,.I.A : INTEGER
WOR D : STRING:
BEGIR

WRITELN{® ENTER

SUSFECTED FPAL TMNDROME
COUNT2=13
REFEAT

READ ¢ WORDOODOUNTI) 3
COUNT : =COUNT A+ 3
UNTIL WORDLCOUNT-11=13;

[z=0)g

Ar=C0OUNT:

REFEAT
Br=A—11
Te=l+1:
LUNTIL NOT (WORDLIZ)Y =

WORRDLATY Y OR A=03

IF A=0 THEN WRITELMK
(*THIS IS A
FAL IMDROME™) 5

END

Pascal was originally written as a teaching
language but, because of its flexibility and
logical structure, itis now widely used as a
commercial programming language.

Itis a partially compiled language and its
main programming strengths lie in its
structuring and data typing, laying data out
inways thatmake it easily accessible. Asa
tool, it is ideal for most types of number-
crunching and data-processing. The main
disadvantage of Pascal is that it takes a lot
of memory to implement a system, and
every time an alteration has to be made to
the program the whole thing has to be
recompiled.

As a tool it is not much good for
interfacing to the real world although, as
with mostlanguages, almost anything can
be done if enough time and effort is
devoted to it.

MICROPAEDIA 240

Please send this order
form with your remittance
to Personal Computer
News, Subscriptions
Department, Freepost 38,
London, W1E 6QZ. No
stamp is needed on the
envelope.

'y e AFERERREEE ST AaraEr s ERSEan

Pass this completed
coupon to your local
newsagent.

It is obvious that there are many
programming languages available — so
many, infact, thatthere is notenough room
to cover them all. From those discussed, it
is easy to see what advantages and
disadvantages make a language suitable
orunsuitable for doing aparticularjob. The
chances are that you'll never find the ideal
language for your program.

The answer is either to make do with
whatever languages are around or write
your own language to do the job perfectly,
possibly using one of the other high-level
languages to write it with.

interactive. This means that it does not
needtoberecompiledeverytime achange
is made to the program. This is the main
reason why most Basics are interpreted.
Any alterations to the program can be
made and the program can immediately
re-run, without all that tedious fiddling with
compiler space.

Present-day computers are able to
support many different languages, some
of which are compiled (Pascal, Fortran),
some of which are interpreted (Basic, Lisp
— for small applications), and some of
which are both (Forth).

Design: Nigel Wingrove

language.

programmer's art.

Contributors: Nigel Cross, Kenn Garroch, Bryan Skinner and Geof Wheelwright
Ilustrations and diagrams: JOHN HALLET AND KEVIN FAERBER

NEXT WEEK

In Part 2 of Everything You Wanted to Know About Programming we look at grammar and
fluency in program design (in which you play the part of a computer-age Eliza Doolittle),
introduce the concept of flow-charting with examples of how they help in structuring your
programs, and take a first look at one of the most popular programming tools — the Basic

And we take each of those subjects a bit further in the following weeks as the programming
course covers more complex topics in the quest to give you a complete viqw of the

SEETRTEN]
PTG TR Yy U

) -SHIRT!

When vou Subscribe to the No. 1
Weekly Micro Magazine

e PERSONAL
COMPUTER
NEWS

WIN A FREE SPECTRUM!

All'you have to do is keep this coupon together with the
coupons that you will find in the next seven issues.
Save them and then send them to us, together with your
completed competition entry form which you will find in
week 8, and you could be one of the 10 lucky people to win a
Spectrum computer.

<

So don’t forget. Buy your copy of
PERSONAL COMPUTER NEWS every week.

*]

1
L}
1
]
]
I
1
1
1
]
1
T 1
]
L}
i
]
]
I
1
|
1
1
]
1
1
1
[}
o

=3

g

R Lo
} THE BBCMNICRO = S

50 PROC

(LESS THAN THE

FREE
-SHIRT!

new force in computer

iblishing. You can be sure that

ese new books which introduce a) - '

>w range of paperbacks are the When you s ub..':crlbe tothe No. 1 Weekly

ast — they 're published by Micro Magazine

ritain’s bestselling paperback

blisher and the country's most Subscribe to Personal Computer News today and we’ll send
;mccpeussletulr ﬁgﬁ?f“;gin - you a free T-shirt! Ideal kit to wear while trying out PCN
srsonal Computer News. Programs on our special program cards. Each T-shirt has the

name of your favourite magazine emblazoned on the front and
back.

All you have to do is fill in the subscription card in this issue
and send it with your remittance to Personal Computer News.
In return, we’ll send you a free T-shirt and a copy of Personal
Computer News each week!

SUBSCRIBE

e OS1 SUCCESS1LLL 5 [E

Titers have been commissioned to
Tite a completely new collection of
rograms for each of the most
opular and fast-selling
icrocomputers. Robert Erskine 1s
programmer whose software has
pped bestseller lists. Humphrey
Jalwyn is a broadcaster, magazine

puouagHERRURCRTOZ B0

60 PROGRAIMS

DOST NOW NO STAMP NEEDED To Pan Books Ltd., FREEPOST, P.O. Box 109, 14-26 Baker Street, High Wycombe, Bucks HP11 2TD.
{ES Please send me the following 60 PROGRAMS ... paperbacks at £4.95 each plus 35p for the first book ordered plus 15p for
sach additional book to a maximum charge of £1.25 to cover postage and packing.

1
L}

]

1

1

1

1

1

1

i

; 1

iame (Mr/Mrs/Miss/Ms) D BBCMicro [] SinclairZX Spectrum
address :
postcode [oric1 [[] pragon3z -

 enclose my cheque/postal order for £ ___payable to Pan Books Ltd or debit my Access/Barclaycard/Visa/Trustcard :
1

=N . | ,
|

Signature) - B .
Allow up to 15 days for delivery. This offer available within UK only. -
Pan Books Ltd Registered in England Registration No 389591 .:

