e

An Argus Specialist Publication

your own games

Advanced course
forelegant .
programming |




~ An Argus Specialist Publication

‘compatible with both 16K and
 Over 80K @f progmm* s:mplv L




CONTENTS

Editorial & Advertisement Office
145 Charing Cross Road, London WC2H OEE
Telephone: 01-437 1002 Telex: 8811896

-
-
L

24 40 e Lo SN SRR SRR IO e me K |

Beginning BASIC — 1..............5
Qur series on teaching BASIC starts
. with algorithms and flow charts.

~ BeginningBasic— 2 ...............8
. We take a look at some of the more
- common BASIC statements.

. BeginningBASIC— 8 ............. 11
~ Conditional branching instructions are

~ a vital part of BASIC.

-j Beginning BASIC — 4 ............. 13
. PRINT instructions and more.

- Beginning BASIC— 5 ............. 16
INPUT and READ statements
explained.

Beginning BASIC— 6 ............. 20
~ Match your wits against the computer
with the game of NIM.

Beginning BASIC— 7 ........ B
Find the winning strategy for NIM.

' BeginningBASIC — 8 ............. 28
. An introduction to Extended BASIC.

. BeginningBASIC— 9 ............. 31
. Don't let your computer STRING you
- along.

= | Boginning BASIC— 10............ 34
L é_‘?ﬂf@%@%fgggﬁﬁaﬁ% ﬁi‘i Fathom the mysteries of hexadecimals.
e ... | BeginningBASIC—11 ............ 37
Sons Lid, (Reat.  We take a look at binary searches.
| BeginningBASIC— 12 ............ 40

. The concluding article in the series
 looks at sorting.

BB Srler .. . onrodnenn el

~ Qutwit the malevolent robots on your
- Genie or TRS-80.

' Sardaukar Assault ......... o )
~ Save the universe from the Sardaukar
. fleet with your Atari.

& .

_%
%ﬁ%‘

PuzzleSquare .........c..covnnns 50
A general BASIC game for rearranging
sguares.

DEPDBNLL! . rv v siibis in s o oisii D
A classic snake-chasing game for the
BBC Micro.

Interpreters. i ovvis v siviliveesin 55.
How is BASIC understood by your
micro?

Gempilerg, ) ol e 58
We look at a commercial compiler.

Elegant Programming — 1......... 63
Now that you've covered the
fundamentals of BASIC, we take a
more advanced look at the language.
We start here with the difference
between programming and coding.

Elegant Programming — 2......... 67
We introduce the idea of structured
programming.

Elegant Programming — 3.........71
It's bug-hunt time as we lock at
crashproofing your programs.

Elegant Programming — 4......... 75
We now progress into the world of
uncertainty and randomness.

Elegant Programming — 5......... 79
Writing structured programs requires
the use of correct data structures.

Elegant Programming — 6.........83
Dala types are discussed along with

the methods that can be used to
structure them.

Elegant Programming — 7....... 87
Step into the world of graphics — it's
really moving stuff!

Elegant Programming — 8......... 91
Sorting and searching lists of data
made a bit easier.

Elegant Programming — 9.........96
For our finale we look at a complete
method of tackling problems in
programming

AL
-

.

o

.M._:
%ﬁg

G

e
L

Credits: Cur grateful thanks to the following individuals for their assistance in the
production of this issue. Jordan Bennet, Paul, Bill, Nigel, William, Gary, Bov, Mark,
Adrian, Tom and others almost too numerous to mention.




(as well as the odd bit of
maths, science, etc) the range
available extended from
French, English and German to
that quaintest of tongues, Latin.
For the modern generation at
school the range has been
extended even further to
include such delights as
BASIC, FORTH and LOGO.

There is no point in owning
a microcomputer if you do not
understand the language that it
uses. [ say no point, but [ am of
course assuming that vou will
want to do more with your
micro than merely buy a
commercial tape or disc, plug
in and then walk away after
playing the game or collecting
some results. | assume that
you're interested in how the
micro does what it does and that
you would like to influence that,
or direct it completely.

BASIC is the most common
language that micros use,

hen I was at school trying
me hand at languages

PREFACE

although -it does vary
depending on the micro
(remember that one micro's
BASIC is another micro’s error
message). Many people are
frightened by the jargon that so
often accompanies literature on
microcomputing and we have
thus compiled this issue of
Personal Software in order lo
help explain what BASIC is,
what it can do and how you can
use it.

The series '‘Beginning
BASIC’ introduces BASIC to
the absolute novice, explaining
some of the more common
commands and showing how the
language can be built up.
‘Elegant Programming’ goes
much further and delves into
the realms of structured
programming and some more
advanced ways of using BASIC.

We have also included
articles on interpreters and
compilers to help clear some of
the mystery surrounding these
‘buzz words'. As examples of

what you can do once you've
learned some of the 'basics’
(groan!) we have brought
together some of the games in
BASIC that have been
published in the magazine
Computing Today and Personal !
Computing Today. In this way i
you should be able to look at ;
the programs in a new light — {
try to figure out how and why
the games were written in the
way they were, and see if you
could alter them to include
different routines, make them
play faster etc.

We have tried to ensure that
the programs are error free, so
if you find you are having
problems with any of them,
please check them again
thoroughly or get a friend to
help. If as a last resort you can
still not get the game playing
properly you may write to
Personal Software with a SAE.
Please note however that we can
not answer any telephone
enguiries.

4

Personal Software Winter '83

T T T e A e e e T T e e e T e



when watching a computer

in action to subconsciously
endow the machine with
intelligence — under no
circumstances is this the case.

Regardless of whether you
are programming in the
simplest of machine codes or
the most sophisticated of high
level languages, there is no way
that the computer can do
anything other than what it has
been programmed to do, and
the signs of intelligence that we
seem to detect are present only
because of the skill of the
programmer. In fact,
programming today is
becoming quite a major
business area, simply because
of the amount of skill invelved.
As with every other trade,
however, there are various tools
which are at the disposal of the
programmer to help in his work
— one of the most important of
these being the flow chart.

It does not matter what
language we program in, be it
machine code or BASIC, the
technique of drawing and using
flow charts is always the same.

We start with a problem,
find an algorithm (finding an
algorithm for a problem means
finding a method of giving a
complete and correct solution to
the problem in a finite number
of steps) to solve the problemn,
draw the flow chart and then
write the program from the flow
chart. In order that one
programmer can understand
another’'s work, certain
conventions are adopted when
d)rawing flow charts (see Fig.

1).

As a first example of
algorithm and flow chart
drawing, we will take the case
of a young person applying for
membership of a Social Club,
wishing to discover what fees
are payable as an annual
subscription.

Consider the following —

It, is, unfortunately, very easy

ALGORITHMS AND FLOW CHARTS
PR as  Setie, o Vo v I |

“The annual subscription for
a man is £10, unless he is under
the age of 25, when the
subscription shall be halved.
The annual subscription for a
woman shall be £8, unless she is
under 25, when the subscription
shall be halved. Married women
applying for membership shall
be charged half the amount

payable by a single woman over
20."

Fig. 1. Flowcharting symbols.

Beginning point of algorithm.

-

End point of algorithm.

ac | Used to include algebraic or
logical processes.

1y

£ Decision box used to

introduce a multi-way
branch into a flow chart.

Denotes input from kevboard
or other input
peripheral.

Denotes output to teletype,
PRINTC VDU or other
output peripheral.

Cennectors used where two or
more lines meet.

> ~ Used in complex flow charts
where box interconnection
lines would ctherwise need
to cross.

Used to denotle the fact that the
program branches to a sub-routine

at this point {in this case,
labelled B).

{14

\

In this instance, it is
unnecessary to find an
algorithm to solve the problem
as we are only going to use a
flow chart as a means of
simplifying the wealth of
information given above (see
Fig. 2.

So, for example, if you are a
married female, it takes only a
moment's glance at Fig. 2to
answer the questions "Are you a
man?’ (no) and “are you
married?” (yes) to arrive at the
knowledge that your annual

=
Persconal Software Winter '83

Here is the first part
of our software
teaching series.

e e e S T R I i T i )
subscription shall be £4.

You can see from this
example how the flow chart
helps to clarify and simplify an
otherwise apparently
complicated problem.

We will now go on to
consider the generation of an
algorithm, and to see how a
flow chart can be drawn once
an algorithm has been obtained.
As an example, we will look at
how it might be possible to get
a computer to generate a
representation of, and randomly
shuifle, a pack of cards.

The first thing we need to do
is to decide what would be an
acceptable representation of the
pack. We could reasonably
consider the problem solved if
the computer could be made to
generate a list of the numbers 1
to 52 in a random order, so that
each number from 1 to 52
would represent a different
card.

The first method that springs
to mind is to get the computer
to open a set of 52 storage
locations. The first random
number between 1 and 52 can
then be generated and placed
in storage location number 1

U BSL‘R[_I PTION
B

SUBSCRIPTION y
£10

RE%\VES ik

MARRIED T4

O

@%ﬂ. SUBSCRIPTION) 3
57 £

NO

SUBSCRIPTION .
£4

Fig. 2. Fee fie foe or fum?

| 8TOP )




BEGINNING BASIC — 1

(the method used to generate
the random numbers is
unimportant as far as the flow
chart is concerned). A second
random number is then
generated and placed in storage
location number 2, a third
number in storage location 3,
and so on until all 52 storage
locations have been filled.

START

A1
GEMERATE
RANDOM

NUMBER R
{BETWEEN 14 52|

|

PUT R
IN STORAGE
LOCATION
A

~o

YES

Fig. 3. Take a card,
any card...

ADD1TOA

STOP

Fig. 3 shows a flow chart to
describe this algorithm. That
appeared quite simple, didn't
it? But if we give the problem
some further consideration, you
will see it is possible, since the
numbers we are generating are
random, to have generated two
numbers which are the same.
Indeed, this is most likely. This
would mean that we would have
al least two cards the same
within one pack, and so our
algorithm must be considered
incomplete (though on the right
track). To make the algorithm
work correctly, we will have to
include some form of check to
ensure that when a number is
generated which has already
been used, it is not included in
the list (see Fig. 4 for a flow
chart which takes this point into
acount). If you look through
Fig. 4, you will see that a
number is generated and then a
check is made through all the
storage locations that have
already been filled to see if the
number we have just generated
has occurred before. If it has,
then the number is ignored and
a new random number is
genecrated and checked; if it has
not, then it is inserted into the
next empty storage location. We

then jump back and generate
another random number and
the process continues until all
52 storage locations have been
filled.

This algorithm and
subsequent flow chart would
appear to be quite sufficient to
solve the problem. But let us
now consider this flow chart
converted into a program and
being run on a computer,
Remember, every operation the
computer executes takes some
finite time to perform, albeit
small, so that the more
operations that need to be
performed, the longer the
program will take to run. This
may appear to have been an
obvious statement, but let us
take a look now at our
algorithm, bearing this point in
mind. When we start off, with
all storage locations empty, the
first number we generate can be
guaranteed not to have
occurred before (though
looking at the flow chart you
will see that the computer does
not know this) and can therefore
be inserted straight into the first

Fig. 4. The new
routine.

storage location.

s

GENERATE

RANDOM
NUMEER R
IBETWEEN 1& 621

ADDITOR

PUTR IN
LOCATION
A

15 A - 527

ADDI1TO A Ll = STOP

As the program proceeds,
however, and more storage
locations filled, it becomes more
and more likely that the
generated random number will,
after some considerable
checking, have to be
abandoned and re-generated,

until, when there are only two
or three locations left to fill, we
may have to generate and
extensively check many tens of
numbers to find one of the few
remaining acceptable numbers.
[ the computer was made to
print out each number as it was
generated, we would notice a
longer and longer time interval
elapsing between the generation
of consecutive numbers.
Problems like this occur
frequently when converting
algorithms, where a solution
which initially appeared to be
satisfactory turns out to have
some practical difficulties
associated with it on closer
inspection.

Fig. 5. The
British Shuffle?

R

PUT A IN
STORAGE ADD1TO A
LOCATION A

r

GENERATE
HANDOM

NUMBER A

{BETWEEN 1 & 52}

ADD1TOB

EXCHANGE

CONTENTS
OF STORAGE
LOCATIONS
B&R

sTOP

Figure 5 shows the flow
chart of an algorithm designed
to overcome the previous
problem.

It starts by putting 1 in
storage locations 1; 2 in location
2; 31in location 3; and so on
unti] all 52 locations are filled,
which in effect lays the cards
out in sequence through the
pack. It then takes the first
location and exchanges its
contents with the contents of
another randomly chosen
location, then the contents of
location 2 are exchanged with
the contents of a second
random!ly chosen location; the
contents of location 3 are then
exchanged with the contents of

6

Personal Software Winter ‘83

_—



ALGORITHMS AND FLOW CHARTS

a third randomly chosen
location, and so on until the
contents of all 52 storage
locations have been randomly
exchanged in this manner. You
may be a little sceptical as to
whether the pack of cards thus
generated was truly random.
Experiments have, however,
convinced us that it is. As you
can see, there is never any need
to generate more than 52
random numbers, because
whatever the number generated
turns out to be, we are always
garanteed to use it, as it does
not matter whether it has been
generated before or not.
Converting both of these flow
charts into programs and
running them on a computer,
we discovered that this latter
algorithm ran approximately ten
times as fast, on average, as the
first algorithm, so that there is a
great saving in computer time
used.

Looking through the
algorithms and flow charts, you
should begin to see that every

operation a computer performs
has to be very carefully planned
and mapped out if a worthwhile
program is to result. Although
able to operate at extremely
high speeds, the computer is
merely manipulating pulses of
electrical current according to a
set of rules which the
programmer lays down which,
by careful manipulation and .

interpretation, can be made to
have meaning.

In the next article, we will
go on to consider the high-level
programming language,
BASIC, but do not forget the
above routines, for when we
have learned sufficient BASIC,
we will be returning to look at
them again and see how they
can be implemented.

Would you like to pick a card?

YOUR MICRO COULD TEACH YOU

ATHING OR TWO ABOUT THE FRENCH...
.OR THEGERMANS...OR THE SPANISH

A home computeris an expensive toy; and, if playing
games is allyou do with it,atoy is all it is.

Now, using the New Personal Computer
Superlearning System (PCSS) you can have fun with
your micro and learn something at the same time.

PCSS language courses comprise 12 lessons on
3 audio cassettes used in conjunction with a fourth
software cassette, to add a new dimension to learning.

Initially the software package enables you to see
the words you're learning; then, as your vocabulary

the 12 audio lessons and the function of the interactive
software. Additionally the booklet expands on the
broader benefits of the PCSS method.

At only £29.95 per pack PCSS costs less than other
home language courses yet it offers much more in
terms of education and enjoyment.

Complete the coupon below and try PCSS for
yourself —you’ll be amazed what your micro can
teach you.

develops, it will test your skill in your new language.
Anyone can learn this way —no previous knowledge
of the language is required. The unique PCSS method
develops your overall learning and memory skillsin a I
way thats both relaxing and enjoyable.
Each PCSS language pack —French, German or
Spanish —contains a comprehensive booklet detailing

COMPUTERISED EDUCATION SYSTEMS

(PCSS software is compatible with the ZX81 (16K}, ZX Spectrum BBC Micro,
Acorn Elektron Micros.)
Each pack comes with a full money back guarantee if not completely satisfied.

Personal Software Winter '83

I Machine Type:_____
I T I S G I R T S S —

Send your cheque or Postal Order for £29.95 made payable to:
MDA Modon Associates Limited, 561 Upper Richmond Road West,
London SW14 7ED. I

or, alternatively telephone Teledata 01 200 0200 and quote your Visa,
Diners Club, Access or American Express number.

Tick which Audio/software package you require. (Prices include VAT,

Add £1.45 for postage and packing on each order.) . I
Please supply the following Audio/software Packages

FRENCH [

GERMAN [ SPANISH [ |

MName:__

Address:

Memory Size:_




Phil Cornes

BEGINNING

BASIC -2

BASIC in service at

present, depending upon
which machine you are
programming for, and so we
will make a start by looking at
those parts of the BASIC
language which are more or
less universal.

The first thing to do is to
define a few terms which we will
be using throughout the rest of
the series.

VARIABLE

There are several dialects of

A variable is a character (or
sometimes group of characters)
to which a numerical value may
be assigned. The most common
variable names and those which
are used by most machines are
the 26 single letters of the
alphabet (A to 7). Other
examples of variable names will
be pointed out as we come
across them.

ARITHMETIC
OPERATOR

There are five common
arithmetic operators in BASIC.

='— to be replaced by the
value of (read as 'equals’)
equality operator

'+’ — addition operator

'—' — subtraction operator
"*' — multiplication operator
/" — division cperator

Some machines have a sixth

arithmetic operator ' 4’ which
means raised to the power of’
(may also be written as ' * *').

COMPARISON
OPERATORS

There are six common
comparison operators.

‘="' — less than or equal to

‘<> — not equal to (can also
be '#)

'>="' — greater than or equal

to.
LOGICAL OPERATORS

There are two common logical
operators.

AND — logical AND (may be
written as *)

OR — logical OR (may be
written as +)

Some machines also have a
third logical operator — logical
NOT (may be written as '~ or
as 'NOT").

COMMAND

'Command’ is the name given to
keywords in BASIC which are
used outside programs such as
RUN, LIST, NEW etc. We will
look at these in more detail
later.

STATEMENT

The single instructions which go
towards making up a program
in BASIC are each called
statements.

