Volil | Part8

S

RIPHERALS|

e

In the final part of
Everything You Always ~
Wanted to Know About \
Programming...But Were ~
Afraid to Ask, we power up
Pascal, arrive at an
Adventure, deal with data
and discuss civility in CP/M.

< .= DIGGING INTO DATA STRUCTURE]

S>>

I:" f iy [
WHEN IN € P/

VENTURES FOR ALL

Pascal treats
peripheral devices as
files to which
informationcan be
output. Some of the
common places Pascal
will “store” files are
cassettes, disk drive
systems and screens.

FOUNDATIONS

OF LANGUAGE

We introduced you to the Pascal
programming language last week.
This week we take you one step
further with a look at Pascal
statements, simple Input/Output and
control structures as well as
procedures and functions.

There are a number of types of statement
in Pascal and so far we have come across
the output statement WRITELN. Pascal
also has assignment statements, for
example A ;= B. Notice that . ="is used to
assign values, '="is used in comparisons
as in “if a equals b". The syntax for the
assignment statement is as follows:

Ifthere is to be more than one statement
within a particular block, then they are
referred to as compound statements.
These must be bracketed by the reserve
words BEGIN and END:;

BEGIN

A=1,

Vo= ALA;

WRITELN(y)

END;
Mote that the semicolon is not required

after the last statement within a block, |

although no harm is done if it is included.

Also, after a block, the END should be

followed by a semicolon, only the final
END of the program should be followed by
a full stop.

. [VARIABLE | = @ ~ [expressioN | -

Simple /O

Asfaras Pascalis concerned, all Input and
Outputis carried out between files, The file

| could be magnetic tape, disk or the visual

display unit. At the beginning of a Pascal
program, input and output is optionally

| specified within the program line:

PROGRAM DEMO (INPUT,QUTPUT);

So far, the input and output discussed
has referred to the keyboard and terminal,
butitis possible to assign files on different
media to a Pascal program. Different
versions of Pascal have different means of
doing this, and the job of assigning the file
to a peripheral is done at the operating
system level. For the sake of brevity /O
with the keyboard and VDU will be dealt
with here.

The two most common /O statements
are READLN and WRITELN. If LN is
included in either, then input or output will
not be expected on the same line. So one
itern per line will be read or written to the
VDU or keyboard. READ or WRITE may
be used and this means thatinputor output
will appear on the same line.

MICROPAEDIA 290

g —

| The real power of Pasc

With WRITE or WRITELN, it is possible
to format the output so as to achieve neatly
aligned reports. The field width can be
specified and this is shown below, the
dashes representing spaces.
WRITELN(23:6)

i s

Writing floating point numbers can be a
problem, as the output is usually in
scientific notation:

WRITELN(1.5)

*1.500000000000E +00°

Specifying a field width will only justify the
number, but it is also possible to specify a
second field width parameter which speci-
fies how many decimal places will be
printed:

WRITELN(1.5:7:1)

———-1.5

Note that the decimal point counts as one
character space. Specifying field width

| parameters will work for all the standard
| scalartypes.

Control structures

Thav are A

structures
can beusedincomplex situahon

will be discussed only briefly

of programming whenever we wished 1o
repeat something. Pascal provides three
types of automatic looping; REPEAT,

WHILE and FOR. There is more than one |

because each has its own particular con-
venient features.

The REPEAT statement usually
appears in the form 'REPEAT statements
UNTIL condition is true’. The syntax for the
statement is as follows:

PULL OUT & KEEP

..,@_.__ BOOLEAN |
EXPRESSION

" - [sTaTemenT |-

syntax for the statement is shown here,

Here we can see that the Boolean
expression is situated at the start of the
block. Note that any statement or state-
ments that appear after the DO must be
bracketed by BEGIN and END. There may
be several levels of BEGIN and ENDwithin
the WHILE . .. DO and the final termination
will be achieved when the condition is met
andthelast END (followed by a semicolon)
is ‘matched'.

