in Part 3 of Everything You
Always Wanted to Know
About Programming...
But Were Afraid to Ask,
we introduce you to
arrays, show you how to
follow flowcharts and
add to your sketch code
skills.

g e

N

e :.E~--...........—f e
TWO WAYS TO ARRAY

B

MICROPAEDIA 250

LOGIC OF
THE LANGUAGE

Begin:
There are things called:

Object, Type,

and lists called:

Pasition, with two values (X, and Y},

Application, with three values (Game, Mouse, Editor},

Ikons, with some values (empty),

Cursors, with four values (Flashing, Solid, Underline, Query),

Things Like Spaceships, with some values (empty).

Channel, with four values (Keyboard, JoystickX, JoystickY, Mouse),

Reply, with four values (Key, JoyX, JoyY, Squeak),

Move which has four lists called Directions (Up, Down, Left, Right), each being two lists called
Key and Squeak, each being lists with three parts (("Q", "W"and “E"), (‘E", “D" and “C"}, (*C",
"X"and“Z") and (“Z", "A"and “Q")), and ((8, 1 and 2), (2, 3and 4), (4, 5and 6) and (6, 7 and 8)),
and a number called Bias value (-1, +1, —1, +1).

{* This could be written more clearly as:

Move which has
four lists called Directions (Up, Down, Lelt, Right),
each being twao lists called Key and Squealk,
each being lists with three parts (("Q", "W'and "E"),
{(*E", “D" and “C"),
("C", “X"and "Z") and
(2", "Aand “Q"),
{(8, 1 and 2),
{2, 3and 4),
{4, 5 and 6) and
(6, 7 and 8)),
and a number called Bias value (-1, +1, =1, +1).

and

or maybe;

Muve{vhich has four lists each being two lists, (each of which are lists wth three parts}. and a
number, called Directions ((Up, Down, Left, Right), (Key (("Q", "“W"and “E"), (“E", "D" and "C"},
(“C",*X"and“Z") and("Z","A"and" G"]} and(Squeak, ((B.1and2),(2, 3and 4), (4, 5and6)and (6,
7 and 8)), and Bias (—1, +1, =1, +1

which would be written more clearly as:
Move which has four lists each being two lists, (each of which are lists with three parts), and a
number, called
Directions ((Up, Down, Left, Right),
(Key ((“Q", "W"and “E"),
(*E", "D" and "C"),
(*C"."X"and “Z") and
(“Z", “A" and “Q"),
{(8, 1 and 2,
2, 3and4),
(4, 5 and 6) and
(6. 7 and 8),
and Bias =1, +1,=1, #1).

and (Squeak,

both of which are effectively the same as

Move Up Key ("Q", “W" and "E")

Squeak (8, 1and2)
Bias |

Down Key (“E", "D" and "C")
Squeak (2, 3and4)
Bias +1

Left Key (“C", "X"and "Z")
Squeak (4, 5 and 6)
Bias =

Right Key (“Z", "A" and *Q")
Squeak (6, 7 and 8)
Bias +1

and carrying on with the code

Select the Type from the list Applications
If Type is a Game: the Object is in the list ThingsLikeSpaceships
If Type is a Mouse: the Object is in the list lcons

and default to: the Object is in the list Cursors

loop around is here:
go to the point given by positions (X and Y) and display the Object. For the number of Channels,
Reply (number) is what's found in Channel (number).
If Reply (Key) is "S", repeatedly, Reply (Key) is what's on the keyboard until Regly (Key) is 8" /*
Loop until "S" is pressed again */
If the Reply (Key) is not “L" do Orderprocessing, do Anythingelse, and go to Loop around.
End.