EXPRESSION

An expression is a collection of
variables and/or numbers joined
together by one or more
arithmetic operators (so that
3*X+4 A—2and
A*(A+B)/(2—C) are all
examples of expressions).

EQUATION

An equation is formed when an
expression is assigned to a
variable (so that Y=3* x +4,
B=A—2and
Q=A*(A+B)/(2—C) are all

—

We take a look at some
of the more common
BASIC statements.

e e e S ey Sy e oy T e |
this time. It can be described as
follows—

If we let X take a value of 2
then what value do you think
will be assigned to Y in the
following eguation:

Y=3+X*X.

If you thought the answer
was anything other than 7 or 10,
then you want to brush up on
your maths. If you thought the
answer was 7 then you are
probably wondering where 10
came from and vice-versa. It all
depends on whether you used a
calculator or a computer to
work it out. If you used a
calculator then you would have
worked it out like this—

Y=(3+X)*Y or ¥Y=(3+2) %2

executing the operators as they
occur and getting an answer of
10.

If, on the other hand, you
used a computer, then you
would have worked it out like
this—

Y=3+X*X) or Y=3+(2%2)

receiving an answer of 7. This
may seem strange, but when
computers do calculations they
deal with the arithmetic
operators in a certain order.
First the computer scans the
line left to right and performs
all the multiplications and
divisions as it encounters them:
it then goes through again
performing all the additions and
subtractions that are left. The
only way to alter the order of
operations is to insert brackets
where appropriate because the
computer will work out the
value of brackets before it does
anything else and if there is
more than one set of brackets
one within another, it will work
out the innermost brackets first.

= — equals examples of equations). aig
= — less than There is one other thing So that, for example
g — greater than which should be discussed at 3+(2*%(3+1%3) )/(2+1)
_‘r-—|

[42]

Personal Software Winter '83



has a value of 7 by the following
reasoning.

The innermost brackets
contain 3+ 1 *3 which gives
6:3+ (1 *3): moving out to the
outermost brackets we multiply
this by 2 to give 12. This is one
partial solution. We then move
on to the last pair of brackets
containing 2+ 1 and evaluate
this as 3. That takes care of all
the brackets and gives an
expression which looks like
this—

A L

Division now comes before
addition and this reduces to—

3+(12/3) or 3+4

then the addition is done to give
a final answer of 7.

Try evaluating the following
expression .

7+ ((7*8)/2(((12+ 8) *2)/20)

When you have done this, try
taking out all the unnecessary
brackets (parentheses) without
rearranging the order of the
numbers (constants) and
arithmetic operators so that the
resulting expression gives the
same result. The answers are
given later as Fig. ©.

Certain facilities are
required from any high level
language, BASIC being no
exception.

1. There must be a way of
assigning values to any
variables used in a program,;

2. A method of outputting
answers is also a must;

3. The language must have
branching capabilities and in
particular conditional
branching must be provided;

4. Other facilities such as
subroutines, string handling
and some pre-defined
functions are also useful and
are usually provided.

LET

In BASIC the easiest way of
defining a variable is to use a
LET statement.

10 LET X=3

2 LET Y—& 2
20 LET =T+

There are several things that
you should notice here. Firstly,
every instruction is preceded by
a line number.

The computer, in executing
a program in BASIC, does so in
seqguential line number order,
starting with the lowest
numbered line and going
through to the highest
numbered line except where a
branching instruction is
encountered in which case the
next line number to be executed
forms part of the instruction.

Secondly, the '=" sign in
these instructions does not mean
‘equals’ in the normal sense of
the word, but means 'to be
replaced by the value of'. So
that line 20, when translated
into English, means something
like this—

LET whatever exists now in
the memory locations
representing the variable Y ‘be
replaced by the value of’
whatever exists now in the
memory locations representing
the variable X, minus 2.

BASIC STATEMENTS

space for the variable T had a
value of 2 before the execution
of line 30, it would have a value
of 3 after its execution. Got it?
If not, refer back to the tongue
twister, substituting the
variables and constants from
line 30 into line 20 where
appropriate and read it through
a couple of times until you have
mastered this concept, because
it is very important. You should
now be able to see that where
the following flow chart box
appears in Fig. 3.

ADD 1to A

this could now be replaced by a

box containing the following
BASIC statement—

| LETA=A+1 |

It is reasonable to point out at
this time that on most machines
which can run BASIC the LET
statement is optional so—

I0LET A=A+
and

I0A=A+1

This may seem a bit of a
tongue twister (it would
normally be read as "LET Y
eqgual X minus 2') and has only
been presented in this form to
make line 30 a little easier to
understand.

LETT=T+1
What does it mean?

Well, briefly, if the memory

You can count on your micro being good at maths!

are equally valid statements so
that where, in the last article,
we encountered the following—

A=l

we were (apart from line
numbers) already considering
BASIC statements.

GOTO

The simplest form of branching P

Personal Software Winter '83

9



BEGINNING BASIC — 2

BASIC STATEMENTS

instruction in BASIC is the
GOTO statement, an example
of its use is seen below—

10LET Y=1

20 LET A(Y)=Y *Y
JOLET Y=Y%+1
40 GOTO 20

The format of the GOTO
statement is quite
straightforward. The keyword
GOTO is followed by the
number of the line to which you
wish control of the program to
be transferred. Therefore, this
program segment would be
executed in the following
order—

10 20 30 40 20 30 40 20 etc

As well as the GOTO statement,
a new type of variable has been
introduced in this program
segment; the single subscript
variable (can be known as a one
dimensional array) represented
here by the variable name A(Y).
In Tiny BASIC as well as
having single letters to
represent variables (A, B, K, Y
etc) you can also use variables
of the following format—

A(l), A(2), A(10), A(50) etc

where A(l) is as different from
A(2) as X is from Y. (The ETI
Triton uses the @ symbol for its
one single subscript variable,
the TRS-80 Level [ uses A).

Can we think of a use for
these new variables? Well, if we
think back to last month's card
shuffling routines, we came
across the following—

Put Random Number
R In Storage
Location A

where A took values from 1 to
52,

It we say that A(1) is storage
location 1 and A(2) is storage
location 2 or, in more general
terms, A(A) is storage location
A, then we have a '
representation for what was last
time a set of 52 storage
locations. So it is now obvious
that the above flow chart box
could be replaced by the
following—

A(A)=R

Right! Let's go back to the
program segment illustrating
the GOTO statement.

LINE START

a

20 AlY] sy

<
b <
= o ¥

20

40

This is its flow chart. We can
see flow chart boxes
representing lines 10, 20 and
30, but there is no box to
represent the GOTO statement.
It is merely represented by the
box interconnection line which
branches back to the connector
between lines 10 and 20. While
we are still on the subject, let's
see what this program segment
is actually doing (mentally
executing a program without
the aid of a computer is called
DRY RUNNING a program).

Line 10 is the first line to be
executed and all it is doing is
assigning an initial value to the
variable Y (in this case the
value is 1), Now comes the line
that might cause a bit of a
problem.

20 LET A(Y)=Y *Y

If we think about the current
value of the variable Y and
substitute this value in the
appropriate places, then what
we end up with should make a
lot more sense.

20LET A(l)=1*]
All this says is "Write 1{1*1)

into the memory space
representing the variable 4A(1).

Now we pass on to line 30,
which we have met previously,
and this line adds 1 to the
memory locations representing
the variable Y; so Y now has the
value 2.

Line 40 is the GOTO
statement which tells us that the
next line to be executed is line
20 again, and so we go back
and re-write.

20 LET A(Y)=Y *Y
as
20 LET A(2)=2%*2

using the new value of Y so that
we write 4(2*2) into the
memory space representing the
variable A(2). This process is
now repeated for variables A(3)
A(4) A(5) and so on.
Unfortunately, we have
included no method of stopping
the program or of branching
out of this loop as we have not
vet covered such things, but
bear with us and all will be
revealed.

You may have noticed from
the explanation so far given that
this program segment is
calculating the points for a
graph of y=x2 and if we could
look into the memory spaces
representing the values of the
variable A(Y) we would see the
following—

Bl 1
A(2)... 4
A(3)... 9

One of the unfortunate points
about this program is that it is
an infinite loop (ie it will go on
for ever with increasing values
of Y) so we will now go on to
look at a method of controlling
the number of times we go
round the loop.

10

Personal Software Winter '83

-__.*—_ﬁ-

e



Phil Cornes

he first BASIC's really

T powerful condltlonal
branching statements is IF

THEN (we look at the others
below) that go into the make-up
of BASIC and we will add an IF
THEN statement to the previous
program segments to see what it
can do.

Consider the following—

START

This is the same flow chart that
we saw earlier except that now
there is a two-way branch
added which is made
dependent upon the answer to
the question IS Y=75'.

Before we go on to look at
the program derived from this
flow chart, there is one other
thing we need to consider. You

will notice from the flowchart
that IF Y is 5 when the decision
box asks the question THEN we
branch to a stop box. The
statement in BASIC which
causes the execution of a
program to terminate is the END
statement and you will find one
of these in the program.

There is no statement in
BASIC which corresponds to
the start box on the flow chart
(that is just presented for our
information) and so the first box
we consider contains Y= 1. The
statement needed to convey this
to the computer is—

LET ¥}

but remember that every
statement in a program must
have a line number, and so we

CONDITIONAL BRANCHING STATEMENTS
s s o A e e

BEGINNING
BASIC -3

have—
IOLETY =1

We now move on to the next
box

A(Y)=Y *Y and produce the
statement—
20 LET AX)=Y %Y

The third box is the new one
and we write—

30 IF Y=5THEN

THEN what? Well, we have to
branch to the line number
which contains the END
statement, but we don't yet
know which one this will be. So
we can either sit and wait until
we have written the END
statement, or we can say always
let the END statement exist on
some high numbered line (say
9999) so if we ever need an
END statement, we know what
line it will appear on. We will
do it this way so line 30 will
read—

30 IF Y=5 THEN 9999

and so if Y does equal 5, then
we branch to the END statement
that we will put in line 9999.

If the test (IS Y=19) fails
(answer is NO) then line 30 will
be ignored and the computer
will carry on executing the
statements in the normal line
number order.

The next box down contains
Y=Y+ 1, and so line 40 reads—

40LETY=Y+1

From this we now branch back
to the statement A(Y)=Y *Y
which is on line 20 and we
get—

50 GOTO 20

and lastly

Continuing our look at
BASIC, we investigate
some of the conditional
branching instructions

featured in
this language.

9999 END

If we write this out in line
number order, we get—

10 LET] X1

2O LET A(Y)=Y *7
SQIE ¥=5THEN 980
40Y=Y+1

50 GOTO 20

9999 END

and this is our first complete
program.

[t does not matter that the
line numbers do not follow on
in multiples of 10, they don't
have to, but what is more
important is the fact that we do
leave some numbers spare
between our statements so that if
we find we have missed out a
line, or think of something else
that we would like to add, then
we have plenty of space to do
50.

Consider the following—

5 REM INITIALIZE Y

IOLET Y= 1
153 REM PUT Y *Y IN A(Y)
20 LET A(Y)=Y*Y

25 REM TEST FQH ¥=158
30 1IF ¥=35 THEN 9969
d0LET ¥=Y+1

50 GOTO 20

9999 END

REM (I thought REM was an
android or something to do with
sleep) in BASIC is short for
REMark and tells the computer
that whatever follows on this
line is to be ignored because
they are only notes for the
programmer as a reminder of
what is happening.

REMark statements in a
program of this length are
unnecessary, but we will soon
be writing programs of
sufficient length and complexity
to justify their use as memory
aids.

Returning now to our IF-
THEN statement (IF Y=75 THEN
9999) the equals sign used here P

Perscnal Software Winter '83

11



BEGINNING BASIC — 3

is not an arithmetic operator,
but the first of the comparison
operators. Any of the other
comparison operators

(<,> = ,>=,<>) could also be
used in an IF THEN statement,
so that—

30 IF Y>4 THEN 9999

130 IF Q<19.2 THEN 55

902 IF A(17)>=14.9 THEN LET
Pre=Picp]

are all valid statements.

Notice here the twist in the
tail of line 902, This is also a
valid statement on most
machines. This is easier to
understand if we consider the
IF-THEN statement as two
separate statements. The first
part (the IF part) asks a
question (in line 902 — IS
A(17)>14.9) to which the
computer can answer either
YES or NO. If the answer is NO
then this statement is finished
with and control passes on to
the next higher numbered line.
If the answer is YES then the
computer passes on to the
second statement on the line,
the THEN part. THEN what?
THEN LET P=P+ | or THEN
END or THEN 900 (this is really
an abbreviation of THEN GOTO
900) or THEN any other
statement. We can even put
another IF THEN statement in.

Consider the following—

200IF (A=1) THEN IF (B=1)

CONDITIONAL BRANCHING STATEMENTS

The computer encountering this
would first ask the question IS
A= 1. If the answer is NO
control passes to the next higher
numbered line, If, on the other
hand, A is equal to 1, we move
on to the statement following the
THEN and encounter another IF
THEN statement which is treated
in exactly the same way as the
first. IS B=1. If NO then carry
on with the next line, if YES
THEN GOTO 900. You will see
that using this logic we will only
pass control to line 900 if both
A=1AND B=1. At about this
point your memory should be
stirring to the fact that you have
read something about logical
operators earlier and indeed
this is the place where they fit
in. Depending on which
machine you are considering,
there are two ways of re-writing
line 200 above to achieve the
same result.

You could use—

200IF A=1 AND B=1 THEN
900

which will normally be the
format for machines with
standard or extended BASIC,

or—

200IF (A=11) *(B=1) THEN
900

for the tiny BASIC machines.

second example. These tell the
computer where one
comparison ends and the other
starts, otherwise the computer
would attempt the following—

2001IF A=1+*B

(multiplication sign!) and then
bomb out on the second equals
sign.

The other common logical
operator (OR) can also be used
in a similar manner—

300 IF Q>3*H OR S<9 THEN
R=R—-2

or

300 IF (Q>3H) +(5<9) THEN
R=R—2

Notice the brackets again in
the second example for similar
reasons, and notice also the
omission of the optional LET
keyword before the R=R—2.
We will continue to omit the
LET from now on.
The answers to the questions
posed in the issue are—
1. The expression has a value of
21, and
2. the expression could be
simplified to
7+ 7*8/2/((12+ 8) *2/20)
You cannot remove the
brackets round (12+ 8) *2/20
(if you made this mistake,
think about why not).

THEN 900

Notice the brackets in the

The Atom and the Oric both use BASIC but they can hardly be
called the same!

12

Personal Software Winter '83




Pl Cornan

e hope you got on all
w right with last time's
homework; some sample

answers and ancther question
are presented at the end of this
article, By now, some of you
musl be thinking it is all very
well to be able to do vast
amounte of calculation and
decigion making but as yet not a
single answer has been printed
cul by the computer so that we
can see the results of our
labours. We will rectify this
point straight away and go on to
lock at the main wtpur of the
BASIC language

PRINT

The output statement of the
BASIC language ia the PRINT
statemant and an E‘-'?[ﬂ.f".;I e of its
use iz given below—

10Y=1
20 AlY)=Y *Y

25 PRINT ALY)
30 IF Y= 5 THEN 9999
A0 Y=Y+ ]

0 GOTO 20
9999 END

This vou should recognise as
our Y=X? program from the last
article to which a PRINT
statement has been added as
line 25. Now line 20 caloulates
the value of A(Y).

The cutput from this
program would be as follows—

LR O i o

l
2
gach output being printed

below the previcus cutput in a
vertical column.

We are going to spend some
time on the PRINT statement as
whatl you hawve just seern is the
FRIMT statement in only its
gimplest form, and it has

BEGINNING
BASIC —

Supposa, for example,

that we wished fo print a takle

saveral

with twe columne, the fiest

cntaining the value ot X, the
-'F"l..:'::-l i the value of X2 for
valuas of X between | and 8
This iz more ar less what ouar
program now doss, except that
values of X are not yet printed
If we replace line 25 with the
tallowing—

25 PRINT Y, ALY

then the osutput when the
program was run would he—

l |
2 4
3 9
4 |G

which iz just what we wanted. In
eifect, what happens is that the
computer can aplit each oufput
line an the VDU ints sections
idepending on the number of
characters per ling) about 1B
characters long. Each of these is
called a PRINT ZONE.
"."'.'-|"|""‘|-" ver a new line is
1 the YDU, the first item to be
71||.1h=-.. atarts at the beginning
of the first zone on that line
When las tn our naw lina 23] a
comma is encountered in a
PRINT statement, it tallg the
computer that even though it
has already outpul some data,
there is more to fallow on the
same line o the 3!.-'I'I'I|. ukar will
advance its cursor (the cursor
p:-..ula to the position on a line
at which the next charactar will
be printed) across the page to
the baginning of Ihe next totally
empty print zone. The idea of
"l.ctallj.r empty” print zone is
|:_'.-"'-:'.-i,.i|:|'|'|t in here because it you
have print zones 16 characters
wide and the output for the first
print zone contains 18
characters (and so overtlows
into print zone 2) the next
cutput will start at the
beginning of print zone 3 as

is begun

BASIC OUTPUT

We continue our series
intreducing the
BASIC language.

part of print zone 2 is already
oocupied.