This loop differs in operation from the
REPEAT ... UNTIL insofar as the loop
need not be executed at all. It should be
pointed out that it is all too easy to mix up
boolean conditions in Pascal REPEAT

__ WH ._E

WHILE . . .DO loop:
PROGRAM DEMO (INPUT,QUTPUT);
(" USES THE WHILE. . . DO LOOP ™)
| BEGIN
| :=1;
WHILE | < 26 DO
BEGIN
WRITELN(I);
l:=1+1
END;
END.

. ' "—l STﬁTEMENTE—“"{ HRTIE) ——

©

BOOLEAN -
EXPRESSION

The boolean expression after UNTIL will
terminate the WHILE. The operators that
may be used are the relational ones and
any of the legal boolean operators. The
statements within the REPEAT . .. UNTIL
will be executed at least once, and the
check or checks are made at the endofthe
loop. Here's aprogram that uses REPEAT
... UNTIL;
PROGRAM COUNT (INPUT,QUTPUT);
(" COUNTSFROM 1 TO25%)
VAR

| INTEGER,;
BEGIN
I:=1;

REPEAT

| :=1+1

UNTIL | = 25;
END.

The second loop statement that Pascal
has to offer is the WHILE statement. The

The third type of control structure
available in Pascal is available in nearly all
high-level programming languages, ie the
FOR....NEXT loop. This is unconditional
as far as Boolean expressions are con-

cerned, rather it uses counter variables (or
constants) to specify a start and end for the
number of times the loop is to be executed.
The FOR . . . NEXT loop can shorten a
Pascal program because the updating of
the counter variable is automatic. It should
be noted that operations on the counter
variable within the FOR . . NEXT block are
illegal. The syntax for the FOR . . NEXT is
below:
PROGRAM DEMO (INPUT,OUTPUT);
VAR
| := INTEGER;
BEGIN
FOR=1:=1T025D0
BEGIN
WRITELN(I)
END:

END

Procedures and functions

Finally, Pascal allows the programmer to
define procedures and functions. These
are the thing fo use when the programmer
wishes to name a group of statements and
call them from the main part of the
program. The difference between the two
is that a function returns a value that may
be used within an expression, while a
procedure has no value associated with its
name (although values may be passed
between different procedures).

In addition to Forth, Pascal and Basic,
there are a number of other high-level
languages which can quite easily be runon
popular micros.

Lisp is known as an arificial intelligence
language which ‘learns’ about a subject as
the userinteracts with it. Its only drawback
in being used with micros is the amount of
memory it eats up.

Logo is a teaching language, and is
often associated with the ‘Turtle graphics’
system popularised as a teaching aid in
schools.

ExREsson] - (£0) - (sTATErET]

291 MICROPAEDIA

ulation of many different kinds
ata. To take just a few examples, the

ay be: numbers in scientific and
cal programs; a mixture of text and
rsincommercial dataprocessing; a
compoination of commands and data in
nieractive computing; joystick move-
ments andthe state ofthe screendisplayin
an arcade game and formatting and other
instructions together with text in a word
processor.

Because data is so important, you have
to define exactly what data a program has
to handle before you start writing the
program. In commercial data processing
there is a division of labour between
systems analysts — who prepare speci-
fications giving precisase ai‘ls ofthedataa

programe needs and what the program
does with the data, and programmers —
who work from the specmcat:on and
decide how the program is going to do its
job and write the program instructions that
tell the computer what to do.

There is a big gap between the real
world where data has a meaning, and the
guts of a computer where everything is
reduced to patterns of electrical impulses.
The gap is bridged by the features
provided in programming languages for
representing, organising and manipulat-
ing data of various types.

At the machine code level everything in
the computer can be regarded as binary
numbers. If a programmer writes machine
code instructions for multiplying two num-
ber that were intended to be codes for
letters of the alphabet, the central proces-

system is like the culture of the society that speaks a given language.

Justas a computer language resembles a spoken human language, an operating

You may he letter-perfect in your pronunciation and handling of grammar, but if
you don't know the context of the words and sentences you are writing or speaking, you

are not likely to communicate effectively.