Orderprocessing is:
For each Move (direction), for Reply (Key and Squeak), if Reply (Reply number) isin Move (Key for
the Direction) or Reply (which will be JoyY
if Move (Direction) is UP or DOWN, and JoyX if LEFT or RIGHT) is the same as the Move (Bias for

low yau'llin what th?y lfntch

program actually looks
mmmmmm
that the computer needs to
know about input devices, it

-'m-ny means keyboards,

~and joysticks. This
eoum. however, be extended
to include ﬂght pens, track

thedirection) then the Move (Bias for the Direction} to Position (which will be Y if Mave (Direction) | | balls and various other ways
is UP or DOWN, and X if it's LEFT or RIGHT). of wmnumcnﬂng with the
/* Or in better English: */ ter
For each Direction of Movement, for the Replies from Key and Squeak, if the Reply N is in the Keys kmﬁmu‘mmu
for the Direction of Movement or the Reply (which will be Joy if the Direction of Movement is UP jenera either a
or DOWN, and JoyX ifit's LEFT or RIGHT), is the same as the Bias for the direction of Movement ﬂ“l-ﬂngw mdm
then add the Bias for the Direction of Movementto the Position (which willbe Y if the Direction of | | underline or query when a
Movement is UP or DOWN, and X if it's LEFT o RIGHT). cursor is required.
Go back. After ltr:h. terms have been
: : defined inthe sketch code, the
Anythingelse is: st de i
(the rest of the program goes here) 1mem mm'mcanmtauo-ﬂ:mm
Go back, s
Ikons (withsome values empty)
Begin Patential vilues g

Application {with three values Game, Mouse, Editor)

' GAME

These are things called:

Object, Type I

{with two values,
POSITION, Xand)

S 7

EDITOR

Cursors

Tt B

N
lfi,"lhlu ik b

H s like spaceships
.,' I (with some values {empty)

Potential value
Reply with four values {Keyboard, Joystick, Y, Joystick X, Mouse|

|

Channel (with four values
Keyboard, Joystick ¥, Joystick X,

EE!S

|

Move — up, down, leftand right

g

WV

RUBRISH B
CLIPBOARD
FILING
CABINET
CALCULATOR

CLOCK

MOUSE
JOYSTICKY

JOYSTICK X

The final expression of the program
discussed an this page would rollow
the arder balow. To help you
understand what might otherwise
be a meaningless mass of text we
have included some graphic
symbols that represent the various
graphic choices

251 MICROPAEDIA

PROCEDURE Get up; ({{(#
BEGIN

Get out of bed;

Put on dressing gown;
END

PROCEDURE Wash;
BEGIN
Wash yourself;
Shave;
Brush teeth;
Comb hair;
END

PROCEDURE Eat breakfast;
BEGIN
Sit down at table:
Eat cereal;

Drink coffee or tea:
END

PROCEDURE Go to work;
BEGIN
Get coat and briefcase; _
Kiss wife goodbye;
Leave for work
END

PROGRAM Breakfast;
BEGIN

Get up;

VWWash;

Eat breakfast;

Go to work

END.

When writing Pascal in
pseudo-code, the Pascal
words are typed in boldface.
In this example, you are
shown the modules or
“procedures” that comprise
the business of breakfasting
and getting going in the
morning.

The four procedures are
Get up, Wash, Eat breakfast,
Go to Work and then in the
main program all those
procedures are “called” in
the arder in which they
should be executed. You can
see them being called in the
“listing” of breakfast, the
main program.

MICROPAEDIA 252

GO WITH
THE

FLOW

This week we continue our
investigation of program
flowcharts, how you write them
and what you do with them, and
follow it up with an introduction
to algorithms.

BProgram flowcharts — So far the types of
flowchart discussed, biock and system, do not
indicate the internal operations of the computer
program Je the code.

Program flowcharts represent the operations
to be carried out by the computer. There are
two types of program flowchart — the outline
chart and the detailed chat. It's up to program-
mers whether they wish to use one type or
both, but for very large programs it's a good
idea to use outline charts, as they will give you
a good idea of the subtasks that your program
will have to perform.