There {2 another way of
uging the same idea as tollows—

e .I

B Y=72

7O PRINT ¥,
BlY=3+1T+7Y
90 PRINT 'Y
I i

T{Ul.f_'e here the comma altar
the “Y" in the print statement of
line "'J As wea have already
aaid, this tells the compuier that
thaera is more n_iata b fellow on
the same oulput line in the next
empty print one, so the output
peripheral will wail while the

calculation of line 80 iz done
tren thiz result will be printed
by the PRINT statement of line
a0 alongside the first value of ¥
Cme further point 1o note is that
there is no comma following the
"Y' in lina 90, so if thare is any
subsequent cutput in the
program (t will now begin on a
new line as the current line is
finished with

The next thing to note iz that
the PRINT statement has the
ability to output messages as
well as numerical anawers so
that, for examp]e you could get
the computer to cutput—
TODAY IS "WEDNESDAY'

The actual PRINT statament
necessary to achieve this would
hava the following lormat — 50
PRINT "TODAY IS
"WEDMESDAY" "

You should be ahle to see
from this example that the
meseage has been encloged
within inverted commas in the
PRINT statement, and thees tell
the computer to cutput whatever
is between them direct and not
to try to find a numerical value
fer it. The anly charactar which
cannct be placed within the
invarted commas for printing is
the inverted comma itself.
Therafors, if you wish to put a
guote inte & PRINT statement,

Femsonal Sottware 'Winter ‘B3



BEGINNING BASIC — 4

you have to use the apostrophe
instead, as in the example
given.

Consider the following:

B

30 X=3*4/2

40 PSI-’LINT "THE VALUE OF X’
1" X

Line 30 calculates a value for X,
line 40 then goes on to PRINT
the answer preceeded by the
message (note the comma). The
output looks like this—

THE VALUEOF 'X'IS 6

Notice the gap between the
message and the answer. This
arises because there are 19
characters in the message and
with print zones 16 characters
wide we just overflow into print
zone 2 so the numerical value of
X is printed in print zone 3.
Ideally, we would like the
output to appear as follows:

THE VALUEOF 'X' IS 6

~and as you may have guessed
this is possible on most
machines by replacing the
comma with a semi-colon—

40 PRINT "THE VALUE OF 'X'
[5%:5

The semi-colon has a similar
effect to the comma in that it
tells the computer that there is
more output to follow on the
same line, but the semi-colen
differs in that it does not refer to
print zones, but tells the
computer to use close spacing
between items to be printed
(this can vary from O to 2 spaces
depending on your machine).

FOR NEXT

It would be useful if there was
an instruction in which we
could state "execute this part of
the program a number of times
and then carry on with the rest
of the program”. Well (as you
might have guessed from the
sub-heading) there is such a
statement in BASIC, the FOR
NEXT statement which has the
following general format.

FOR (variable) = (lower limit)TQ
(upper limit)STEP(increment)
NEXT(value of variable)

For example—

IOFOR Y=2TO 6 STEP 1
0 o
. CigEi—
ALY s
50 NEXT Y
60 ........

Here Y will take all values
from 2 (lower limit) to 6 (upper
limit) in steps of the increment
(in this case, 1) so that the first
time line 10 is executed, Y takes
the value 2 and the program
continues on until we reach line
50 (NEXT Y). We then go back
to line 10 and STEP the variable
by the increment and carry on
to line 50 again. This looping
continues until the value of the
variable is greater than or equal
to the value of the upper limit at
which time the FOR NEXT loop
is finished with. In our example,
program execution would
continue with line 60.

The lower limit, upper limit
and increment can all be either
constants, variables or
expressions, so that—

FOR Q=A/B TO 19/C STEP R
NEXT Q

is a valid FOR NEXT statement.

One point worthy of note at
this time is that there are two
different ways of implementing
a FOR NEXT loop on a
computer, both of which are
equally usable provided that
you know which you have
available.

Consider the following
program—

IOFORD=2TQ 1 5TEP 1
20 PRINT "TEST.IN NEXT
STATEMENT"

20 GOTO 9g89

40 NEXT D

50 PRINT "TEST IN FOR
STATEMENT"”

9999 END

which statements will be
executed in the running of this
program? There are two
possibilities. They are—

1020 30 2299

or
10 B0 9999

Why the difference? Well,
you should see if you look back
that at some point in the
execution of a FOR NEXT loop,
we ask the question "is the
value of the variable greater
than or equal to the upper
limit"”. If it is, then we have
finished with the loop. if it isn't,
then we go round the loop
again.

The difference in the two
executions is dependent upon
whether we ask this guestion in
the FOR statement or the NEXT
statement.

Assume we ask the question
in the FOR statement, then line
10 will make D equal to the
lower limit (in this case 2) and
we then compare this with the
upper limit and find that it is
already greater. So we have
finished with the loop. If it isn't,
loop. Control then branches to
line 30 to PRINT the message,
and ENDs in line 9999,

If, on the other hand, we ask
the question in the NEXT
statement, then line 10 assigns
the lower limit value of 2tc D
and control passes to line 20
which forms part of the loop.
Even if our test would fail, we
go through the loop at least
once before we find this out,
Many writers consider it to be a
‘bad’ interpreter that operates in
this manner (test in NEXT
statement), but in practice [
have never encountered any
difficulties, and I have found
that most of the computers [
have used do cperate this way.

There is one other point we
need to consider about the last
program, and that is line 30. It
is quite permissible in BASIC
to interpret out of it to some
other part of the program (not
on a BEEB), but it is not
permissible to branch into a
FOR NEXT loop in such a way
that the NEXT statement is
encountered before the FOR
statement: so that, if we were to
add—

5 GOTO 40
to the above program, the

computer would throw it out.
Another point to note is that

1

14

Personal Software Winter '83

RSN




FOR NEXT loops can be nested
one within another. For
example—

10 FOR X
20FORY
30 PRINT X
40 NEXT Y
50 PRINT
60 NEXT X
70 END

1
1
*

(Note that the FOR NEXT
statement in Y is completely
enclosed by the FOR NEXT
statement in X. This is known as
nesting.)

If you were to run this
program, you would find that it
would preduce the following

output—
1 2 3

6
2]
12
15

Ul WO
O 00 Oy

1

a simple multiplication table.
Initially, lines 10 and 20 set
X and Y to 1, line 30 multiples
X and Y together and prints the
result. (Notice the final comma
in the PRINT statement). We
then jump back to line 20 and
increase Y to 2 and print the
new value of X *Y alongside the
first. This is repeated for Y= 3.

When we hit line 40 for the
third time, it is ignored, and we
go on to execute line 50, All
this does, in effect, is to close
the print statement of line 30 so
that the next output will start on
a new line.

Line 60 now takes us back to

Once you have a printer, you'll need to know how you want

your output!

BASIC OUTPUT

line 10, where X is increased o
2. Line 20 (when entered from
above) now resets Y to 1, and
the whole process is repeated
with valuesof Y=1, 2 and 3
again, and X=2, producing a
second line of output. The
third, fourth and {ifth lines of
output are then produced in the
same way using values of X of
3, 4 and 5 and then the
program ends.

TAKE A CARD, ANY
CARD

5 DIM A(52)
WA=
20 R=RND(52)
30 A(A)=R
40 IF A=52 THEN END
50 A=A+1
60 GOTO 20

THE NEW ROUTINE

5 DIM A(52)
10 A=1
20 R=RND(52)
L E=
40 IF A(B)=R THEN 20
50 IF B= A THEN &0
60 B=B+1
70 GOTO 40
80 A(A)=R
90 IF A=52 THEN END
10 A=A+1
110 GOTO 20

THE BRITISH SHUFFLE

5 DIM A(52)
10 A=]
20 A(A)=A
30IF A=52 THEN &0
40A=A+1
50 GOTO 20
60B=1
70 R=RBND(52)
80 X=A(R)
90 A(R)=A(B)
100 A(B)=X
110 [F B=52 THEN END
120B=B+1
130 GOTO 70

Figure 7

Try now to introduce FOR
NEXT loops into the above
program (The British Shuffle) so
as to eliminate some of the IF
THEN loops, and also get the
program to PRINT out the cards
it generates.

Personal Software Winter '83

15



Phil Cornes

BEGINNING
BASIC -5

ou may remember, if you
i have been following the

series, that we covered the
LET statement earlier. This was
the first of several statements
that can be used to assign a
value to a variable. Now we
take a look at two more
assignment statements.

INPUT

So far we have only seen the
computer acting as an advanced
calculator performing great
amounts of arithmetic at
fantastic speeds, but it can also
be used as an interactive
device, capable of asking
guestions and accepting
answers. INPUT is the statement
in BASIC which a]lows the
computer to accept answers to
guestions.

Consider the following:

10 PRINT "INPUT AMOUNT (IN

POUNDS)"”

20 INPUT P

30 V=P+ (P *15/100)

40 PRINT "THE VALUE OF V
18",V

50 PRINT

60 PRINT "DO YOU WISH TO

INPUT MORE DATA"

70 PRINT "PLEASE TYPE 1

FOR YES OR O FOR NO”

80 INPUT A

90 [F A=0THEN END

100 IF A=1THEN 10

110 GOTO 70

This is a program which will
add 15% VAT on to any amount
of money that you INPUT in line
20. What happens is this:

Line 10 is a PRINT statement
which is used here to give you
an instruction. It is telling you
to INPUT the amount that you
want the VAT added to. Line 20
is the INPUT statement and
when the computer encounters
this line it will print a question
mark on the screen (as a prompt
to tell you that action is
reguired) and then it will stop

and wait for you to input a
number from the keyboard (say
100) and enter it with a carriage
return. When the computer has
this value, it will be assigned to
the variable which appears after
the word INPUT (in our case P)
so that when we reach line 30, P
has the value 100 that we have
just INPUT. Line 30 calculates
the VAT and adds it on; line 40
prints the answer; line 50 prints
a blank line; then line 60 asks if
you wish to go through the
process again with a new value
of P and line 70 gives you the
format you should use to make
your reply; line 80 is the second
INPUT statement which will take
your answer from you and
assign the value to the variable
A; line 90 ends the program if
you nswered O (no); line 100
branches you back to line 10if
you answered O (no); line 100
again, and line 110 branches
you back to line 70 to reprint
the answer format if your
answer was anything other than
Oor 1. The flow chart for this

program would appear as in Fig.

8.

[t is possible to assign values
to more than 1 variable in a
single INPUT statement. The
format of the INPUT statement
would then be as follows;

100 INPUT P,Q.R.S-

with each of these variable
names spearated by a comma.
One thing to note, however, is
that when you answer such an
INPUT statement, you must
enter as many numbers as there
are variables requiring values,
and each number you enter
must be separated by a comma,
so that;

10,20, 30,40

would be an acceptable reply to
the INPUT statement on line 100
above.

More ways of assigning

a value to a variable.
S e e SR e i e e T WS

READ, DATA, RESTORE

Suppose now that as well as
calculating 15% VAT we also
wanted to calculate 10% and
12% , then the previous
program could easily be
modified with the addition of
some more lines of calculation
to provide the answers. There
is, however, another method of
achieving the same result, using
only one line of calculation and
going through it three times,
once with each of the three
different rates of VAT. To do
this, we use READ and DATA

statements.

)
Fig. 8. Program

Flowchart.

PRINT
INPUT
REQUEST

WeP+{PE100}

READ
The READ statement is very
similar in format to the INPUT

16

-~

Personal Software Winter '83

—



statement we have just
considered, the difference
being that when if is
encountered, instead of
stopping and waiting for the
operator to enter a number, it
takes the value to be assigned to
the variable or variables from a
DATA statement, which must
appear somewhere in the
program.

Consider the following:

10 FOR B=1TO 3
20 DATA 1,2,3

30 READ XY
40R=X*Y

50 PRINT X,Y,R
60 NEXT B

70 DATA 5,6,7

80 END

Line 10 tells us that we are
going to loop round lines
20,30,40 and 50 three times:
line 20 is a DATA statement
which will be ignored by the
computer; line 30 is the READ
statement, and it tells the
computer to assign a value to
each of the two variables X and
Y. The values to be assigned to
the variables are contained to
the two DATA statements in
lines 20 and 70. The computer
will start taking values from the
lowest numbered DATA
statement in the program (line
20) and assign the first value in
that statement to the first
variable in the READ statement,
50 here X would take the value
1. The second number in the
DATA statement will be
assigned to the variable Y, so Y
would take the value 2. The
calculation will then be done,
giving an output from the
PRINT statement on line 50 of:

1 2 2

We then branch back to line
20 (with B equal to 2) which is
again ignored, and so we
encounter the READ statement
again. The computer has
already used the first two
numbers of data and on the
second reading will take the
second pair of values (in this
case the 3 on the end of line 20
will be assigned to X which
finishes the DATA statement so
that the computer will move up
to the next higher numbered

DATA statement in the program
— line 70 — and the value 5
from line 70 will be assigned to
Y) and a new line of output will
be produced from these two
values. Notice that line 30 will
be executed three times so that
there must be three pairs of
values in the DATA statements,
and if you count them you will
find that this is so.

As you may have gathered
from the sub-heading, the
READ, DATA statement has one
other facility — RESTORE.

[f you imagine a pointer,
stored in memory, to "remind”
the computer which is the next
piece of DATA to be READ,
then the elfect of the RESTORE
statement is to return this
pointer to the first piece of
DATA in the lowest numbered
DATA statement. The simple
program below (infinite loop)
gives an example of its use.

5 INPUT A
I0FORB=1TO 3
12 READ C
16 PRINT A+ (A *C/100)
20 NEXT B
30 PRINT
35 RESTORE
40 GOTO 5
60 DATA 15,10,12
80 END

Here, for each wvalue of A
input in line 5, we add on VAT
using three different VAT rates,
15%, 10% and 12%.

A sample running of the
program could look something
line this:

7100
115 110 112
?150

172.5 165 168
)

ote. Tl leave you to work out

Computers are not merely advanced calculators.

the details (good

GOSUB RETURN

GOSUB is the statement used in
BASIC to branch to a sub-
routine. The general format of
this instruction is:

10 GOSUB xxx

where xxx is the first line
number of the subroutine. A
subroutine would normally be
used where a particular set of
calculations or operations occur
several times in a program, and
this would save having to write
out the whole operation every
time it was to be used. The
GQOSUB instruction is very
similar to the GOTO statement,
except that before the branch is
made, the line number
containing the GOSUB
statement is stored. After the
computer has executed the
subroutine, we make it
encounter a RETURN statement.
At this point, the computer
retrieves the line number of the
GOSUB instruction which
called the subroutine, and
branches control back to that
point. The program then
continues as normal.

Consider the following
example:

5 PRINT “INFUT CIRCLE
RADIUS"
10 INPUT R
20 D=R*R
30 GOSUB 500
40 PRINT “AREA IS",Q
sl D=J#*h
60 GOSUB 300
70 PRINT "CIRCUMFERENCE
I5",Q
80 END
500 Q=D *3.14159
510 RETURN
999 END | 4

Personal Software Winter '83

17




BEGINNING BASIC — 5

Notice that there are two
GOSUB 500 instructions (one in
line 30, one in line 60), but only
one RETURN instruction in this
program. As explained earlier,

this is because the computer has,

stored the line number
containing the GOSUB
instruction so that when the
RETURN instruction is executed
(line 510) the computer "knows"
which GOSUB instruction to
RETURN to.

The subroutine in the above
example is only multiplying by
T and then returning contral to
the main program. Lines 5 to 40
use the subroutine to calculate
the area of a circle from the
radius you INPUT (line 10) and
lines 50 to 70 use the subroutine
to calculate the circle's
circumference. One further
point to note is the inclusion of
line 80. This is most important,
If we did not include an END
statement at this point, then
after the execution of the PRINT
statement in line 70, the
computer would crash into the
subroutine by executing line
500, and then would bomb-out
trying to execute line 510, as it
has no RETURN line number
stored. (See Fig. 9 for the flow
chart of this program.)

FUNCTIONS

We will now take a lock at some
simple functions available in
BASIC before we take a break
and look at a game.

RND(X)

There are many variations of the
BND tunction available on
different machines but they all
generate random numbers. The
most common variation
generates a decimal number in
the range Oto 1 (where O can be
generated but 1 cannot).
Another possibility is that the
use supplies a number in
brackets after the word RND
and the function then returns an
integer in the range 1 to the
number in the brackets, eg you
could simulate a dice with

D=RND(6)

As this is the simplest to use
we will continue with it in future
examples,

TAB(X)

This function is used in the
PRINT statement and is very
useful for spacing out headings
and generating vertical columns
of figures (if we want more than
four columns so that we could
not use the print zones). It is
also useful for plotting graphs.
If you have every used a
standard typewriter, then you
should know all about TABS,

eq:
20 PRINT TAB (5)," *"

When the computer comes to
deal with this statement, it will
output 5 spaces (3 being the
number in the brackets
following the TAB). Following
this, it will print the asterisk. If
the statement had been

20 PRINT TAB(8)," *"

then 8 spaces would have been
output before the asterisk, and
so forth.

The number in the brackets
of a TAB function can also be
replaced by a variable name or
any expression, in which case
the computer will TAB out to
the correct value of the variable
or expression before printing
anything else.

Consider the following:

10 FOR X=1TO5
0Y=X*X

30 PRINT TAB(Y)," *"
40 NEXT X

50 END

You will find, if you work
through this program, that it
will print a graph of Y= X2
(rotated clockwise 90°). Try it,
and see.

One last point about TAB is
that the comma which follows is
not interpreted by the computer
as an instruction to move into

the next print zone, but merely
to separate the TAB function
from anything which follows it.