One of the most popular business operating systems is CP/M — implemented on lots of

8-bit micros.

One of the ideas behind CP/M is to give you English-language commands to carry out
various simple tasks. For example, the command:

TYPEPCN

will print on-screen a text file with the name PCN. Similarly the COPY command, using the

syntax:
COPY A: PCNTO B: PCN

will copy the file called PCN from the disk-drive designated as A to the disk drive

designated as B.

You may have guessed by now that one of CP/M’s higgest jobs is handling computer
files; making sure that each file goes in the correct place and carrying out operations
between files. Therefore, it is almost a necessity to have a disk drive if you are to use
CP'M — and hence the system has remained largely a tool of the micro business user.

But prices of CP'M systems have come down drastically in the past two years and you
can now get a full CP/M-based system for less than £700. The new price, combined with
the large volume of business programs already written under the CP/M system, should
revive interest in this ‘old reliable’ operating system.

CP/M will run on computers that have either the Zilog Z80 or Intel 8080 processors. It
needs a minimum of 20K of RAM to run, hut will operate more happily if your machine has

64K.

MICROPAEDIA 292

FINDING THE
RIGHT TVYPE

sor will quite happily carry out the
instructions and produce a meaningless
result, while in a hlgh level language an
instruction like x;="a""b" will be rejected.
Most highlevellanguages allow you to use
certain fixed data types, enforcing rules on
what counts as a particular data type and
providing operations that are meaningful
for each data type.

Most versions of Basic have two data
types, floating point numbers and strings.
Floating point numbers are written in the
usual form, 100, 11.5, -3, etc, or in
scientific notation, 5E10, —12.6E2 elc,
while strings are written as sequences of
characters enclosed in quotes, "HELLO",
123", "MICKEY MOUSE". You have to
use different kinds of variable names for
numeric variablesand string variables —
the precise rules for variable names differ
between Basics but the name of a string
variable must end with a dollar sign— and
you cannot give a numeric value to a string
variable or vice versa. Thus, LET A =
“123" and LET A% = 123 are not allowed,
the string “123" being regarded as
different from the number 123.

The operations you are allowed to carry
out are designed to be meaningful for the
data types. You can perform any normal
arithmetic calculation with numbers and
numeric variables, or you can join strings
together or extract sections from strings.
You may sometimes want to treat num-
bers as strings or vice versa and for this
you have to use explicit conversion
functions — STR$ gives you a string
corresponding to the printed form of a
number and VAL gives you the number
corresponding to a string.

Some Basics also allow integers and
integer variables which can take only
whole number values and not fractions.
Thenotation forinteger variables varies —
the most common is that the name of an
integer variable ends with a percentage
sign. Integer arithmeticis similarto floating
point arithmetic, but there is an important
difference in division. Floating point divi-
sion gives a fractional result (for example
3/2is 1.5) but integer division always gives
an integer result. So the integer division
3/2 gives the answer 1.

Other programming languages also
provide a fixed set of data types. Fortran
was designed for scientific programming
andallows you to useinteger, real (floating
point), complex, and double precision
numbers, but is very poor at string
handling. The rules for variable names in
Fortran do not provide special characters
like $ and % at the end of a name to
distinguish wvariable types. There is a

3
3
2
-
2

— —

S mp—

PULL OUT & KEEP

PASCAL TYPES

DAY (MONDAY,
TUESDAY...)

MONTH (JANUARY,
FEBRUARY.)

heod

! YEAR(1983,1984...)

The diagram above shows two methods of displaying data types: the first is “english-language” symbolic
representations, while the second is Pascal data typing —where certain “Types” are described by words
within those types (i.e. TYPE Day = (Monday, Tuesday...).

default rule that names beginning with the
letters [toN areinteger variablesandother
names are real variables, but this rule can
be overridden by a declaration at the
beginning of the program.