The outline flowchart is the first stage of
turning a systems flowchart into the necessary
detail to enable the programmer to wnte the
program. They present the computer opera-
tions that are to be performed, but only in
general. The standard programming symbols
are used, and when the detailed flowchart is
prepared, each symbol within the outline flow-
chart would normally be expanded.

The detailed flowchart represents the last
stage of planning before the actual business of
writing the program. The detailed charts will
contain the necessary steps that the program
must take. Note that thz detailed flowchart
doesn't contain any code in a particular pro-
gramming language, but statements in English
such as set count to 1, Read master file, and so
on. The reason for this is to be independent of
any particular language, although it is possible
to write a detailed flowchart with actual prog-
ramming statements.

When preparing a flowchart, remember that
you should show the necessary detail of the
problem to enable you to write code from the
final chart. Be liberal with paper and do not
clutter it with lines. Look atdiagram 2 {page 245},
and you can see thal connectors have been used
instead of flow lines. This makes the flowchart
easier to read. Also note that the flow lines have
an arrow pointing to the direction that the control
is to follow. When writing the flowchart, keep it
tidy. Two rules can be followed here.

First, write the chart from the top left of the
page, and go down and to the right. Secondly,
when branching, draw your flow lines to the
right when going down and draw them to the
left when going up, diagram 2 shows this with
the exceptions of E and |.

When you have completed the flowchar,
follow it through. This will show any mistakes,

which can then be corrected before any coding
is done. Looking at dagram 2, you can see that
the loop G could end up with the caller waiting
for a long, long time before the phone is
answered.

The flowchart also enables you to optimise
your code. Diagram two shows us that the
process of replacing the receiver has been
done twice, at E anc K. This is quite inefficient
and should be avoided at all costs.

Finally, remember that flowcharts are used
to aid and not hinder you. At first, it may seem
complicated, but after using them for a while,
they can be of greal benefil.

Algorithms

An algorithm is quite simply a set of instructions
which are used to solve a problem. They have
been used by many people for many different
reasons for a very long time. The early Greek
mathematicians used algorithms to solve prob-
lems, and so do you. In fact, any set of
instructions can be called an algorithm,
Here is an algorthm to open a door:

1) Put hand on handle.

2) Grasp handle.

3) Turn handle to left.

4) Take one step backwards.
5) Pull handle towards yourself.

Looking at the algorithm, it is plain to see that
it doesn't cover all possible situations. We are
assuming that the handle can be turned to the
left, and also that the handle is one that can be
turned. What the algorithm does do is show the
steps involved in opening the door. Notice that
instructions 4 and 5 are the ones that actually
open the door — saying ‘open the door' in
instruction 5 would have been ambiguous.

Algorithms can therefore be used to solve
problems as far as programming is concerned.
Designing good and efficient algorithms can
take a long time, but once mastered, will prove
invaluable.

We are not concerned with the designing of
algorithms in this article, but with the way they are
written down for use ay the programmer.

The product of writing down an algorithm for
use by the programmer is called pseudo or
sketch-code. They can be written down in
English, Pascal-like code, Basic-like code, or
your own method of writing down instructions.

But the problem with the latter is that if
everybody writes down an algorithm the way
they want to, then it could be very difficult for
anyone else to understand it. Therefore two
methods have been used frequently.

The first method is to write down the desired
processes as a series of numbered steps.
These can be written in plain English, and allow
the reader to grasp what the algorithm is
supposed to do and how it does it. You can
write down the steps in any level you desire,
but it is best to start from the top and then work
down to a level where you can then start to
program. The door-opening example is fine for
small programs, but when larger problems are
being tackled, it's bast to define the algorithm
as a number of smaller steps. The problem
‘Breakfast' shows this quite well.

1) Get up.

2) Wash.

3) Eat breakfast.

4) Go to work.

1.1) Get out of bed.

1.2) Put on dressing gown.
1.3) Go to bathroom.

2.1) Wash.

2.2) Shave (if necessary).
2.3) Brush teeth.