ABS(X)

This function produces the
absolute value (or modules) of
the contents of the brackets
(numbers, variables or
expressions) which means that i
whatever sign (positive or
negative) the contents of the
brackets have now, the sign will 1
be positive when the ABS

function has been performed, so
that—

10 X=ABS(T+ 3)
would have the value of +1if T

was —4, or the value of +4if T
was + 1, etc.

START

FRINT
INEUT
REQUEST

(b Fig. 9. Circumference
= program

Flowchart.

INT(X)

This function is not applicable
to computers operating with
integer — only arithmetic for
reasons that will become
obvious in a moment. The
brackets after the INT function
can contain a number, variable
or expression, and what the INT
function does is to return the
largest integer which is less

18

Personal Software Winter '83



]

I ‘ VARIABLES

— —

rr;n;h and English are not the only languages taught in schools

today. :
than or equal to the contents of
the brackets. This may sound
something of a mouthful, but
what it really means is that it
makes positive numbers less
positive, and negative numbers
more negative.

For example:

X would.take the value 2 if we
executed:

10 X=INT(2.9)

and X would take the value —3
if we executed:

10 X=1INT(—2.9)

There is one other statement
that we need to consider in tiny
BASIC before we go on to look
at commands.

STOP

The STOP statement is similar

Fersonal Software Winter ‘83

in effect to the END statement,
in that execution of the program
ceases, but when a STOP
statement is executed it also
generates a print out, usually
something like this:

BREAK AT xxx

where xxx is the number of the
line which contained the STOP
statement. This can be useful to
"freeze"” the display of a large
table, for example, because one
other facility of the STOP
statement is the ability to start
the program up again from the
point at which it left off. To do
this, we use the first of the
commands.

CONT

This command is short for
CONTinue, and is used to

restart a program whose
execution has been halted by
means of the STOP statement
considered above.

RUN

This is the command which is
used in BASIC to cause
execution of a program in
memory to begin. Most
computers will also accept RUN
command in the following
format:

RUN xxx

where xxx is the number of the
line at which you wish
execution of the program to
begin.

NEW

This is the command in BASIC
which tells the computer to
erase the current program from
memory to create memory space
for a NEW program or other
work.

LIST

This command causes the
computer to LIST the current
contents of the program memory
and, like the RUN statement, it
is also usual to be able to
execute the command:

LIST xxx

where xxx is again the line
number of the first line to be
listed.

As a little exercise, think
about the following problem.
We will need the solution in the
game which follows.

Given any number from 0 to
7, convert it to a 3-bit binary
number such that each bit is
assigned to one of three

-different variables. So that, for

example, if the number was 7,
the binary number 111 might
have its three digits as follows:

7 Rl
B

so that if we were to execute the
statement PRINT H,] K then the
output would be the binary
number.

19



Phil Cornes

can well imagine that the
I problem at the end of the

Jast article might have given
one or two of you quite a
headache if you attemped it
seriously. If it did, don't worry,
because we shall we going into
this problem in some depth as it
forms a crucial part of the game
program that we are going to
develop.

NIM

Many of you will already have
played this game, indeed some
of you may well be up to grand
master standard. Nim is played
with piles of matches. Two
players take it in turn to remove
matches from the piles until one
of them takes the last match and
is declared the winner. The
computer versions of the this
game can have anything from 3
to 6 piles with from 1to 7
matches in each pile. The rule
by which the players remove
matches is as follows. Each
player can remove as many
matches as he likes on his turn,
but from only one of the piles.
For example, if a game were to
begin with 3 piles each
containing 7 matches, the first
player's move would consist of
choosing on of these piles and
removing from it anything
between one match and the
whole pile. This rule applies
right down to the end of the
game, so that if at the end a
single pile remains containing 3

20

BEGINNING
BASIC -6

matches the person whose turn
it is to play can remove the
whole pile and by doing so he
also takes the last match to win.
Though it has but a single rule,
this game can be surprisingly
subtle as you may well soon see.

Before we delve into the
game proper, a sample answer
to the problem could be as
follows.

6014 INPUT Q

6015 RESTORE

6020 FORT = 0TO Q

6030 READ V,B,.M

6040 NEXT T

6041 PRINT V,B.M

6042 GOTO 6014

7000 DATA 0,0,0,0,0,1,0,1,0,0,
1.1,3.0810.1.1.L0.1.1.1

If you look at the program
listing for NIM below, you will
find that lines 6015, 6020, 6030,
6040 and 7000 are more or less
the same as those given in the
answer above, so you can see
that the idea of converting
decimal to binary is used in this
program. The way that the
above program segment works
is as follows:

Line 6014 takes the value to
be converted and assigns it to
the variable Q. Line 6015 does
nothing the first time it is
executed, but we shall see why
it is included later. Line 6020
sets up a FOR NEXT loop which
will be executed the same

In this article we
examine an
ancient game.

number of times as the value of
Q that was INPUT earlier. Line
6030 forms the contents of the
FOR NEXT loop and what this
does is to READ values for V, B
and M from the DATA statement
in line 7000. You should see, if
you examine the DATA
statement, that when we reach
line 6040, V, B, and M have
been set to the binary
equivalent of the current value
of T. We will go round the FOR
NEXT loop until T equals the
value of Q input in line 6014,
by which time V, B, and M will
be set to the binary equivalent
of the value of Q. Line 6041
prints the values of V, B, and M
that have just been “looked up”
and line 6042 returns control to
line 6014 to ask for another
number to be converted. You
should now be able to see why
line 6015 has been included,
because it now RESTORES that
data pointer back to the
beginning so that we can READ
from the start of the DATA list
again for the second and
subsequent values of Q. [ can
hear you protesting that I have
cheated by using this method of
conversion, and I admit that it
is not very efficient if there are
large numbers to be converted,
as the DATA statements would
.soon grow unwieldy. However,
as the maximum number to be
converted is 7, this method
works quite well.




: NIM
5 e R P A
THIS ARTICLE'S

E){ERCISE Fig.1l. The listing for the game
instructions

The operation and flow chart of PRINT “D0 YOU WISH T0O SET UP THE 5AME"
the program listed below will be PRINT "C1=YES @=N0>"
presented later because the > INPUT A
computer uses a very precise b=d
mathematical method for E:?
calculating its moves, and if we N=0
were to go into the method now, IF. A=@ THEN 158
there would be no point in F;E;:j; ;Hou MANY PILES DO YOU WANT (BETWEEN 3 & 6"
playing the games as the PRINT "HOW MANY MATCHES IN PILE (BETWEEN 1 & 73"
outcome could be determined FOR X=1 Tn A
with certainty before the game PRI A4
was actually started. So all that e
will be presented for now is a GOSUB 5002
full program listing which A GOTO 170
should be more or less self- ?;é”;i?”?;@;”” Ao
explanatory in its use (see Fig. 5 ACXI=INTCRNDCE)Y #7415
10). The program has been NEXT X
written in as general a fashion GOSUB 5006
s onsi e, Bevmver, o o T’E;EI Snn YOU WISH T0 START FIRST (1=YES @=NO)"
two changes may be necessary IF S=1 THEN 2000
as you type the program into 0=
your machines, because of the FoR Pet To A .

. s b IF ACP1=@ THEN 245
slighty differing facilities offered FOR R=1 TO ACPJ
by various machines. GOSUB 6008

IF 0=1 THEN 328
NEXT R
NEXT P
P=INT(RNDC@>*A+1)

IF ACP1=@ THEN 25@
R=INT(RND(@)*ALP1+1)
PRINT "I'LL TAKE'"3;R3$"FROM PILE“;P
ALP1=ACP1}=R

GOSUB 5808

IF F=@ THEN 20808
PRINT "] WINiesosos"

GOTO 3002

PRINT '"WHICH PILE D0 YoU WISH To TAKE FROM"
INPUT. P

PRINT ''HOJ4 MANY Tn BE TAKEN"
INPUT R

ALPI1=A[PI=R

GNSUB 5007

IF F=0 THEN 199

PRINT "“YOU T INveses™

PRINT "PO Y0OU WISH TO PLAY A3TAIN"

' YO R P e e Sy
THE NIM PROGRAM PRINT "(0=N0 1VES)
The first thing to note-is that the IH:DS=1 THEN 19
listing of Fig.10 is a program P

complete in itself. However, the
program as presented in Fig.10
does not give instructions on
how to play the game, nor does
it check the validity of the
various inputs that you will be
required to make furing the
playing of the game. It is
presented in this way so as to
reduce its program memory
requirement, but if you find that
you have sufficient memory
space available on your
machine, you can also add the
program lines listed as Fig.11
which make the program more
complete by giving instructons
and making the aforementioned
checks.

Personal Software Winter '83 St 21



NIM

The next thing which might
need changing is the use of the
single subscript variable A [X].
The square brackets may be
unacceptable to some machines,
in which case they should be
changed to the more
conventional round brackets.
Also, on some of the tiny
BASIC machines, the only
single subscript variable
available is the @ array, so you
will need to substitute this for
the A array used in Fig. 10.
Another problem may occur on
tiny BASIC machines with
statements like those on lines
150, 156, 250 etc., which are
used to generate random
numbers, as there is no INT
function needed on an integer-
only computer.

For example, line 150 could
be changed to:

150 A = RND(4) + 2

For those of you who do not
remember, there are two
different types of RND function,
cne of which uses RND(O) to
generate a four- or five-digit
decimal number between 0 and
1 which then has to be
converted by multiplications,
additions and the use of the INT
function to bring it within the
desired range of random
numbers. The other type of
RND function is RND(X) —
available on most common mini-
BASIC-languages— which
generates a random integer
between 1 and X. So the new
line 150 above generates an
integer between 1 and 4 and
then adds 2 to bring it within
the range 3to 6. This is then
assigned to A. Line 150 in Fig.1
performs the same function, but
operates in the following
manner.

The listing for the game instructions (continued)

1@
29
54 3@
SA47
SA45
5359
351
5A52
S5A6 0
SAT 3
5480
AR5
AR 2
AAD 4
ARG S

FOR

Z=1

F=1

7=
=9
I=0
FOR

PRINT "PILE NDe"g""NO

OF MATCH E5™

B=1 Tn A

PRINT @,ACR]
IF AL®]1=2 THEN 5259

NEXT @
PRINT
PRINT
IF Z=1

THEN S086

RETIJRN
ACPI=ACPI-R

f=1 TO A

IF ACR1=@ THEN £05%
RESTORE

FOR

T=1 TN AC®1

READ V,sBsM

NEXT T

7=7+Y

J=1J+B

I=1+M

NEXT @

ACPI=A[PI+R

IF Z#INT(Z/2)%2 THEN 6120
IF UWFINTC(U/20%2 THEN 6120
IF I#INTC(I/Z2%2 THEN 6120

n=1

RETIIRN -
DATA Ds@s1sBsls@sDslalsls@s@y1s@slslsls@slsl,l

END

Fig.10. The complete NIM game program

]

42
a4
5

GNSUB 92833
IF A<3 THEN 3@
IF A>6 THEN 3@

A=INTCAD
IF ACX<1

THEN 79

IF ACX1=7 THEN 7@
ACXI=INTC(ALCX])D

IF P<l

THEN Z2@@a

IF P>A THEN 2028
P=INT(P)
IF afP1=3 THEN 2004@

IF R<1

THEN 2@2@

IF R>ACP1 THEN 2024
R=INTC(R) .
PRINT "™pn YOU WANT INSTRUCTINNS (1=YES @=NO>"

INPUT

D

IF D=0 THEN 9203

PRINT
FRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRIMNT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

RETIIRN

END

“"THIS IS NIM"

“THE GAME IS PLAYED BETWEEN ME AND YQU. WE PLAY WITH'
"PILES OF MATCHES (BETWEEN 3 AND &6 PILES “ITH UP TO"
"7 MATCHES IN EACH PILE. THE OBJECT OF THE 3AME IS "
“Tn TAKE THE LAST MATCH TN WIN.'

"“THE RULE BY JHICH MATCHES ARE REMOVED FROM THE PILES"™

"IS AS FOLLOWS:*

'"WE TAKE IT IN TURNS T0D MOVE AND ON EACH TURN YOU CAN"
"TAKE AS MANY MATCHES AS YOU LIKE, BUT FROM ONLY ONE "
"PILE IN ANY NONE MOVE.™

'"WHEN YE START YOu WwILL HAVE THE NPTION OF EITHER "
"SETTING THE BNARD UP YQURSELF OR LETTINS ME DO IT."
"I WARN ¥YnlJ, I aM 300D AND SO TO 3IVE YOU A CHANCE"
"Y0lJ ALSO GET THE NPTINN OF WHETHER TO START FIRST"
“NR NOT., I HOPE YNU ENJODY THIS 3AMEs, AND HERE 135"
"YNUR CHANCE TO FIND OUT."

22

Personal Software Winter '83

P



RND(O) is evaluated first,
and generates a number in the
range 0.00000 to 0.99999. This
is then multiplied by 4 to give a
number in the range 0.00000 to
3.99996. One is then added to
this to give a range 1.00000 to
4.99996. The INT function is
then applied to this value,
which removes the decimal
portion of the number to leave
an integer between 1 and 4 (as
in RND(4) above) and once
again we add 2 to give a final
range of 3 to € to be assigned fo

Some machines may need
the semi-colons in line 300
changing to commas.

The last point may need the
semi-colons the line 6080 to
6100. The symbol “#" used in
these lines means "is not equal
to"” and may need replacing
with < > on some machines.  6080IFZ  Z/2*2 THEN 6120 look at it in more detail soon.

Also, if you have an integer- and the same for 6090 and 6100  Now play the game and become
only machine, you will need to with the variables U and I. I familiar with it if you can and
replace these three lines as hope you enjoy playing this iry to draw a flow chart and
follows. game. We will come back to analyse how it works.

SO YOU THINK YOU’RE
ROMMEL?  onLy £650 (plus 25p p&p)

INVASION places you in command of the land forces
of the Western Alliance, just prior to an invasion by the
Red’s tank armies.

You will have to exercise skill and judgement as you
move, supply and build up your limited defences to
stand any hope of victory. Invasion is a true wargame
and you could play all night just to find that the
computer’s grasp of strategy was superior to yours!

Using excellent graphics and with detailed instructions
Strategy 1 is light years beyond the arcade. Isn't it
time you stopped being the cannon fodder and took
command? This is your chance to see if you're good
enough to fight it out at the top!

available for: ZX Spectrum (48K) and BBC Model B

Fill in the coupon and return it to: ASP Software
145 Charing Cross Road London WC2H OEE.

-m--————.———..——.-,_____________.___.__._.___,._-l

Please send me . tape(s) — (delete as necessary) l

of Invasion..... i ............... (state which version required).
Il enclose my :heque! Postal Order/ International Money Order
| (delete as necessary) for: .... (made payable to ASP I.td}l

| OR Debit my Access|/ Barclaycard (delete as necessary)

) 0 O |~ =

lease use BLOCK CAPITALS
Namae | Mr! Mrs/Miss), o vl nmindaiviammanismnms

< Personal Software Winter '83 23




Phil Cornes

BEGINNING

BASIC -7

e will now examine this

WprOgram in some detail

; to see how it works. The
first thing to do is to look at the
winning strategy as this, after
all, is the strategy that the
computer should adopt. The
winning strategy for the game if
NIM'is quite well known, and
can be found in several maths
textbooks on games theory (try
Methematical puzzles and
Diversions by MARTIN
GARDENER). Due to the lack of
space, this strategy will only be
stated and not derived.

WINNING
COMBINATIONS

The first thing to do is to
convert the number of matches
in each pile into binary. As
there are up to 7 matches in
each pile, three binary digits
are required for this conversion.
The next thing to do i1s to add
together all the first digits of the
binary numbers produced, then
add all the second digits
together, and all the third
digits. All these additions are
done in decimal. When this is
done, you are left with three
decimal integer answers (see
table 1). In our example, these
are 4, 3 and 3. If any of these
three digits is odd (which two of
ours are) then the person next
to play is in a winning position.
The object now is for that player
to remove some matches such
that numbers are even so that,
for example, removing 3 trom
pile 1 would leave the three
digits as 4, 2 and 2 (see table 2)
which is thus a losing position
for the player whose it is to play
next.

ALL IS REVEALED

Having looked briefly at the
winning strategy which the
computer adopts, let us now go
on to look at the program
presented as figure 10 last time.
It would help if you could have

- that article in front of you as -

you read this description. -

The program can very
conveniently be broken into 5
main sections.

Section 1 is a subroutine which
prints the current position of the
board and also checks for a
winning play. (Program lines
5000-5080. Flowchart Fig.12).

More details on the NIM
game in the last article.

Lo e e e )
position or not. (Program lines
6000-7000. Flowchart Fig.13).

Section 3 is where the program
starts;, and it initialises the
values of variables and sets up
the board. (Program lines
10-160. Flowchart Fig.14).

Section 4 deals with the
computers’ opponents’ move.
(Program lines 163-180 and

“PILE ND™
‘NO
OF MATCHES"

FORQ=1TOA

PRINT
Q, Ala)

74

g

>

Fig. 12. Correct board position subroutine

NO
/ [ YES
z=

Section 2 is also a subroutine
and what this does is to convert
the number of matches in each
pile into binary and add them
up as described earlier. It then
makes a check to see if the
computer is in a winning

2000-3030. Flowchart Fig.15).
Section 5 in conjunction with
Section 2 enables the computer
to evaluate and play its moves.
(Program lines 190-360.
Flowchart Fig.16).