Fortranis muchstricterthan Basic about
converting and mixing real and integer
numbers. Although Basic may allow you to
do such things as 1%= 1.0, X=3, %=X,
X=1%, Fortran requires that integers are
written without a decimal point, floating
point numbers are written with a decimal
point, and type conversion must be carried
out explicitly with the functions FLOAT to
convert from integer to floating point and
IFIX to convert from floating point to
integer. In legal equivalents of the above,
Basic statements would be |=1, X=3.0,
I=IFIX(X) and X=FLOAT(I).

Pascal is very rich in data types. As well
asthe builtindatatypes; Boolean (logical),
Integer, Real, and Char (character), it
allows you to define your own data types
and to define subtypes of any data type.

There is no distinction in Pascal be-
tween the forms of variable name allowed
for different types, but all variables
togetherwith theirtype mustbedeclaredin
the program before they are used. Pascal
checks that any value givento avariablein
the program is of the right type and gives
an error message if there is a mismatch,

Todefine anewtypeyouhavetodeclare
the name of the type and the values
allowed in it, for example:

TYPE DAY = (SUNDAY, MONDAY, ...,
SATURDAY)
MONTH = (JANUARY, FEBRU-
ARY, ..., DECEMBER)
We could then define variables TODAY
and THIS-MONTH by
VAR TODAY : DAY
THISMONTH : MONTH
and statements like TODAY := MONDAY
or THISMONTH := SEPTEMBER would
be allowed but statements like TODAY :=
2 or THISMONTH := CHRISTMAS would
be illegal. The advantage of this kind of
type checking is it makes program errors
and data input errors much easier to find.

Only the very simplest programs will just

useisolateditems of data. Usually thedata

is organised in some way, with a number of
items belonging together being treated as
agroup, and perhaps with groups of items
also being organised. As an example, the
data for a payroll program would have the
information for each employee, name,
salary, tax code, etc, grouped into an
employee record, and the employee
records perhaps grouped into department
files, and so on. Most high level program-
ming languages provide precisely defined
data structures, varying from language to
language, and chosenfor their suitability to
the special applications the language is
designed for.

The only data structure provided in
Basicisthe array. Anarrayis a collection of

items, all of the same type, which can be |
indexed, or referenced, by anumberorset |
of numbers. For example, if you wanted a |
program to deal with monthly sales figures |

you could use an array called SALES that
holds twelve numbers, and store the
January salestotalin SALES (1), February
sales total in SALES (2), etc. This kind of
arrayis called a vector or one-dimensional
array because only one number is needed
to access any item in the array. Most
Basics allow two, three, or more dimen-
sions in an array. If we extend the above
example and suppose we have the sales
figures from several departments for each
month, we can store the figures in a two
dimensional array, SALES (1,1) being
January sales for department 1, SALES
(2,1) being January sales for department
2, SALES (1,2) being February sales for
department 1, and so on.

Basic allows string arrays as well as
numeric arrays, and those versions of
Basic that have integer variables may also

allow integer arrays. The name of a string |
| inconvenient because we want to mix

array must have a dollar sign at the end,
and the data stored in the array must be
strings. For example, we could have an
array called M$ holding the names of the
months, so ME(1) is “JANUARY", etc.
Before you canuse an array you have to
specify its size with a DIM statement, soin
the sales example we would have to have
for the first case DIM SALES (12) and for
the second case, if there were 10

departments, DIM SALES (10,12). If you
omit the DIM statement most Basics will
give you an array of size 10 in each
dimension.

Arrays are provided in most high level
languages, suchas Algol, Fortran, Pascal.
etc, but there are languages that do not
have arrays provided, eg Forth and Lisp.

In FORTH everything is done with a data
structure called a stack. Dataitems canbe
put on to a stack and taken off again, and
the defining feature of a stack is that only
the last item added to the stack can be
retrieved, so the data comes back in
reverse order, A stackis sometimes called
by the longer name of Last In First Out list
or LIFO which is more descriptive. The
name stack comes from an analogy with a
stackof platesortraysinacafeteria, where
the easiest thing to do is add items to the
topofthe pile ortake themoff the top again.