2.4) Comb hair.

2.5) Go to kitchen.

3.1) Sit down.

3.2) Eat.

3.3) Drink coffee or tea.
4.1) Get coat and briefcase,
4.2) Leave for work.

This methad is fairly easy to get used to. It is
also fairly easy to abuse. The temptation to
start from the lower levels and then work up is
great. Avoid it. If you do this tren you can end
up with a mess when it comes to writing the
final code. Working top-down is more struc-
tured and modular.

In the box below, you'll see
four ways of solving the same
problem,

The firstmethod
{numbered 10 to 60) is a
simple basic program to work
out the solution to finding the
cosine of numbers between
one and ten. The first line is
merely a Remark statement,
the second a statement to
print on-screen the fact that
the program will print a
number and then the square
root of it, the third begins a
FOR... NEXT loop to
generate the numbers.

The second method is just
an English-language six-line
descripton .

The third method is a
high-level language program:
the one shown in the box
below written in Pascal.

—

G—C+l

10 REM Simple program
20 PRINT “N", “Cosine”
30 FORC=I1TO 0

40 PRINT C,COS(C)

50 NEXTC

60 END

1) Print message.
2) Setcounttol.
3) Print number and cosine.
4) Add one to count.
5) If count less than
eleven then step three.

6) Stop.

PROGRAM Cosine;
VAR Cc;REAL
BEGIN.
WRITE (“Cosine”);

A I =

=1,
WHILE c<I| DO
WRITE (c,cos(c));
a=c+l;

END

253 MICROPAEDIA

CITIES

LAST
NAMES

OF
RECIPIENTS

Arrays can be easily imagined as a series of rows and columns whose intersections make
l.".ells whlch can hold information, rather like letter-racks.

ARRAY FOR

PROGRAMMING

asic supports two types of arrays —
Bnumericand string. Numeric arrays

may onlyhold numbers, while string
arrays contain characters and can there-
fore be used (by devious means) to hold
numbers as well,

To set up an array you use the reserved
word DIM. You must also give this word
values known, incorrectly, as parameters.
These numbers refer to the size of the
array you want to use. Such numbers are
also called subscripts and allow you to
access and manipulate the contents of an
array.

It is easiest to imagine arrays in the form
of rows and columns whose intersections
make cells which can hold information,
rather like letter-racks. Another useful
analogy is that of graph-paper, where a
single point is referenced by both an X
coordinate (column) and a ¥ coordinate
{row). Arrays can have one or more rows
and one or more cclumns. A single row
array with four columns can be repre-
sented as:

:Coll LDIE Col3: Gol4
Row1:
To create such an array in RAM you

must give the array a name, RC$, for
example. It should have a size:
10 DIM RC$(4)

Mote that when you give DIM only one
number it is assumed to be the number of
columns and only one row is allowed. To
create numeric arrays, you should leave
out the $ symbol.

This particular DIM statement could be
used anly once in a program, althoughyou
can setup as many arrays as there is room
for in RAM. This means that you cannot
alter the number of rows or columns once
the array has been DIMensioned. String
arrays really do gobble up RAM, so keep
your arrays as small as possible and
CLEAR as much variable storage space
asmay be needed at the startof a program
to avoid ‘'OUT OF STRING SPACE' or
Similar error messages.

Toset up arrays withmore than one row,
you need to use two subscripts, row and
column, inthat order, To establishan array
called RC$, having three by five colurmns,
the statement would be:

10 DIMRCS (3.5)

This sets up an array which can be

shown diagrammatically as in figure 1.

This sortof array is often referred toas a
two-dimensional string array, asit mustbe
accessed by two values — row and
column,

Each cell of a string array can be thought
of as a normal string vanable, and can thus
usually contain up to 255 characters. But
you should check this inyour Basic manual
and by experimenting, as you may find
non-referenced limitations in this area.