We will now go through each of

24

e
Personal Soitware Winter ‘83




*7

_@AMEDETAILS

these sections in turn in more
detail.

SECTION 1

If you look at Flowchart Fig. 12,
you will see that we print a
heading (Pile No. No. of
matches) and then set up a FOR
NEXT loop to print the pile
numbers and the number of
matches in the piles under this
heading. The piles themselves
are stored in A array locations
A(l) to A(A) where

3 € A< 6)and notice that
after each pile has been
printed, it is checked to see if it
is empty. If it is, then we

branch round to the NEXT Q

0 we set F to 1. This means that
when we jump to this subroutine
to print the board, a check is
also made to see if the move just
played has enabled one of the
players to win the game. If it
has, we set F to 1 to signify this
fact (this technique is called
setting a flag to show that an
event has occurred).

SECTION 2 ;

What this subroutine is doing
(see Fig.13)) is to say, "if the
computer were to take R
matches from pile P, would that
leave the oppostion in a losing
position.” The first thing to do is
to take R matches from pile P

number of piles). The next step
is to convert the number of
matches in each pile in turn
into binary digits being stored
in variables V, B and M, We
then add V, B, and Nto Z, U
and I respectively to keep a
running decimal total of the
binary numbers. The next box
we encounter is NEXT Q, which
branches us back to deal with
the provision of the next pile.

When all the piles have been
converted to binary and added
up into Z, U and I, we-put R
matches back into pile P and
then check each of the digits Z,
U and [ in turn to see if it isodd

SUBE!
5004,

AlP)=AIP)-R

VY

FORQ=1TO A

NO

RESTORE

I

FOR T=1T0 A (Q))

I

READ V,BM

Fig. 13. Pile check subroutine

DO YOU WISH
TOSETUP
THE GAME

(=)

g
2133

HOW MANY
PILES DO
YOU WANT

HOW MANY
MATCHES
IN PILE

YES

NO 15 Z=INT
1z/2#2}

“—G FROM
FIG1G

Fig. 14. Board set up routine

A=RNDI4}+2

|

FOR X=1TO A

}

AX}=RND{7}

<A
MNEXT X O A) TO
S A FIG
= 15

FOR X=1TO A

Z:ﬁt\é \
Y=L+ =h
- NEXT

I=1+M a

DATA 0,0,1,0,1,0,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1

AlP)=A(PI+R

! .
( PRINT X, Hmrur Alx) @
A

statement. You should see from
this that if all ther piles are
empty the variable Z will still
have the value O that it received
at the start of the routine. After
all the piles have been printed,
we test the value of Z and if it is

and this is done in the first box.
We then set three variables to
0, (Z, U and I} which will be
used later to keep a decimal
total of the binary digits. The
next box sets up a FOR NEXT
loop in Q from 1to A (A is the

or even. If any of these digits
are odd, we branch to the
RETURN statement. Only if they
are all even will the variable O
be set to 1 to flag the fact that
making R from pile P is a
winning move for the computer. p

AN

Personal Software Winter ‘83

T
25




BEGINNING BASIC — 7 .

this pile. These matches are
then removed (program lines
2000-2035). We then branch to
subroutine at line 500 (Fig. 12)
to print the board and since a
move has been made, the flag F
is tested upon return. If the flag
is set (which it shouldn't be
after only one move) you are
told you have won, and asked if
you wish to play again. If you
do, the program branches via
marker E back to the start box
in Fig. 14. If not, the program
ends. Assume, however, that
your first move did not enable
you to win! (The reason for the
check at this point is because
this section is used every time
you make a move and sooner or
later you may well win). The
program then branches to
marker B in Fig. 16 which is the

SECTION 3

FROM
FIG 14

This is the start of the game
proper (see Fig. 14) and the
tirst question asks who should
set up the board for the game.
[f you wish to set up the board,
you type 1; if the computer is to
set it up, you type 0. We then
come to the "IS A= (0" decision
box. If the answer is YES, we
branch right and the computer
will pick a random number of
piles (variable A such that 3
<A > 6) and put a random
number of matches in each pile
(program lines 150-160). If the
answer to "IS A=0"is NO, we
continue down the flowchart
and a guestion and answer i >

session follows which allows you  Fl616

to set up the board (program
lines 30-90). Which ever route
we take, we end up at marker A
and move on to flowchart

Fig. 15.

SECTION 4

The first box in Fig. 15 jumps to
subroutine at line 300 (Fig.12)
and prints out the position of
the board that has just been set
up in section 3. It is not
expected that F will be set to 1
at this point, and so it is not
checked. The next three boxes
deal with the question of who
should start first, and Fig. 15 A(P) = AlP)-R

shows what happens if you
5000

SUBY TO
5000,/ FIG 12

~ To0
£ T,— B )FIG16

WHICH PILE DO
YOU WISH TO
TAKE FROM?

TO
FIG 14

FROM
FIG 16

choose to move first. You are
asked which pile you wish to P
take from, and how many

matches you wish to take from

== P
2% Personal Software Winter ‘83

—




same place as you would have:
reached if you had decided to-
let the computer play first.

SECITION 5

This section works out the
computer’s move (ses Fig. 16)
and when you see the amount
of work done, you will also see
that it takes full advantage of
the computer’s speed. What
happens in effect is that the
computer starts with pile 1
(P=1) or the first pile that
contains matches (A (P)> 0)
and takes 1 match from the pile
(R=1). A branch is then made
to the subroutine at line 6000
(Fig. 13) where a check is made
to see if this is a winning move
(O=1). It it is, then this move is
made. If it is not a winning NIM is in fairly general BASIC and should be easily adaptable to
move, then another match is i

taken from the pile (R=2) and
FROM the check is made again.
Checking continues through all
=r the matches (R=1TO A[P]) in
this pile and if no winning move
is found, the computer moves
Fig. 16. Computer move evaluation routines. on to the next pile that contains
matches and checks all the
possibilities in this second pile.
. This continues until either all
the piles have been checked
> FORP=1TO A E> fie1s  and no winning move is found,
: or until taking R matches from
pile P produces a winning
position (O=1). If O ever
equals 1, that move is made. If
no winning is found, then a
move is made at random. After
the compu(t;gléasBmade its
suB e move, we UB 500 to print
AR5 the current board and to check
EiG 15 ) for a win. If the computer’s

move has given it the game
6

» FORR=1TO
A(P)

G, (F=1) this fact is printed, and

we branch to marker D in Fig.
15 (Do you wish to play again?).

AGAIN?

If the computer has not won by
its move, we branch to marker
D in Fig. 15 for you to make
your next move. At this point, I

»| “I'LLTAKE";R

“FROM PILE"; P

am taking my 23rd aspirin, and
R = RND(A(P)) gratetully declare that to be it
for this time. Probably the best
NGO thing to do now would be to go
._ through and master the above
' P = RND(A) ——-—-- program and flowcharts.
YES Next time, we'll take a break
and make a start on extended
= BASIC.
S s
== Personal Software Winter '83 27




Phil Cornes

p to now, all the facilities
l ' we have described should
be found on any machine

that can run any form of
BASIC. Ditferent manufacturers
tend to have different ideas on
the facilities that should be
provided, and they tend to pick
some facilities because they
highlight some of the best
points of their machines.

Having said this, however,
ther are still plenty of facilities
common to most machines: just
don't be too upset if we
describe a facility your machine
doesn't have, or miss a facility it
does have. :

When we first started the
series, we took a lock at the
meaning of words like variable,
and operator. We are going to
go back and lock at these again
now, as their scope has been
broadened somewhat with the
introduction of Extended
BASIC.

VARIABLES

The first thing to note about
Extended BASIC is that the
number of variable names
increases somewhat. Whereas in
Tiny BASIC we had 26 variable
names, A-Z, and one single
subscript variable, A(X) or
@(X), in Extended BASIC we
have many more. Typically
these include:

1. The letters A-Z:

2. Any letter followed by a
single digit 0-9 (eg A1,
S5, Z9 etc. where Al is
totally distinct from A(1)
and so on;

3. Many BASIC versions also
include combinations of
two or more letters (eg ZQ,
PT, ID etc);

4, In addition to this, any
commeon variable name
(T, B4, PR etc.) may also
be made into a sub-
scripted variable of the
form, T(X), B4(X), PR(X)

etc.

BEGINNING
BASIC -8

5. String variables of the
form any common
variable name followed
by a $ sign (eg B9,
C8%, ST$ etc).

The first three types of variable
name (common variables) listed
above are quite straight
torward. They are just an
extension of Tiny BASIC's 26
variable names A-Z, but the
other types of variable will
require a little more discussion.

SCRIPT VARIABLES

In Tiny BASIC we had A(X)
where X could take any value
from 1 to a value determined by
the amount of free memory
space available. Since we were
only allowed one such variable,
we did not need to inform the
computer how many elements of
this array we were going to use
because the computer would

‘keep accepting the values

assigned to the various elements
of the array until it ran out of
free memory space and
informed us of this fact.

In Extended BASIC, there
are endless numbers of possible
Subscript variable names and
the computer has to allocate a
known amount of memory to
each one that appears in a
program. This means that we
now have to tell the computer
how many elements will be used
for each subscript variable. We
do this by means of a new
statemnent.

DIM

No! This is not to tell the
computer that we think it is
thick. DIM is an abbreviation
for the word DIMension where
the word is used to mean size in
this context. The following is an
example of its use:

10 DIM Q(4)

This tells the computer to
reserve memory space for 5

We investigate Extended
BASIC and see what it
can do.

i st it S T e L M T R O e R
elements to be labelled Q(0),
Q(1), Q(3) and QO(4).

It is possible to dimension
several variables in a single
DIM statement, as follows:

30 DIM B4(3), AD(7), R(19)

This statement is telling the
computer to reserve space for
32 subscript variable elernents
all together (don't forget we also
include zero subscripted
elements (B4(0) etc.) now).

In Tiny BASIC our subscript
variable only had one
DIMension. Just to confuse you,
one dimension here means that
there was only one number in
the bracket to specify which
element we were referring to. In
kxtended BASIC, we can have
subscripted variables in more
than one dimension.

56 DIM D(3,2)

tells the computer to reserve
memory space for the D array
which has double subscripts -3
and 0-2 (12 elements in all).
You can imagine this to be a
two dimensional matrix set out

as tollows:

D(3,0) D(3,1) D(3,2)
D(2,0) D(2,1) D(2,2)
D(1,0) D(1,1) D(1,2)
D(0,0) D(0, 1) D(0,2)

Some versions of BASIC will
allow more than two
dimensions:

71 DIM GT(3,7,6,4)

contains four dimensions.
Indeed [ have seen one version
of BASIC which will allow 9 or
10 dimensions (heaven knows
what you would do with them
alll).

Consider the following:

10 DIM A(3,2), V(2)
20V(0)=0

S —
Personal Software Winter ‘83

—



a'a

I

— @

I}
O

a3

Q3

02
+ PR*V(Y)/100

=
g
5 It

4
50
80
70

o g <
:OUmOr"\r-.
< I

il

ey

80 A(X,Y)
90 NEXT Y

100 NEXT X

110 DATA 530,630,704,931
120 END

<
<!

This program is calculating
VAT at the three different rates,
0%, 8% and 12.58%, on the
prices of items listed in the
DATA staternent of line 100.
The three VAT rates are stored
in the V array, L V(0) to V(2)]
by lines 20 to 40.

Each price in line 110 then
has VAT added to it by line 80.
All the answers are stored in the
A array, a two dimensional
array. Each of the columns in
this array stores the three
prices, one for each VAT rate,
and each row stores the price of
the four items at a single VAT
rate.

Incidentally you now know
enough BASIC at this point to
write programs to perform the
three card shulffling routines
that we started with. If you want
to have a go you will find some
suggested solutions in Fig. 7.

STRING VARIABLES

This is a totally new kind of
variable and one that we shall
spend much time discussing as
there are many facilities
associated with it.

Just as a common numeric
variable (A,X,Z etc) can be
assigned a value which can then
be manipulated and used in
calculations and decisions, so
can a string variable be
assigned a value which can be
used similarly. The main
difference is that a string of
characters that are available on
the keyboard (usually with three
exceptions — comma, inverted
commas and carriage returns).
Eg:

10 A$= "THIS IS THE STRING
CALLED A%"

In this example, the computer
will assign to the variable A$
the value

THIS IS THE STRING CALLED
A%

note that the inverted commas
are not assigned to A$. They
are used by the computer to
show where the string begins
and ends.

As with any other variable,
the statement

30 PRINT A%

would cause the above message
(minus inverted commas) to
appear on the output
peripheral.

Consider the tollowing —

5 PRINT "INPUT YOUR NAME"

10 INPUT A$

20IF A$ = "PHIL” THEN 350

30 PRINT AS$; "IS NOT
ACCEPTABLE —
PROGRAM ENDED"

40 END

50 PRINT "HI PHIL — WHAT'S
ON TODAY"

60 .

T o

Here we see two more examples
of string variables being used in
the same way as numberic
variables can be used.

Line 5 asks you to INPUT
YOUR NAME. Line 10 will
assign any string of characters
you input to A$. You do not
need to input string starts and
ends. Line 20 checks your input
string for a particular
combination of characters (in
this case PHIL) and if this
combination is found, the
program branches to line 50
and continues.

If your input string is not the
particular combination being
considered then the program
terminates in line 40 after
printing an error message in
line 30.

It would have been quite
acceptable to use any relational
operator {= >. <, >, <=LK>)
instead of the = sign in line 20.
For example, suppose we had
used =, what would this mean?
In ASCII code (the most
popular computer code) every
character is given a 7 bit binary
number, as its representation,
so that —

A in ASCII is 1000001

LA |

Fersonal Software Winter '83

EXTENDED BASIC

B is 1000010
C is 1000011 etc

in ascending binary order, so
when the computer is faced with

20 (e Agor=71pHIL * THEN &0

then it will compare the first

.character of the word PHIL

(P= 1010000 ASCII) with the
first character of A$. If the
ASCII for the first character of
A% is less than 1010000 then the
test fails. If the ASCII for the
first character of A% is greater
than 1010000 the test succeeds.
[t the two ASCII codes are
equal, then the computer knows
that the two words have teh
same first letter. It does not
know the relationship between
subsequent letters, and so these
have to be checked — second
letter of A% with second letter of
"PHIL" etc — until the test fails
with one of the letters of A$
being less than one of the letters
of PHIL, or passes with one of
the letters of A$ being greater
than one of the letters of PHIL,
or passes with all of the letters
of A% being the same as all the
letters of PHIL. Therefore, if —

A% = "PHI" the test will fail
(A$<PHIL)

A% = "PHIL" the test will pass

. A% = PHIL)

A% = "PHILIP the test will pass
(AS>PHIL)

PH< PHIL because the letter L
in PHIL will be compared with
the fourth letter of PHI which is
a NUL character, which has
ASCII code 0000000 and is
therefore the least of the ASCII
codes (the same reason applies
as to why PHIL< PHILIP).

We will now make a start on
some of the string functions
available in Extended BASIC.

MID$ (STRING,S,L)

It would be most usetul it it
were possible to extract
characters at will from within a
string so that they could be
tested or manipulated separately
(we will see an example of this
later) and, indeed, it can be
done using the MID $ string
function.

Consider the following — b




BEGINNING BASIC — 8

10 A$ = "STRING"

20 B$ = MID$(A$,3,4,)
30 PRINTS B$%

40 END

the output from this program
would be the word RING.

The MID$ function tells the
computer to return a substring
of the specified STRING
variable (here A$) starting at
position S (here 3) and
containing L characters (here
4).

The word STRING in the
heading above may be replaced
with any string variable name or
string expression, and the
variables S and L may be any
numeric constant, variable
name or numeric expression.

The tollowing is a short
program which reads a string of
characters from a data statement
and searches through it to find
the start position of a three-
character sub string which is
also contained in the DATA
statement.

O READ A$, BS
= 3
= 1

MID$(A$,S,L)

60S = S+1

70 GOTO 40

80 PRINT B%; "STARTS AT
POSITION”;S;"OF";A%

0] pél&ﬁ"l:%,“EDUCATION”,

[t this program were run, its
output would be

CAT STARTS AT POSITION 4
OF EDUCATION

Just for practice, look through
this program and see if you can
see how it works.

Before we finish for this
time, we will look at just one
more of the string functions
available to Extended BASIC
because you will need it for this
time's homework.

LEN (STRING)

The LEN function returns a
numeric value equal to the
length of the string in the
brackets, so that —

10 A$ = “PHIL"
20L = LEN(A$)

would assign a value of 4 to L.
Similarly, we could have said —

20 L= LEN {"FHIL")

EXTENDED BASIC

and L would have taken the
same value.

There is an old saying which
says that you should only eat
pork in months whose names
contains the letter R. So you
could eat PORK in MaRch or
]SeptembeH, but not in May or
une.

As an exercise try to write a
program which will ask for
name of a month to be input,
accept an answer as a string,
and then search through the
input, character by character,
looking for an R. If an R is
found, a message telling you
that you may eat pork in this
month should be printed. If no
R is found, the opposite
message should be output. So if
the input was APRIL, the output
would be, YOU CAN EAT
PORK IN APRIL etec.

Test your program to make
sure that it works by using the
following test input data.

1) MAY

2) OCTOBER

3) MARCH

4) ENGLAND
Then we shall go on to examine
some more string functions.