Some languages allow a data structure
called a gueue which is similar to a stack,
but where items are put at one end and
taken off from the other.

In Lisp the fudamental data structure is
the list (Lisp is actually short for List
Processing). A list is made up of a
succession of items one afteranother, and
the items in a list may be lists or atoms. An
atom is the fundamental data type in Lisp,
divided into two sub-types: numeric atoms
which are numbers and lieral atoms which
are names or strings). The difference
between a one dimensional array and a list
is that with a one dimensional array you
can pick out an item just by giving its
position in the array, with a list you have
to read through from the beginning, item
byitem, untilyou cometothe one youwant.

In an array all the items have to have the
same data type. For many purposes this is

different data types in the same data
structure. Inthe payrollexample above, for
instance, we wantto groupthe employee’s
name (a string), salary (a number), and
other items which may be of different
types. A data structure like this is called a
record and some languages, Pascal and
COBOL in particular, provide extensive
facilities for defining records.

293 MICROPAEDIA

OBJECTIV.
DECISION

ast week, we looked at how you
might want to design an adventure
ame and established that you'll
probably want to have various rooms
within the adventure that your charac-
ter can visit, You can now start to think
aboutcoding a routine for placing a few
items in them. In the example, you'll
place each item in a room at random;
the restrictions being that an item can
only appear in one room and that there
can't be more than three items in a
given room.
a FOR | =1 TO OB:REM FOR ALL
OBJECTS
b R=RND (NR):REM SELECT A RAN-
DOM ROOM
¢ IF Ol{R,0)=3 THEN GQOTQ b :REM
ROOM FULL, CHOOSE ANOTHER
d OB(l)=0 :REM REMOVE FROM

MICROPAEDIA 294

LIST—FLAG AS "IN USE"

e QOI(R.O)=0I(R,O)+1: REM ADD ONE
TO NUMBER OF ITEMS IN ROOM
REM SUBSTITUTE MN=+1 FOROIF
YOU CAN'T USE CELLO

f O{R,OI{R.0))=I: PUT OBJECT NUM-
BER IN NEXT FREE CELL OF QI

g NEXT
This example deliberately doesn't use

linenumbers so you can putthese routines

where you want.

Line e needs explanation: initially this
location [OI(R,0)] holds the value zero
showing no objects present. Add one to
this both to update the number of items in
the room and to pointtothe nextfree cell—
iecell 1. Now putthe loopcounter (1) in here
inline g.

You can simplify line g to the 2
statements:

FR=0I(R,0) (or OI(R,MN+1) if you can't

use zero) then OI{R,FR) =1.

If you want to stick certain items in
special places you will have to draw up a
table. You then either user READ and
DATA items to perform the operation or
code each placement separately.

Now go back to the screen — and you'll
see there's a problem in assessing the
information in OI() to tell the user what's in
the room they're in. You can do this,
however, with a for/next loop, the upper
limit being the maximum number of items
in a location. If a given cell in Ol()is zero —
as it might be if something is removed —
then skipit. The numbers in Ol() refertothe
names in OB%() that were set up earlier to
hold the object names.

So, first inform the user where they are
and where they can go to (see above) and,
bearing in mind that the current location
number is IR, you might have:

a NI+0OI(IR,0):REM NUMBER OF OB-
JECTS — USE MN+1 IF NECES-
SARY, NOTO

b PRINT"YOU CAN SEE"
¢ IFNI=0THEN PRINT"NOTH-

ING™":GOTO)

d FORI=1TOMN

e [T=0Il(IR,l)
NUMBER

f IF IT=0 THEN GOTO: REM SKIP IF
NOTHING IN THAT CELL

g ITS=0BS(IT)

h PRINTITS

i NEXT
j RETURN

If you used OWV() to hold object
values, you could display the ‘price’ of an
item by adding OV=0WV(IT) fo line g and
amending line h to PRINT IT$;” (*;0V;")"
which would print an object's worth in
brackets after its name.