To putinformationinto the array you use
statements like:

20 LET RC§(3,5) =
PUTER NEWS"

This puts the character string into that
cell of RC§ which is referenced by the
subscripts 3,56 — ie row 3, column 5. The
following example should make this clear:
10 DIM RC$(3,5)

20 RC$(1,1) = "THIS IS”

“"PERSONAL COM-

30 RC$(2,2) = "HOW"
40 RC$(3,3) = “TO DO IT"
50 RC$(2,4) = "EASILY"

This gives the sort of format shown in
figure 2. Togettheinformation out, you can
simply use PRINT, as in:

50 PRINT RC%(1,1)
This will display the contents of the cell

specified (ie"THISIS"). Or you can assign
the contents of a cell to a string variable as

in:
60 LET A% = RC%(2,4)

A% will now ‘contain’
“EASILY".

To use numbers in string arrays, first
convert the number to ils string repre-
sentation:

100 X = 99
110 X§ = STR$(X)
120 RC%(3,5) = X%

Don'tforget that a string thus defined will
have a leading space if it is positive and a
negative sign if it's not (the lenath of the
string made by A$ = STR$(2) is2 — not 1
as you might expest).

Togetnumbersoul, reversethe process
using VAL:

200 X = VAL(RCH$(3,2))

At this point it sFould be obvious that to
access all the columns of a given row we
canuseaFOR . . NEXT loop either to put
information in or get it out. Thus, if we
wanted to see the contents of the cells of
row two, we would write:

400 FOR C = 1 TQ & for all columns

410 PRINT RCS(2,C) print contents of ro..”
2, column C

420 NEXT next column

We don't want to have to repeat this for
every row, so we embed this loop in
another:

390 FORR = 1 TO 3 outer row loop
ceeannnnenns iN@CCOIUMN loOR

the siring

430 NEXT R
A string array can be used to set up a
simple database which can be sorted and
searched. For example, you could set up
anarray to hold record titles (column one),
artistes (column two) and classification, eg
poporclassical (columnthree) to act as an
index to a record collection.
The simplest way to getthe datainto the
array is by using READ and DATA
statements, although you could have the
program ask the user for the information.
The DATA statements would take the
general form: fine no. DATA fitfe, artiste,
classification.
For example:
5000 DATA SOCIAL STUDIES,CARLA
BLEY JAZZ
5010 DATA DISCIPLINE, KING CRIM-
SON, JAZZ
5020 DATA VAUGHAN WILLIAMS CON-
CERT ,ACACEMY OF ST. MARTIN
IN THE FIELDS, CLASSICAL
Motice that you cannot put commas into
the information within the DATA state-
ments because they are reserved to
separate each item.
Ifwe have 50 albums, the program could
begin like this:
10NR = 50:REM NUMBER OF RE-
CORDS

20 NC = 3:REM NUMBER OF CELLS
PER ROW

30DIM RCS(NRNC):REM SET UP
DIMENSION IN RAM

32 REM

35 REM#x %« x« FILLTHE ARRAY % %% n &

40 FOR R = 1 TO NR:REM FOR EACH

RECORD

50 FOR C = 1 TO NC:REM FOR EACH
CELL

60 READ RC$%(R,C):REM READ THE
RELEVANT DATA ITEM INTC THE
CELL

70 NEXT C:REM NEXT CELL

80 NEXT R:REM NEXT RECORD

90 REM&&&AGEARRAY FILLED 88&84&
Note that line 60 is a compact form of the

two expressions;

PULL OUT & KEEP

READ A$:LET RCS(R,C) = A%

Allthatremains is to design a programto
access the information in the array. To do
this we must first decide exactly what
users may be most likely to require. They
will certainly want to be able to search the
database for atitle by a given artiste so we
will concentrate on this first,

Next week we take a look at dimensioning
arrays and continue fo build up the simple
database program,

Diagram |

EASILY

TODOIT

Diagram 3

(staRT)

|[ESTABLISHED FIELD TO SEARCH |

[ESTABLISHED FIELD TO SEARCH FOR |

-

| CHECK FIELD IN CURRENT ROWY |

Kl =

e e

DO NEXT CHEC

SUSETRENERE (7 R

procedure has been designed.