IF T$ = B$ THEN 80

Personal Software Winter '83

B

!
:




P

Phil Cornes

BEGINNING
BASIC -9

T he problem at the end

of the last article may

may have increased the
aspirin intake of some of you.
The problem required that you
write a problem which will ask
for the name of the month to be
input, accept an answer as a
string and then search through
the input string for the
occurence of the letter R.

SEARCHING STRINGS

[f an R is found, the program
should say that YOU CAN EAT
PORK IN your input month. If
no R is found, the opposite
message shall be output. The
problem in effect boils down to
checking through an input
string to find a particular
character. If the character is
present, an output to this effect
is given; otherwise the opposite
output is printed.

Consider the following:

40 PRINT "INPUT MONTH"

50 INPUT M$

130 L=LEN (M$)

140 FOR N=1TO L

150 Q$=MID $ (M$,N, 1)

160 IF Q$="R" THEN 200

170 NEXT N

180 PRINT “YOU CANNOT
EAT PORK IN":M$

190 END

200 PRINT “YOU CAN EAT
PORK IN",M$

210 END

Here you are asked to input the
name of a month (lines 40 and
50) then a check is made to find
the length of the input string
(M%) (line 30) which is assigned
to variable L.

We now need to make a
check character by character to
test for the chosen character (R
here). To do this we set up for a
FOR NEXT loop in N between 1
and L. We then extract the Nth
character of M$ (line 150) and
assign this to Q%. This character

is then checked to see if it is an
R. If it is, we branch ti line 200
and PRINT:

"YOU CAN EAT PORK IN";M$

If the character is not an R we
branch back to check the next
character of M$ (line 170).

At first sight this program
appears to work quite well, but
if we look at the test data
specified last month then we run
up against a problem. The test
data was:

1) MAY

2) OCTOBER

3) MARCH

4) ENGLAND

If these were entered we would

get the following output:

1) YOU CANNOT EAT PORK
IN MAY

2) YOU CAN EAT PORK IN
OCTOBER

3) YOU CAN EAT PORK IN
MARCH

4) YOU CANNOT EAT PORK
IN ENGLAND

USING DATA STRINGS

The problem as set doesn't
require the computer to pass
judgement upon the location,
but upon the month.
Unfortunately, we have not
given the computer any method
of "knowing’’ whether the input
string is a month or any other
word, the computer just treats it
as a string. If we want only
months to be dealt with, then
we have to tell the computer
how to check this out.

One solution is to give the
computer a list of the 12
acceptable inputs in a DATA
statement and then check the
input M$ against each of these
to seek a match before going on
to the rest of the program. This
is done in the program below
by lines 60-120 and 300-320.
Apart from these additions, the
program is the same as the
previous one.

MORE EXTENDED BASIC
oS A I v e W

We look at more aspects
of Extended BASIC.

s R R e et e e S T T g e

40 PRINT “INPUT MONTH"

50 INPUT M$

60 RESTORE

70FORC=1TO 12

80 READ T$

90 IF T$=M$ THEN 130

100 NEXT C

110 PRINT M$;"IS NOT A
MONTH NAME"

120 END

130 L=LEN(M$)

140FORN=1TOL

150 Q$=MID$(M$,N, 1)

160 IF Q$="R” THEN 120

170 NEXT N

180 PRINT “YOU CANNOT
EAT PORK IN":M$

190 END

200 PRINT “YOU CAN EAT
PORK IN":M$

210 END

300 DATA JANUARY,
FEBRUARY, MARCH,
APRIL

310 DATA MAY, JUNE, JULY
AUGUST, SEPTEMBER

320 DATA OCTOBER,
NOVEMBER, DECEMBER

I leave you to make it work.
Carrying on now, we will go on
to look at some more string
functions.

LEFT $STRING,L)

LEFT $is similar to MID$% in
that it allows you to extract a
substring from the string
specified in the brackets, but
here the substring will consist of
the first L. characters of STRING

€g

10 A$="TIMOTHY"
20 B$=LEFT3AS3,3)
30 PRINT B$

The output from this program
segment would be TIM which is
a substring (first 3 characters
here) of the string TIMOTHY.

RIGHT S(STRING,L)

This function works the same as
the previous one except that it
extracts the last L characters | 2

Personal Software Winter '83

31




BEGINNING BASIC — 9 ' . i

from the string in the brackets,
eg.

10 B$=RIGHT$("BULLOCK"
4
20 PRINT B$

Here the output would be
LOCK.

STR$(X)
This function converts the

numeric value of the contents of
the brackets into a string, eg.

10A=126
20 A$=STR¥A + 12)
30 PRINT A%

Here the PRINT statement
would output a value of 138 for
A$. (This should not be
confused with a value 138
assigned to a numeric variable
— the 1, 3and 8in A% are
treated purely as characters.)

The contents of the brackets
in a STRS statement can be any
constant, variable or numeric
expression.

VAL (STRING)

This function has the opposite
etfect to the previous function.
It converts a string with a
numeric value back into
numbers which can be assigned
to a numeric variable, eg

10 A$="13"
20.BF5="15"
30 C=VAL(A$+"."+B%)
40 PRINT C

Here the value of C printed will
be 13.15 because the + sign in
a string expression does not
mean add in the normal
arithmetic sense, it means that
the various strings should be
lined up after each other in the
order given (this is called
concatanation). Similarly, we
could have added a line 25 to
the above segment as follows:

28CH= A5 +"."+BS

This would have been quite
acceptable and C$ would have
taken the value of 13.15 but this
time it would have been a string
not a number.

CHR¥X)

This function returns the single
character string which has X as
its ASCII code. The value of X
in this function if in decimal
and has a range 0-127 (as there
are 128 ASCII codes). The
variable X in the brackets may
be replaced by any constant,
variable or numberic
expression. For example,

I10FOR X =65 TO 90
20 PRINT CHR$(X);
30 NEXT X

This would print out all the
letters of the alphabet in order
from A to Z as the numbers
65-90 are the decimal
equivalent of the ASCII codes
for these letters. Similarly, the
numbers 0-9 have codes 48-57
as the decimal of the ASCII
codes.

ASC (STRING)

This has the opposite effect of
CHR$ in that it takes the first
character (first character only)
of the string in the brackets and
returns the decimal eqguivalent
of its ASCII code as a number
to be assigned to a numeric
variable. Eg,

10 A$="STRING"
20 A=ASC(A%)
30 PRINT A

Here A takes the value 83,
which will be printed by line
30, as this is the decimal
equivalent of the ASCII code
for the letter S.

. That completes a rather
impressive list of string
functions. There are one or two
others which can be found on
some machines, but they are not
really standard and will not be
introduced.

NUMERIC FUNCTIONS

We will now go on to examine
the other big plus of Extended
BASIC — Extra numeric
functions. In all the examples
below, the contents of the
brackets can be replaced with
either a constant, variable or
numeric expression.

We have already covered 4
functions in Tiny BASIC; these

were ABS(X), INT(X), TAB(X),
and BND(X). These four
functions are still available and
join the rest of the list presented
below.

LOG(X)

This function returns the log to
base e of the contents of the
brackets, eg:

10 A=1LOG(3)
here A takes the value 1.09861.
EXP(X)

This function raises the base e

to the power X and is thus the
inverse of the LOG(X) function.

10A =EXP(3)
here A takes the value 20.0855
SGN(X)

This is the Signum function. If
the contents of the brackets
have a -ve sign then this
function returns a value —1; if
the contents are + ve the
function returns + 1; and if the
contents are zero, the function
returns zero.

10A=5SGN(—-12)

here A takes the value — 1.

SQR(X)

This function returns a value to
the square root of the contents

of the brackets (obviously these
contents must not be negative).

10 A=50QR(9)

here A takes the value 3.

TAN(X)

This function returns the
trigonometric Tangent of the
contents of the brackets (most
trig functions assume X to be in
radians — 1 degree = 0.01745
radians and 1 radian = 57.2957
degrees).

SIN(X) AND COS(X)

These functions return the trig
Sine and Cosine respectively
(again X assumed to be in
radians).

32

Personal Software Winter ‘83




MORE EXTENDED BASIC

T T

ATN(X)

This function returns the Arctan
(the angle in radians whose
Tangent is X) of the contents of
the brackets. '

This ends the arithmetic
functions: in addition most
machines have two special
%%ctions, PEEK (X) and POKE

PEEK(X)

This function returns a decimal
integer in the range 0-255
corresponding to the decimal
value of the binary code
contained in the computer
memory location X. X is also in
decimal and can be any

constant variable or numeric
exXpression.

POKE L,C

This function is the inverse of
the PEEK function. It allows you
to enter any 8 bit binary
combination into any location of
RAM where L is the location
number and C is the code to be
entered (both L and C are in
decimal).

In this section there has
been quite a lot of new material
introduced and you would be
well advised to re-read it if you
are not familiar with it.

There are two good exercises
you could now try:

1. Write a short program which
will accept a number from 0-255
as input and convert this into a
two digit Hexadecimal number
on the range CO-FF.

2. Write a short program which
will do the reverse of the above
— accept a 2-digit Hexadecimal
number and convert it to
decimal,

And for all you bright boys
(or those who don't know about
Hexadecimal) you might also
like to look at the problem of
how you would go about taking
a list of numbers in random
order and sorting them into
numerical order as we shall be
moving on to such things from
the next article.

Lf3)

Dragon 32 and the Epson HX-20 use Extended BASIC.

Personal Software Winter '83



Phil Cornes

he first two of the last

T article’s problems to make
sure you get the hang of all

the string functions and
Extended BASIC generally. The
first problem was to convert a
decimal number in the range
0-255 into 2 digits HEX.

Hexadecimal is a number
system based on 16 different
“digits’’. These range from 0-9
and for the other 6 we use
letters A to F. In Hexadecimal,
then, we count 00, O1,
02, i OF,; 10, Ll . 1F, 20,
2L, 2F, and so on up to FF.
In each digit position we can
put any one of 16 different
symbols so that in a 2 digit Hex
number there are 16 x 16 (ie
256) different permutations of
symbols. This means that if we
start from zero we can
respresent any integer from O to
255 with 2 hex digits.
Conversely, any integer from 0
to 255 needs only 2 Hex digits
to represent it. Before we delve
into the two Hex digit _
conversion, let us look at a
method of converting an integer
0-15 into a single Hex.

HANDLING HEX

The first point to note is that our
single Hex digit can either be a
number 0-9 or a letter A-F. This
means that we cannot use a
numeric variable to store the
Hex digit (we cannot store
character A-F in a numeric
variable) so we will have to use
a string (say AS%).

If you remember from the
last article we looked at the
CGRH(X) function. This function
returns a single character string
which has X (in decimal) as its
ASCII code. If we decide to
utilize this function (which we
will) to convert from ASCII
code to a Hex character then all
that is required is to convert the
input number 0-18 into the
ASCII representation of its HEX
eqguivalent.

BEGINNING
BASIC - 10

Y

AS = CHRSICh

Fig.17. Subroutine for Hex conversion.

Consider Fig. 17

Let A be the number 0-15 that
we wish to convert. You may
remember that the ASCII codes
for the digits 0-Q are 48-57 and
the ASCII codes for the letters
A-F are 65-70.

This means that if the
number we wish to convert is
between 0-9 we should add 48
to A to give the ASCII code of
the Hex digit and if A is
between 10-15 we should add
55 to give an ASCII code
between A-F. The resulting
value of C (ASCII code) can
now be converted by the
CHR%(X) function to the Hex
character representation of the
input value of A.

We can extend this idea to
produce two Hex digits. The
most significant Hex digit in a
two Hex digit number is the
number of 16s in the decimal
number and the least significant
Hex digit is the remainder. For
example 250 in decimal is FA in
Hex because there is 15 x 16in
250 and 10 remainder. 15 in
Hex is F and 10in Hex is A.

AN EASY SOLUTION

To solve our problem therefore
what we need to do is to divide
the input number up into two

decimal numbers between O-15

We continue our look at
Extended BASIC
functions.

each of which can then be
converted separately into Hex
digits by the subroutine of Fig.
17. This procedure is laid out in
Fig. 18 (to save re-drawing it,
Fig.17 is called as a subroutine
of Fig. 18). Both of these flow
charts can be coded into BASIC
as follows.

10 INPUT N
20 A=INT(N/16)
30 GOSUB 500
40 B$=A%
50 A=N—A*16
60 GOSUB 500
70 B$=B$+AS$
80 PRINT B$
90 END
500IF A 9 THEN 530
510 C=A+48
520 GOTO 540
530 C=A+55
540 A$=CHR$(C)
550 RETURN
600 END

NOTE: The END statement of
line 90 is needed otherwise the
computer will "crash"” into the
subroutine at line 500 straight
after the printout of B$ by line
80 even though there is no
subroutine call. Thus when the
computer reaches line 550 it
will execute a return statement
and find that there is no return
address stored and "bomb out”.

Similar principles to those
given above using the
ASC(STRING) function can be
applied to the second question
of the homework. The flow
charts of Figs. 3, 19 and 20 and
the program below are given as
a possible solution without
explanation. It is left to you to
sort out how they work (good
practice).

10 INPUT A$

20 B$=LEFT$(A$, 1)
30 GOSUB 500
4O0N=A~16

50 B$=RIGHTHAS, 1)
60 GOSUB 500

Personal Soitware Winter '83 .




JOi =T 4R
80 PRINT T
90 END
500 C=ASC(BY)
510IF C 57 THEN 540
520 A=C—48
530 GOTO 550
540 A=C—-556
550 RETURN
600 END

Right! Having solved the first
two problems we will now go on
to lock at the third thing we
mentioned — sorting.
Approximately 95% of all
computer time used anywhere is
used by commercial concerns in
the process of running a
business. Very little computer
time is used for scientific
applications. Of this vast
amount of computer time used
commercially, about one third is
spent sorting and searching
through lists of data items so
that useful information may be
extracted. It is to these two
areas, sorting and searching
that our attention now turns and
now we will look at a simple
search and at how to merge two
sorted lists together.

EXTENDED BASIC FUNCTIONS

name we can look through the
list for this name and when we
find it we can look up the
corresponding address and
telephone number. This process
is called searching and the item
we are using to find the
required information is called
key. Here we are using the
name to find the address and
telephone number so the name
is the key. If the item in the list
are in random order, then there
is really only one way of finding
any given item; that it to lock
through the list from the
beginning, one item at a time,
until the required item is
located.

So the flowchart of an
algorithm to perform this simple
searching technique might be
as Fig. 21. The following notes
might help you to understand
Fig. 21 better. N is the number
of items in the list and K is the
number of the item that we are
currently looking at. The list
itself might well be contained in
a string array, eg A$0) to AH9)
is a list of 10 elements each of
which would be capable of
storing 256 characters.

START

A= INTIN8)

A=N=A*18

BUE
A

BE-BE+ A5

PRINT
as

Fig.18. Complete BASIC flowchart for
conversion program.

SIMPLE SEARCH

Imagine a list of names,
addresses amd telephone
numbers. If we are given a

RET

Fig.19. Subroutine for Hex to Decimal
conversion.

Working through Fig. 21 the
first box asks that we input the
key that we are to search for (eg
input the name whose address
and telephone number we
seek). We then set up for a FOR
NEXT Yoop from 1 to the
number of itemns in the list. The
third box extracts the key from
the Kth item of the list. This is
necessary because it is quite
possible that the search key
might not be at the beginning of

each item. For example, if our
list were in telephone number
order with telephone numbers
specified first, then address
specified second, and lastly
name, we would need to extract
the last so many characters to
compare them with our input.
This comparison is carried out
in the 4th flowchart box. If it
turns out that the extracted key
from the Kth item on the list is
the same as the input then the
information (address and
telephone number) is printed
out. If the two items are not the
same, K is incremented by one
and the key is extracted from
the next item in the list to be
checked. This process is
continued until the extracted
key matches the input or until
the computer has checked
through all the items on the list
and not found a match in which
case a message to this effect is
printed.

TWO LIST MERGING

Imagine two lists of numbers
that have already been sorted
out into numerical order and
imagine further that these two

START

BS = LEFTELAS 1}

Fig.20. Complete BASIC flowchart for
reverse conversion.

lists have been assigned to two
array variables, eg | 4

Personal Software Winter '83



' BEGINNING BASIC — PART 10

( START )

EXTRACT KEY
FROM Kth
ITEM IN LIST

15 PRINT

Kth KEY =" YEE NFORMATION

INFUT ROM Kih ITE
N LisT

PRINT “YOUR

A(X) B(X)
X A(X) (X)
1 1 =4
2 3 2
3 12 13
= 24 18

It is required that the two lists
A(X) and B(X) be merged
together to produce a single list
containing 8 items and that the
merged list say C(X) should also
be in ascending numerical
order.

The method of solution for
this problem is to compare the
first item in array A with the
first item in array B. The least of
these should be made the first
item of array C. In this case
B(1) is less tham A(1l) so C(1)
will be set equal to B(1) (ie
—1). We will now compare A(1)
with B(2), the least of these will
become C(2). Here A(l) B(2)
so C(2)=A(1)=1 and we then
compare A(2) with B(Z) and put
the least of the these into C(3)
etc. A program to perform this
algorithm is given below
without any further explanation
so that you can dry run it
yourselves,

You can use a micro instead of a phone book — and it's not as heavy!