To take the program a step further, you
can allow the adventurer to move around
within the map by asking for a command.
This is the hardest area to deal with since

REM OBJECT

| the user can enter an infinite number of

statements and you re not in a position to
devise & program that understands a
universal language quite yet. If you just
limit yourself to PRINT"WHERE NEXT?",
you can accept numbers for moves,

If you've run the program so far you will
have noticed that when the screen display
shows where one can go to from a place,
the numbers given are 1, 2 or 3 ie not the
‘real’ numbers of the locations. These
numbers refer to the columns of the array
RM() so you can get the next IR from the
correct place very easily.

The first thing to do is to get the user's
choice. It's easier to do this with INKEY$ if
you get fed up with havingto press ENTER
or RETURN all the time. Although you
won'tin fact use all the code that follows, it
allows you to test out the map, placing and
naming objects and so on.

a NP$=INKEYS$: IF NP$=""

GOTO a)

b NP=VAL(NPS): IF NP<1 OR NP=3

THENGOTO a)

THEN

i
z
i
i
g

—

¢ IR=RM(IR,NF): REM UP DATE IR
FROM CELL NP OF CURRENT ROW
You can now provide a clear screen and
show the user where he is. But that's by no
means the end of the matter. What
happens if the way is barred je a negative
number is encountered in RM(IR,NP)?
The program will crash because you can't
access arrays using negative subscripts.
This requires some elaboration of the
movement coding given above.
¢ LET TV+RM(IR.NP): REM TEST
VALUE
d IF TV=7 THEN PRINT “NO SUCH
EXIT:GOTO a)
e IF TV<0 THEN PRINT “THE WAY IS
BARRED":GOTO a)
f IR=TV: REM NOW IN A DIFFERENT
LOCATION
Betfore moving on to do some analysis of
the users’ commands, take a quick look at
the routines you'll need to allow the user
who wants to remove items or leave them
in the current location. As mentioned
earlier, you'll need an array to hold the
reference number of times the user has
with them:— DIM HWI(5) for example.
Once again you'll have to use the first
element of this array (HW(0)) to hold the
number of times they have. It's not
essential to do this but if you can't use
column zero you'll have to work out a way
round it.
Once you've checked that what the

player wants to take away really is there

and that the item is currently in colurmn CN

of OI), you must put the object reference
number into the next free cell in HW().

Then add one to the number of items our

intrepid adventurer has, remove the item

from OI{CN) by putting a zero in it and
finally subtract 1 from OI{IR,0) to keep the
number of times in the room up to date.

a IF HW{0)=5 THEN PRINT“YOU'LL
HAVE TO LEAVE SOMETHING
FIRST": RETURN

b REM CAN ONLY CARRY UP TO 5
ITEMS

¢ IT=0I(IR,CN): REM NO. OF OBJECT
TOTAKE

d HW(0)=HWI(0)+1: REM ADD ONE TO
NUMBER OF TIMES BEING CARRIED

e HW{HWI(0))=IT: REM PUT ITEM NO.
IN NEXT FREE CELL OF HW()

f OI{IR,CN)=0:REMDROPITEM FROM
ROOM

g Ol{IR,0)=0I(IR,0) — 1: REM DECRE-
MENT NO. OBJECTS IN ROOM

h RETURN
You should be able to see how this

would be modified to do the opposite /e far

the user to leave something in the room.
Dealing with the user'sinputisone ofthe
hardest tasks facing any would-be adven-
ture programmer, This example sticks to
the simplest case where the user enters
either a number (as used above to check
routines for room linkages elc) or two

~VERBS-~

~NOUNS-~

TAKE

SPOON

LOOK

DRAGON

GRAB

PRINCESS

SAVE

GOLD

KILL

WITCH

ATTACK

KNIFE

the noun it acts on.

In a simple adventure game, the basis for giving commands is a verb,
then a noun. This usually takes the form of something like “Get,
Sword” or “Kill, Dwarf” or some other equally violent combination of
words. The commands are invariably given with the verb first and then

PULL OUT & KEEP

words; a verb and a noun eg “TAKE

SPOON.