/ DISPLAY ALLITEMS IN ROW
‘m@ YES /{:al} su_l_:-_r_mnir-e} /

' : . EXITWITH =
@aowsasﬁ.m-lsb, YES ﬂwnopmnmsss.tcs
NO

Coding algorithms is a simple job once a flowchart describing the

programs, but they are by no means the whcle story. Error
messages can be misleading: they can point you to the line
where the program stopped, rather than the one where the error
occurred, and they can also be distinctly enigmatic.

So no matter how good your micro's error messages are, it's
still useful to knowa little about why errors occurinthe first place.
Logical errors
These occur when your algorithm for solving a problem or
performing some operation is flawed. First you should check
exactly what you wanted to achieve, then go back to your notes
— you did design the solution before coding it, didn't you? You
might find it usefulto redesign the routine on paperand recode it,
then compare this_with the section that doesn't do what it's
supposed to do. §* ’

I nterpreter-reported error messages are useful in debugging

One easy misteke to make s to re-use a variable name, either
because the routine that uses it is lost in a long program, or
because you've forgotten the exact names you used — another
good reason for having long variable names, but again
something not usually provided for. It helps here toinsert PRINT
“X=":X statements are relevant points in order to follow changing
values. You can also use an extended form: 100 PRINT “LINE
100, X=";X — but renumbering will mess this up.

Logical errors are naturally the hardest to give advice on, but
here's one example often seen in various forms. It occurred in a
program where, at the end, users were given a feedback
message abouttheir performance. Ifthe score (SC) is taken tobe
out of 10, can you see what's wrong with the following lines?
1000 IF SC<5 THEN PRINT "THAT'S NOT VERY GOOD"
1010 IF SC =5 AND SC<9 THEN PRINT "THAT'S FAIR"

1020 IF SC = 10 THEN PRINT“THAT'S FULL MARKS — WELL
DONE"

Obvious isn't it? (What happens if SC = 5 or 5C = 97 How
should these lines have been coded?)

Similar difficultes can arise when dealing with the operators
AND and/or OR. If you find yourself having to write complex

statements using these together, be careful. Use brackets to
group statements and draw up a truth table if necessary. In
Boolean logic most IF statements reduce to a basic form:

IF (condition) THEN (operation)

eg IF (X = 3) THEN GOTO 5000

The operationwill only be carried outif the conditionis TRUE; it
the condition is evaluated as FALSE the operation will be
ignored.

The condifion may be complex, asinIF (X =3AND Y = 7)
THEN. . . The two statements will be evaluated as, is ¥ = 3,is Y
= 77 If both these are TRUE then the operation will be executed.

In a truth table the possibilities are shown clearly:

X=¥ AND Y = 7! |OPERATION!?
TRUE FRUE YES
TRUE FALSE NO
FALSE TRUE NO
FALSE | FALSE | NO
/ If we alter the AND to OR, see the difference it makes:
 X=3" | ORY =7 |[OPERATION!
/| TRUE TRUE YES
TRUE FALSE YES
FALSE TRUE YES
FALSE FALSE NO

Setting out complex statements in detail like this should really
be done during the development phase — not used as an ad hoc
debugging tool.

Design: Nigel Wingrove

| wanted to be

Contributors: Richard King, David Janda, Bryan Skinner and Geof Wheelwright

lllustrators: Kevin Faerber and John Hallet

NEXT WEEK

We give you the final word on Basic debugging, another word on numeric and string arrays, a lesson on
getting outof a fix using flowcharts, and yet more on becoming the elegant program designer you've always

Inthe comlﬁgwmksyau’llahogatanlmmdunﬂcn tothe Forth and the high-level Pascallanguages aswe
give you the answers to your questions about these increasingly popular program tools.