10 DIM A(4),B(4),C(8)
15FOR X=1TO4
20 INPUT A(X),B(X)

DD
gl
b
5!
<
>

QNIRRT
;;.Q,_\p—-'—'»—'
L
—

QO™ Q5 QW
o

Qw
[
ow%g
+
Thmo
o

5 THEN 150

5 THEN 190
50

150 FOR D=BTO4

160 C(D+4)=B(D)

et et
5885888333843
Q=

O

—

0o =
I

A) B(B) THEN 90
A)

170 NEXT D

180 GOTO 220

190 FOR D=A TO 4
200 C(D+4)=A(D)
210 NEXT D

220 FOR C=1TO8
230 PRINT C(C)

240 NEXT C

250 END

For practice try to work out
what lines 120-210 of the two list
merge program below are
included for and when you have
worked it out try to think of
another way of doing this which
although not as general will
reduce the length of the
program listing considerably.

36

Personal Software Winter '83

e




Phil Cornes

BEGINNING
BASIC — 11

. in the previous article was
to try to decide what lines

120-210 of the two list merge
program are included for. You
remember that the program was
to take two lists of numbers,
A(X) and B(X), each containing
4 items in ascending numerical
order and produce from these a
single list, C(X), of 8 items
which was to have been the
result of merging the two lists
together in such a way that the
resulting list was also in
ascending order. A simple
algorithm was given to solve the
problem and you were expected
to dry run the program listing
produced from this algorithm.
The best way to try to
understand the operation of a
program like this is to draw a
near flowchart. (See Fig.22).

As far as possible, the
flowchart boxes have been
numbered to correspond with
the relevant program line
numbers given. The shaded
area in Fig.22 corresponds to
lines 120-210 of the program.
The flowchart boxes labelled 15,
20 & 25 allow you to input the
two number lists A(X) and B(X).
Note that these must be in
ascending numerical order.
Flowchart box 35 sets up initial
values for A, B and C which
will be used as pointers in lists
A(X), B(X) and C(X)
respectively. Box 50 now
compares the next two items in
lists A(X) and B(X) using
pointers A and B to see which
of A(A) and B(B) is larger (to
start off with, both A and B
have the value 1 so we are
comparing A(1) with B(1). IF
A(A) is larger than B(B) then
we branch to box 90 and put
the contents of B(B) into C(C).
So here we make C(1) equal to
B(1) (because B(1) was the
smaller of A(1) or B(1) and then
we increment both pointers B
and C by 1. A and B are now
tested to see if either of them

The'obiect of the problem

has reached 5. In this case they
have not and so we branch back
to box 50 to compare A(A) with
the new value of B(B). (Here
A(l) and B(2)). We will suppose
this time that A(l) is smaller
than B(2) (though, of course,
this need not be the case) so we
branch to box 60 and put A(A)
into C(C) (Here A(1) into C(2)).
We then execute boxes 70 and
110 thus incrementing A and C
by one (sonow A=2, B=2,
C=23). A and B are now both
tested again to see if either has
reached B and as they have not,
we branch back to box 50 to
compare A(2) and B(2) etc. You
should see that this process is
repeated until one of the lists
A(X) or B(X) has been

20

INPUT To
Al Blxh START
L

25
NEXT X

A=1:Be1iC=1

35

NO 15 YES

0] i AlA) Alal=aiE) cici-siel 8

YES
FOR D=BT0O4 FOR D=ATO4

CiDH =l : =01

i NEXT O

PRINT
cich 230

25

28 =i
END MEXT €

240
Fig.l. The flowchart for the last articles
problem, the shaded area represents lines
120 to 210.

BINARY SEARCHES

In this article we
present the solution

to the sort problem
and take a look at
Binary searches.

exhausted so that either A or B
has the value 5. When this
occurs, we encounter the
program lines 120-210
mentioned last month (shaded
area of flowchart Fig. 22) and
the process changes slightly. In
box 20, originally, we only
entered 4 items in each list so
that when A or B equals 5 (say
A) we will try to compare the
next item in list B with the non-
existent value A(5) unless
something happens to change
the flow of the program. This is
in fact done. When A=25 any
items that are left in list B must
all be larger than any of the
items that were in list A and
they must also be in ascending
numerical order so that all that
is requires to complete list C is
to transfer the remaining items
in list B directly onto the end of
list C without any comparisons
being necessary. This is done in
boxes 150-170 (It B=5and A 5
then the same argument applies
as before and the transfer of the
last itemns of list A to the end of
list C is dealt with by flowchart
boxes 190-210).

The last few flowchart boxes
form a FOR NEXT loop which is
%sed to print out the merges list

A SIMPLER SOLUTION

The last part of the question
asked you to see if you could ,
think of a way of simplifying the -

| program by replacing lines
| 120-210 with something else.
| The program listing given

below is one possible solution
— I leave you to work out how
it operates.

10 DIM A(5), B(3), C(8)
13 FOR X=1TO4
20 INPUT A(X), B(X)

25 NEXT X
VA=

38 B=1
40C=1

43 A(5)= 1E30
47 B(5)=1E30

Personal Software Winter '83

37



BEGINNING BASIC PART — 11

S0 IF A(A)>B(B) THEN 90

It
Ow
4

120 IF C=9 THEN 220
140 GOTO 50

220 FOR C=1TO8
230 PRINT C(C)

240 NEXT C

250 END

NOTE: For those of you who
have not met scientific
representations of numbers
before, 1E30in lines 43 and 47
means 1 x 10 or 1 with 30
zeros after it like this:
100000000000000000000000-
0000000, As you can see; it's
guite a large number and much
easier to write as 1E30.

SIMPLE SORT

So far we have examined a
simple search algorithm and a
merge algorithm, before we go
on to consider anything more
complex in either of these
directions, we will take a lock at
a simple sorting algorithm and
program.

Fig.23. Simple sort algorithm for
increasing order of 2 items.

Imagine a list containing two
iterns L(1) and L(2) and now
imagine an algorithm to place
these two items in ascending
numerical order — easy! [ hear
you say, and so it is. (See
Fig.23.) But now imagine this
list increased to contain 3 items

L(1)—L(3). Can we still sort
them? Yes, cbviously we can
and in very similar fashion (see
Fig.24).

You should begin to see a
general algorithm appearing
from all this which can be used
for any length of list (N). For
P=1to N, compare L(P) with
L(P+1) and reverse these if
necessary, then go on to the
next value of P. This FOR NEXT
loop should be repeated until
we manage to go once
completely through the FOR
NEXT loop without having to
reverse any pair of numbers
L(P) and L(P+1). See Fig.25
and the following program.

10 INPUT N

20FORP=1TON

30 INPUT L(P)

40 NEXT P

50F=0

60 FOR P=1TO N—-1

70 IF L(P)>L(P+ 1)THEN 110

80 NEXT P

9O IF F=1 THEN 50
100 END
110 =1
120 E=L(P)
130 L(P)=L(P+1)
140L(P+ 1)=E
150 GOTO 80
160 END
I leave you to work out the
details of the operation of this
program. One unusual point
you will notice is that part of the
work of a FOR NEXT loop in
this program is carried on in a
part of the program that is
physically outside the loop. This
is perfectly acceptable even
though we have not met it
before.

THE BINARY SEARCH

Now we have a sort algorithm of
sorts (ouch!) there is a far more
efficient search algorithm that
we can use that depends for its
operation upon the fact that the
list of iterns we are to search are
in numerical order. This is
called "The Binary Search” for
reasons that will become more
obvious as we describe it. If we
take any list of numbers in any
numerical order and try to find
one particular number on the
list, then if we divide the list
into two equal halves, we can
say for sure that if the number

exists at all in the list it must
reside in one of the two halves,
though we would not know
which. This may seem very
obvious, but if we now specify
that the list is numerically
ordered, then we say which half
of the list contains our chosen
number simply by comparing
the contents of the halfway
location with our chosen
numbers. If these contents are
larger than our number then
our number must be contained
in the lower half of the list and
vice versa. Having eliminated
half the list, we can now
consider the remaining half as a
complete list and split this into
two and test again, and so on
until we either find the item we
are searching for, or prove it
not to be contained in the list.
This may sound a little complex
when compared with the
previous search algorithm but
when we look at how much
more efficient this algorithm is
than the previous one, we will
certainly see that for any
reasonable length list the extra
complexity is more than
justified.

Before we can compare the ,
efficiency of the two algorithms .
we must find a criterion that we
can reasonably consider as a
measure of efficiency for a
search algorithm. Such a
criterion may, for example, be
measured as follows: Every time
we look at one of the locations
in the list and compare it's
centents with our chosen
number we call this operation
one comparison. Qur criterion
will then be the number of
comparisons we have to make
before we find our chosen
number or prove it is not
contained within the list

38

Personal Software Winter '83

L




BINARY SEARCHES

START )

Fig.24. Sorting with three items.

FOR#=1T0 N

LiPheLIP+1]

t

Personal Software Winter '83

SPECTRUM SOFTWARE

TEST MATCH — for the 48K Spectrum only £5.95
This is the no. 1 hit of the summer and is a 3D Test Match Cricket
simulation. This cassette contains 2 programs — the 1st a full 5-
day match and the 2nd a selection of one day tests, full scoreboard
and definable teams. The game already contains England &
Australian teams and uses the graphics capabilities of the
Spectrum to the full.

ALIEN MAZE — for the 48K Spectrum only £5.95
Against the clock you must decode the alien riddle that will defuse
the earth shattering bomb in the second 3D Maze, At last there's a
programme where the 3 dimensional graphics are not the point of
the game. Keeping your head and remembering the code and
where you are is a challenge for the finest mind.

GALACTIC PATROL — Spectrum and 16K ZX81 only £5.95
A fast machine code, arcade style, Star Trek programme with
phases, torpedoes, star bases, shields and 4-types of aliens,
meteors, damage control and repair and vector flight. Stunning
graphicgs are enabled by superb machine code and there are
versions for both machines on tape.

GOLF — for any 48K Spectrum only £5.95 | |
Amazing 3D graphics on a memory mapped course, this
programme has over 250 user definable graphics to produce a
startlingly realistic simulation. You have a selection of 15 clubs and
a caddy with a special blow-up of agreen. The graphics have to be
seen to be believed. You'll wish you had a swing as good as the
cartoon golfers. There's even a 19th hole

DERBY DAY — for the 48K Spectrum only £5.95
Gambling on any horse in the field, up to 5 players can lay bets with
Honest Clive Spectrum the bookmaker. Will Clive keep that smile?
Watch the race begin as the tape lifts and marvel at the amazingly
realistic 30 animation as the riders jockey for position. See the
horses and riders in full flight as they pass Spectators and into the
home straight past the stands. Hold your breath at the slow motion
finish. Sound and colour is used to its fullest in this 44K of superb
programming. Not recommended for compulsive gamblers,

RESCUE — for the 48K Spectrum only £5.95
How can we summarise in a short ad, an adventure game that
needs a Special Program to detail its Rules| VERY simply, you must
find the Map and Radio Men plot your route and monitor patrols as
they scour the 40+ locations you are travelling through. If you have
the right equipment you can cross into Secret Territory in search of
the Castle and the imprisoned Princess. If you find it and gain
entrance there are many trails and rests. If you find the Princess
you must still return to base with her. Utilises all the Spectrums
faciliies and takes hours to play.

JACKPOT — for the 48K Spectrum only £4.95
A complete simulation of a popular fruit machine, using definable
graphics to the fullest. It contains a complete introduction to the
rules of its HOLD, NUDGE, GAMBLE and FEATURE BOX with
animated demo. Memory mapped reels, simultaneous revolution,
staggered stop, animated bet and payout, payout board and
realistic sound effects recreate the original. A must and a wallet
saver for any fruit machine buff.

All pricesinclude VAT & P&P Dealer Enquiries Welcome
Selected lines available at John Menzies, W.H. Smith & Boots.
b e e o e e e e e S e S S S S S G S S e G D S G S e S e e
PLEASE SEND ME THE GAMES AS TICKELD:
tesTMATCH O corr O auenmaze O
perBY DAY [1 caractic paTRoL [0 Rrescue O
JACKPOT

j t Dept PS, 140 Whitechapel Road,

@u @ London E1. Tel: 01-247 9004

PLEASE MAKE CHEQUES/PO PAYABLE TO:

COMPUTER RENTALS LTD,,

T o o o o e e e e EE e e A oww am ee e s s e A

39

|
|
|
|
|
|
1
|
|
|
|
I
|
|
1
|
|
I
|
|
|
|

S ———— ) —— —— - — —— o ——



Phil Cornes

e started this series with
Walgorlthms and flow

charts, and that is how
we finish. In this, the last part,
we look at a flow chart and
program for the binary search
algorithm presented last time,
and we also take a look at a
very efficient sort routine.

Fig.26. The Binary search flowchart.

BINARY SEARCH

A flow chart to perform the
Binary Search algorithm might
be as Fig.26. We assume that
this routine is being used as
part of a larger program so that
U and L already have values. U
is the pointer for the upper limit
of the interval, yet to be
searched and L is the pointer
for the lower limit on this
interval. So, for example, if the
list to be searched contains 100
items, then U would nbe 100
and L. would be 1. Flow chart
box 1 asks for a value which
will be assigned to the variable
T. This is the number that we
are going to search for in the

BEGINNING
BASIC —-12

list. Flow chart box 2 is looking
top see iof our input value is
contained in the last position of
the list. If it is, we branch
through box 3 to box 6 to print
the message saying that we
have found teh required item
and to give its position (we will
look at why this box is needed
later).

If T is not in A(U) then we
move on to box 4. This starts
the algorithm proper by
calculating the mid-position in
the list and assigning this value
to the variable 5. A check is
then made by box 5 to see if
A(S) — the contents of the list
position just calculated — is
equal to T. If it is, we move to
box 6 to indicate our success in
location item T, otherwise we
move on to box 7. Box 7 id
asking whether the upper and
lower list pointers are equal
because if they are then there is
no point in trying to locate T
anymore as there are no more
positions between U and L to
look in, so we would move to
box 8 and indicate that T was
not contained in the list. If U
and L are not equal, the next
task is to decide if T is
contained in the interval
between U and S or between L
and S. As the list is in
numerical order, this is
achieved simply by comparing
T with the current value of
A(S). If T is greater that A(S)
then T is contained in the lower
half of the list and we bring the
upper bound U down to S
(flowchart box 11). We than
branch back to box 4 to
calculate the midposition of the
new interval (S) and start over
again.

This process continues until
we either find the item T
somewhere in the list and print
this fact or prove that the item T
is not contained in the list at all.
A program segment with the
function of the flowchart of
Fig.26 is given below.

In the final article of
this series welook at a
very efficient sort

routine.

L Fi e A A e D S T S R SR |

1O

110 INPUT T

120 IF T=A(U) THEN 230

130 S=INT((L+ U)/2)

140 IF T= A(S) THEN 240

150 IF U=L THEN 210

160 IF T >A(S) THEN 190

170 U=3S5

180 GOTO 130

190 L=S

200 GOTO 130

210 PRINT "ITEM NOT IN
LIST".

220 GOTO 280

230 8S=U

240 PRINT "ITEM FOUND IN
POSITION"; S

1467

5
g _>58 >
2358
3
, >0
Fig.27. The ‘Merge-Sort’ process.

12345678

Earlier we said that we would
lcok at the need for flowchart
box 2 in Fig. 26, and we will do
this now with reference to the
above program. We will dry-
run it with U=3and L=1
giving us a list of 3 items. (Say
A(1)=10, A(2)=12and
A(3)=52). Program line 120
above corresponds to box 2 in
Fig.26 and we will omit it
mentally and see what happens
when we input a value fo 52 for
T in line 110 above. Line 130
assigns a value of 2to S
(L+U=4, 4/2=2, INT(2)=2,
S=2). T is not equal to 12, the
value of A(2) in line 40 and so
we move on to line 150. U is not
equal to L, and so on to 160. T
is greater than A(2) which
shows that if T is contained in
the list at all it must be in the
upper half.

We now set L to S (line 190)
which gives L=2, U= 3. Line
200 takes us back to line 130
where a new value of S is

40

e m—

Personal Software Winter '83

i



—

calculated. (U+L=5, 5/2=2.5,
INIi2 8 =2, 533.

Now, T is not equal toA(S) —
line 140

U is not equal to L — line 150
and T is greater than A(S) —
line 160

so we make L= >3 (which it
already is) and branch back to
130. Now we see the problem.
The INT function used in line
130 to calculate the mid-position
of U and L will only round
down to the nearest integer — it
cannot round up — and
consequently we can never look
at the last item in the list to see
it it containd T. Obviously,
then, when the last list position
dces contain T the algorithm
would not terminate without the
inclusion of some test (Fig.26,
box 2 for example) to see if T
were contained in the last list
position.

EFFICIENT
ALGORITHM

You remember that the binary
search algorithm is much more
efficient than a simple search,
but it suffers from the drawback
that the list to be searched has
to be in ascending numerical
order. The process of sorting a
list into order can in itself be
very lengthy, especially if we
use the simple sort routine
given earlier in the series.
Fortunately there is a sort
routine which is very efficient
and is based on the merge of
two sorted lists that we saw in a
previous article. If you can
imagine an unsorted list of eight
items then this algorithm would
take each of the 4 consecutive
pairs of numbers in this list in
turn and perform a two list
merge on them which will give
four pairs of numbers each of
which will be in numeric order.
The algorithm then takes the
first two pairs thus generated
and merges them to form a
sorted list of four numbers and
then takes the second two pairs
and merges them also.

We now have two sets of
four numbers, each set being in
numerical order. The final
process is to merge these two
lists of four items into one list of
8 items and the sort is complete
(see Fig.27 ). The flowchart of
this algorithm is given as Fig.28.