To begin with you must check if the
INPUT is a number in the range 1-3 as
above for movement between rooms.

Then you need to split the Input (if it's not
anumber}, taking the left-most characters
up to the first space as a verb. The
right-hand characters will be dealt with
similarly for nouns. There are two ways of
doing this, one for the unfortunates who
lack INSTR; the other is more elegant.
Before we set out the code, however, we
must get some verbs into the program.

Just as before, this is done most
efficiently in an array using READ and
DATA statements to fill it:

NV=10: REM NUMBER OF VERES

DIM VBS(NV)

DATA TAKE, LEAVE, THROW, DROP,
GIVE, USE . . j

FOR |=1TO NV: READ VBS(l): NEXT
Now the routine. Unfortunately you'll have
to drop the single key press for movement
used earlier since we are dealing with
more complex entries. This routine is
called as a GOSUB, as are most of the
modules presented here

1000 PRINT "WHAT NEXT": INPUT
WDS:IT=0:VN=:0OB3="":VYBg=""

1010 IF LEN WD$>1 THEN GOTO 1070:
REM NOT A VALID NUMBER CHECK
FOR VERBS ETC.

1020 NP=VAL(WD$)

1030 IF NP<1 OR NP=3 THEN PRINT
“INVALID ENTRY, TRY AGAIN"
GOTO 1000

1040 TV=BM{IB.NP): IF TV=0 THEN
PRINT“NOEXITTHERE ™ GOTO 1000

1050 IF TV<0 THEN PRINT * THE WAY
IS BARRED": GOTO 1000

1060 IR=ABS(TV):RETURN-REM
MOVED TO NEW LOCATION

1070 SP$=CHR§(32): REM A SPACE

1080 P=INSTR(1, WD$,SFP%): REM P
GIVES POSITION OF SPACE IN
INPUT

1090 IFP=0THEN GOTO 1210: REMNO
SPACE-NOT A VALID COMMAND

1100 VBS$=LEFTs{WDsP-1); REM
MIGHT BE VERB

1110 IT$=RIGHTS(WD3.LEN(WD$)-P):
REM MIGHT BE OBJECT

1120 VN=0: REM VERE NUMBER

1130 FOR I1=1 TO NV: IF VB$=VBS(l)
THEN WN=1: REM FOUND A VERB

1140 NEXT

1150 IF VN=0 THEN GOTO 1210: REM
NOT A VALID VERB

1160 IT=0: REM OBJECT NUMBER

1170 FOR I=1 TO OB: IF IT$=0B3(l)
THENIT=1:REMFOUND AN OBJECT

1180 NEXT

1190 IF IT=0 THEN GOTO 1210: REM
NOT A VALID OBJECT

1200RETURN:REMALLOK—BACKTO

MAIN PROGRAM
1210 PRINT “I DONT UNDERSTAND™:

GOTO 1000: REM GENERAL PUR-

POSE ROUTINE
This routine prompts the user for an entry
If anumber between 1 and 3is INPUT then

295 MICROPAEDIA

this is taken as a move, as earlier. If the
INPUT doesn't have a space in it then
IDON'T UNDERSTAND isdisplayed. And

it will appear whenever the user enters
verbs or objects that are in the
program's vocabulary. When the user
makes a ‘valid’ eniry. the routine RE-
TURNS with VN as the number of the verb
ie its position in VBE(); VBS is the verb
itself. Similarly, IT points to the location of
ITS (theiten) inOB3(). Obviously once the
routine has returned you will need to pass
these numbers and strings to yet another
subroutine to handle the different effects of
each verb or check whether actions are
allowed and s0 on.

If you don't have INSTR, you will have to
replace line 1080 with the following routine
to find 2 space in a string:

¥
(=]
jor3

-

a P=0
b 1=1
¢ IF MID§(WDS,1,1)=SP% THEN
P=1:GOTOf
d I=1+1

e IF 1< LEN{WDS$) THEN GOTO¢)
f .. .RESTOF ROUTINE. ..

A glance at figure 3 will show where
you are upto. Allthatremainsistohave the
program act on the INPUT (section d)
Figure 3
a INITIALISATION

b GOSUB DISPLAY INFORMATION

¢ GOSUB GET AND ANALYSE
INPUT

d (ACT ON INPUT)

e GOTOb

In fact, d turns out to be quite easy. All
you require is an ON VN GOSUB . . .
statement to pass control to the appropri-
ate routine dealing with each verb. In this
example it might take the form ON VN
GOSUB 2000, 3000, 4000, 5000
where you find at line 2000 a routine to
handle 'taking’, at line 3000 a section to
handle 'leaving’ an object and so on.

There are still a few loose ends to tie up.
First is the question of determining the
precise whereabouts in HW() of an item.
You'll need to do this when the user wants
foleave something behind, and you'lineed
to do something similar to establish
whethierornotanitemistrulyin alocationif
the playerwantstotakeit. Thiswasseenin
the analysis of INPUT, where VBS() and
DBS() are searched forthe user's words. If
the user has entered “TAKE FORK", and
the coding has been done correctly, after
the input analysis VN should be 1 and IT
sould be 2. The routine at line 2000 will
have to check first that the number 2
appearsinrow IR of Ol{). This can be done
as follows:
a PT=0: REM POINTER TO OBJECT

LOCATION IN OI()
b 1=1. REM ANOTHER POINTER —TO

CELLS OF ROW IR IN OI{)
2 IF O(IR)=IT THEN PT=I: GOTO h:

REM FOUND ITEM AT PT

d I=I+1
e IFI<==MNTHENGOTO¢
f PRINT “BUT THERE ISNT
A"ITS,"HERE"

MICROPAEDIA 296

g RETURN
h REMITEMISACELLPTOFROWIR
i IF HW(0)=5 THEN PRINT
“YOU'LL HAVE TO LEAVE SOME-
THING”: RETURN
j and soon.

What is now a problem is the adventurer
leaving something not at the 'end’ of HW(}.
This means you'llhave to add the following
lines to the routine above to find the next
free location in HW(), which will be shown
by a zero:

a NF=0: REM NEXT FREE CELL
b I=1
¢ IFHW(l)=0 THEN NF=I: GOTQ e
d [+1+1:IFI<6 THEN GOTO ¢
e REM NF POINTS TO AFREE
LOCATION IN HW()
f HW(NF)=IT: REM PUT ITEM IN HW —

IEUSER TAKESIT

g HW(0)=HW{(0)+1: REM USER NOW

HAS AN EXTRA ITEM
h OI(IR,PT)+0: REM REMOVE ITEM
FROM LOCATION
i Ol{IR,0)=0I{IR,0)—1: REM ONE LESS
ITEM IN LOCATION
i RETURN
Ofcourse aroutinehastobe addedtothe
Screen display to let the user know what
they're carrying.
The block diagram of the program now
looks like this:
a INITIALISATION
b GOSUB DISPLAY
¢ GOSUB GET AND ANALYSE
INPUT
d ONVNGOSUB 2000, 3000, 4000,
e GOTOb
Youshould nowbe abletodraw allthese
points together and recode the routines to
suit your own ideas. If you've grasped the
technigues, write the ultimate guest?

This is the Valhalla adventure game for the Spectrum — which
represents “state-of-the-art” adventure gaming that combines both
graphics and text to incorporate some “action” in the game.

Design: Nigel Wingrove

software and peripherals.

Micropaedia Editor: Geoi Wheelwright

NEXT WEEK

\e present a special one-part Micropaedia all about the life of computers and the small screen:
Monitors. We'll tell you the difference between the three major types of computer niionitors and
take you inside the most popular type of monitor on the market: the ordinary home TV.

And in two weeks we begin a massive three-part buyer's guide to computer hardware,

Contributors: Ted Ball, David Janda and Bryan Skinner
Illustrators: Virginia Armstrong and John Hallett