START

CALCUI.ATE NEXT
B OF TWO ABOVE
'J' A.581 N THIS
VALUE TON

ALX}AND BX)

MERGE LISTS
AlX) AND BIX) D=2
BACK INTO CIX|

Fig.28. The 'Final Programme’ flowchart.

5 REM =
10 PRINT "HOW MANY
ITEMS TO BE SORTED"
20 INPUT T
D A=1
40 I[F A>T THEN 70
SOA=A*2
60 GOTO 40
70N=A
75 DIMAA(A/2+ 1),
B(A/2+1),C(A+1)
80FORX=1+1TON
0 C(X)=1E30
100 NEXT X
110 PRINT "INPUT VALUES
TO GO IN LIST”
I20FORX=1TOT
130 PRINT X
140 INPUT C(X)
150 NEXT X
160 PRINT "SORT
BEGINS NOW"

250 NEXT
260FOR X=1TOD

270 A(A)=C(C)

280 A=A+1

220C=C+1

300 NEXT X

310 IF C< >N+ 1 THEN 210

=MEHGE SORT—=

EFFICIENT SORTING

320 A=1

S0 B=1
340C=1

380 5=A—-1
360 IF A(A) >B(B) THEN 400
370 C(C)=A(A)
JBOA=A+]
390 GOTO 420
400 C(C) = B(B)
410 B=B21

20 O=%1]

430 IF A=S+D+ 1 THEN 520
440 IF B=S+D+ 1 THEN 460
450 GOTO 360

460FORX = ATOS+D
470 C(C)= A(A)

480C=C+1

490 A=A+1

500 NEXT X

510 GOTO 570

520 FOR X=B to S+D

530 C(C)=B(B)

540 C=C+1

550 B=B+ 1]

560 NEXT X

570 IF A+ B<N+ 2 THEN 350
580 D=D *2

590 IF D< >N THEN 180

600 PRINT "THE SORTED

LIST IS”
6I0FORX=1TOT
620 PRINT " 6K CX)
630 NEXT X
640 END

The program starts off by
taking an input to the variable
T. This is used to tell the
program how many items are to
be sorted. The next part of the
program (lines 30 to 70)
calculates the next power of 2
above the input value (T). This
value is assigned to the variable
N and is the actual number of
items that will be sorted. Next
items, T+ 1 To N, are made
very large (1E30) so that after
sorting they will still occupy
positions T+ 1 TO N in list
C(X). The sort now begins.

The "INPUT" list C(X) is first
split up into two lists A(X)

and B(X) by lines 210-310. The
variable D 1s used to indicate
the number of values in A(X)
and B(X) that are to be merged
in each step (see Fig.27). .

The first D (initially D= 1)
items in C(X) are assigned to
the first D items in A(X), then
the second D items in C(X) are
assigend to the first D items in
B( Xg_ then the third D items in
C(X) are assigned to the second
D 1tems in A(X)....... then
B(X).....then A(X) andso on.

Personal Software Winter '83

4]



Simon Goodwin

ere is a game to pit your

wits and reflexes against

security robots at the top
secret research headguarters of
IBM (Intergalactic Business
Mogul). You are looking
through the giant mainframe
computer-room, in search of
interesting secrets, when you
hear a rumbling noise from
between the rows of processors
and disc units. . .

You dive out of the way just
in time as a hi-blast quarkon
grenade rolls past you and
detonates nearby. In the
dimness you can just make out
the glowing sensors of a
security robot at the other end
of the room. The robot’s cybo-
grip unit reaches behind and it
primes another grenade, ready
to roll it towards you. The bomb
explodes prematurely,
showering blue paint over the
robot. Unperturbed, the
security robot takes aim again.

You must disable the robot
and any others which come to
its assistance. To do this you are
armed with a lightweight, high-
resolution, laser rifle, but it is
difficult to hit the robot as it
dodges back and forth in the
darkness at the other end of the
computer room. Alternatively
you could brave the grenades
and attempt to sneak up and
eliminate the robot with a sharp
blow to its sensitive omniwave
radiation sensors. The decision
is yours; but hurry, because
here comes another grenade. . .

Use the arrow keys or
control keys to manoeuvre the
sniper around the computer
room. Press the space key to
fire your laser rifle. You will
lose a point every time you
shoot (since you are wasting
ammunition and drawing
attention to yourself) and you
lose a 'life’ if you collide with a
grenade. Points are awarded
each time you sucessfully shoot
the robot (the shorter the range
the greater the score) and if you
manage to ‘'mug’ the robot and
destroy its sensors. Be warned

SNIPER

— you will be unable to shoot
down the grenades with your
rifle, and the robot will try to
evade you if you creep up on it.

HINTS ON
CONVERSION

SNIPER is written in Microsoft
12K 780 BASIC. Asitisa
graphic game a number of
conversions must be made to
enable it to be run on machines

LINE FUNCTION

Lines 10-30
Line 40

Line 50

Lines 60-130
Lines 140-160
Line 170

Lines 180-290
Lines 300-430
Lines 440-490

Lines 500-560

Lines 570-680

Lines 690-730

Outwit the malevolent
robots in this all-action
game for the Genie or
TRS-80 Model 1.

not compatible with the TRS-80
Level 2. The game uses the
PRINT @ facility to place text
and graphics on the screen. The
TRS-80 display consists of 1024
characters. The character-code
for each element is stored in
memory between address 15360
and 16383. Consequently PEEK
(15360) will return the ASCII
code of the character in the left
most position of the top line.
PEEK (15487) does the same for
the last character of the second

Identity the program and send the
computer to the set-up routine at line
430.

Introduces the routine for rolling
bombs across the display. These lines
form the main part of the program and
consequently they have been placed at
its head, where BASIC can find them
quickly. The game would be about a
third slower if the 'roll bombs' routine
was at the end of the program.

Selects the next bomb to be moved.
Check that the bomb has not yet hit the
end wall of the computer room. If it has
done so then a new bomb is launched.
Advance the bomb across the display.
Checks to see whether or not the bomb
has spontaneously exploded.

Reduce the number of lives if the bomb
has hit the player.

Handle the hi-blast quarkon grenade
explosions.

Part of the set-up routine for the game.
They clear variable storage and the
TRS-80 display. Lines 450 and 460 will
not be needed on most computers.
Adjust the value of BMAX to change
the maximum number of bombs in
action at any time. Its value must be a
power of two (e.g. 1, 2, 4, 8or 16).
Sets up the graphic characters that will
be used in the game. Each item is
assumed to be one character high and
three characters wide.

Draw the walls of the computer room
and populate it with chest freezer
shaped machines.

Prepare the main recording variables
of the game. These are P (player's
position on screen for PRINTing), E
(enemy's position), SC (score), B
(bomb position) and LV (number of

42

Personal Software Winter '83

—



line, and so on.

Each character-position has
a number which is used as a
reference for the PRINT @
command. The top left
character position is numbered
0, through to 63 at the end of
the line 1023 at the end of the
screen. The display consists of
16 lines of 84 characters. For
example PRINT @ 960,
“"SNIPER": would cause the
word to be displayed at the left-
hand side of the last line of the
screen.

The STRING$H(X,Y) function
returns X copies of the
character with ASCII code Y.
An equivalent function is
available in BBC BASIC — on
other machines you will have to

remaining lives).

Set the starting position of all bombs.
Label the display.

Form the main loop of the game. For
simplicity it has been written in four
parts. One part rolls the grenades,
another allows the player to move, the
third handles rifle-fire, and the final
part controls the robot's movement.
Examine the keyboard (see 'Hints on
Coversion') and adjust the player's
position accordingly.

Punish the sniper if a bomb has been
trodden upon.

Blank out the old display of the sniper
and set up the new one,

Checks whether or not the sniper has

Lines 740-760
Lines 770-790
Lines 800-870

Lines 880-940

Lines 950-970
Lines 980-1000
Line 1010

set up a loop to generate the
appropriate string using the
CHRS$ function.

SNIPER makes considerable
use of the logical AND
operation. This is available on
most micros, but notably not the
Apple or current Sinclair
machines. A logical AND is
used to tell the computer to
ignore some of binary digits in
a value. The value 30 is written
11110 in binary, and the value
19is 10011, so that the
expression 30 AND 19 has the
binary value 100,10 or 18
decimal. (The 1 is copied in the
columns where it appears in
both numbers). Type PRINT 30
AND 19 on your computer to
see if this feature is supported.

SNIPER

—

The program uses the AND
function to generate random
numbers. For example RND(3)
generates (at random) 1,2 or 3.
Long names are used for some
string variables (e.g. PLAYER$)
but these can be shortened to
their first two characters (PL$)
without ill-effect.

PEEK(14400) is used to poll
the computer’s keyboard. The
game is controlled by pressing
five keys. On a Video Genie
you may use ESC and CTRL to
move the sniper up and down
the screen. If the keys are held
down the sniper will move
steadily. The CLEAR and TAB
keys can be used to move left
and right, the SPACE key cause
a shot to be fired. If your
computer has arrow-keys in
place of ESC and CTRL, cr
CLEAR and TAB are not
adjacent on your keyboard,
then you can modify the
program to recognise control
from the arrows simply by
changing line 900 so that it
starts 'IF (KB AND 32). .. .

Sound-effects are generated
as SNIPER runs. Program lines
containing the OUT instruction
are used to send noises to the
Genie or TRS-80 cassette
interface. These lines won't
work on other computers but
they may be missed out without
harming the game.

'T—_

jumped on top of the robot. If so lines
1030-1110 modify the score and display
accordingly.

Decide the robot's move. Line 1160
selects a new direction of movement
(up or down) to home in upon the
player.

Adjust the robot's position, preventing
moves off the screen!

Set up the new display of the robot,
blanking out the old one as required.
Handles rifle fire. Line 1280 determines
whether or not the space key (fire) has
been pressed and line 1290 excludes
alternate lines of the display from use
(those military-spec. cabinets are 100
per cent laser-proot!).

Display the laser-beam with an
appropriate sound-effect. Line 1300
works out its length-and 1370 checks
whether or not the robot has been hit.
Allocates points in accordance with the
distance between the sniper and the
robot.

INustrate the robot explosion in sound
and vision.

Lines 1120-1190

Lines 1200-1210

Lines 1220-1260

Lines 1270-1290

Lines 1300-1370

Line 1380

Lines 1390-1480

Personal Software Winter '83 2



310
3z0

400
410
420
430
L40
450
LED
470
480
490
500
510
520
530
940
350
SED
570
380
390
e00
E10
620
B30
E40
ESD
EED
E70
£80
690
700
710
720
730
740

*

*

*

REM =% TRS—80 SNIPER
REM #* Simon Goodwin

30 GOTO 450

REM ##* Roll the bombs!

S0 C=C + 1 AND BMAX - 1

IF (BCC) AND £3) > 3 THEN 140D

IF RNDC2) < 1 OR (E AND E4> ¢ B4 THEN RETURN
B(C) = 54 + (E AND 960}

IF @ = B(C) THEN 420

@ = B(D)

PRINT @EB(C), BOMBS%;

IF @=P THEN 200

RETURN

PRINT EB(C). BLANKS:

B(C) = B(C) - 3

IF (BC(C) AND 63> > 3 THEN PRINT BECC),BOMBES}
IF RNDC12) > 1 THEN IF B(C) < P THEN RETURN
REM ## See where bomb has sone

IF BCC) <> P THEN 31D
LV = Lv - 1

PRINT @1016.LVs

LP = 515

IF LV » 0 THEN 2E0
PRINT B984,"G A M E
GOTO 250

IF KB<900 THEN 230
KB = KB + B(D)

B(C) = LP

LP = 515

REM #+# Bomb exelosion
FORY =0 TO 1

OuUT 255.1

PRINT BB(C), "+1+"}
OuUT 25%5.2

ouT 255.1

PRINT @B(C)," "y
ouT 255.2

NEXT Y

IF KB < 900 THEN 420
B(C) = KB - 1100
RETURN

B(C) = 515

RETURN

REM % SNIPER Prosram start

CLEAR 500

DEFINT A-Z

BMAX=8

DIM BCBMAX-1)

CLS

REM ## Set ur srarhics

LUMP$ = CHR%(191) + CHR$(179) + CHR$(191)
WaLL$ = STRING®$(3,153)

BLANKS = STRING$(3, 32)

PLAYER$ = "B=-"

ENEMY$ = " {#="

BOMBS = CHR$(32) + CHR®(42) + CHR$(I2)
REM ## Draw the room

PRINT BOD,STRING$(E4, 153)1

PRINT BB9E:STRING®(E4,153)3

FOR Y = B4 TO B4D STEP 64

PRINT @Y, WALLS:

PRINT @Y + &1, WALLS:

¥
FOR ¥ = 134 TO 800 STEP 128

OVER!I"s

FOR X = 0 TO SO STEP 12
PRINT @X + Y.LUMP%:

NEXT X

NEXT Y

REM ## Set ur the variables
P =515

‘E = 505

SC =10

Lv =

3
FOR Y=0 TO BMAX-1

760
770
780
790
goo
810
Bz20
830
B4D
850
BED
ero
BBO
830
900
910
920
930
940
250
980
70
980
980
tooo
toto
1020
1030
1040
1050
1060
in70
108D
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
120
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480

B(Y) = 194
NEXT ¥
PRINT B1010, "Lives:z"3LVs3
PRINT @P,PLAYERS:

PRINT B9E0."SNIPER! Score:":;8Cs

REM ## Main loor of same
GOSUB 830 ' Plaver's move
GOEBUEB 40 ' Roll bomb 1
GOSUE 12B0 ' Fire rifle
GOSUB 40 ' Roll bomb 2
GOSUEB 1130 ' Tarset's move
GOSUB 40 ' Roll bomb 3
GOTO 810

REM ## Check kews and move rlaver

KE = PEEK(14400)
IF (KB AND

KB = 1100

GOTO Z00

PRINT @P,BLANKS:

PRINT BLP, PLAYER®:
P=LP
IF P <» E THEN RETURN

REM ## You have 'mussed' the enemy

SC = §C + 10
FORY =0 TD 7

OuUT 255, 1

PRINT BE:")—-("3

OUT 255.2

PRINT EE.,ENEMY$;

MNEXT Y

LP = 515

GOTO 1330

REM ## Move the enemy

Lomokow

IF L <E&ANDL > 0 THEN RETURN
IF L > & THEN 1200

IF E < P THEM D=£4 ELSE D=-E4
IFE+DCZ< &4 OR E + D > 896 THEN D=-D
IF L < 1 THEN L = RNDC4) + 7
RETURN

NE = E + D

IF NE ¢ 128 OR NE » B3Z THEN D

PRINT BE, BLANKS3:

PRINT BME.ENEMY$:

E = NE

IF E = P THEN 1030

RETURN

REM ## Check for rifle fire

IF (KB AND 128> = D THEN RETURN
IF (P AND E4) < E4 THEN RETURN

L =357 — (P AND €3>

PRINT @P + 3,STRING$(L,45)3
FOR Y = 0 TO 12

OUT 255, Y AND 3

NEXT Y

PRINT BP + 3,STRINGS$(L,32);
IF SC > D THEN SC = 8BC - 1

IF (P AND 960) <> (E AND 960> THEN 1470

SC = SC + (P AND E3)/3
FOR Y = 0 TD 12

PRINT BE,"=+=";

OuT 255.,Y AND 2

PRINT @E,"0+0"%

NEXT Y

PRINT BE, BLANKS$3

E = 5085

PRINT BE,ENEMY$:

PRINT B974.S8Cs

RETURN

2) THEN IF (P AND €3) > 5
IF (KB AND €4) THEN IF (P AND &3) < 5& THEN LP
IF (KB AND B) THEN IF P » 128 THEN LP = P — E4
IF (KB AND 16) THEN IF P < BSE THEN LP = P + Ei
IF P = LP OR PEEKCLP + 153E0) > 128 THEN RETURN
IF PEER(LP + 15361) < 42 THEN 980

THEN LP

[
o
+ 1
LR

=D

Personal Software Winter '83



Chris Palmer

SARDAUKAR

ASSAULT

Nk s ey

using Atari BASIC, which is
quite like most forms of
Microsoft, so the BASIC in the
program should be easily
convertible. It is run in
graphics mode 7+ 16, which
gives the computer a screen
resolution of 160 x 96in 4
colours. The graphics
commands used are: PLOT,
which turns on a single dot,
DRAWTO, which draws a line
from the current PLOT or
DRAWTO position to the
specified location, SETCOLOR,
which primes a colour register
with a colour and a luminosity,
COLOR, which changes the
PLOT or DRAWTO colour and
LOCATE, which reads the

value of a dot into a specified

SARDAUKAR ASSAULT

Defend the Golden
Tower against hoards
ofattacking space
warriors in this

Atari game.

i M e S L e

All the commands should
be able to be duplicated on
another machine providing it
has a PLOT or DRAWTO
equivalent. The one feature of
the Atari that you might have
trouble in duplicating is that if
you change the colour or
luminance in a SETCOLOR
statement, then everything that
has been plotted in that colour
now assumes the new colour.
On the BBC computer this can
be achieved by using the
VDU 19 command.

To convert the game to run
with the keyboard, change line
2010 to a keyboard GET
statement and then change lines
2020 -2055 to alter the values of
X and Y according to which key

somewhere at the edge
of the galaxy you are the

last remaining defender of your
empire. Materialising above
your base are scout ships of the
dreaded Sardaukar fleet. Can
you destroy them before they
blast through the golden tower
and damage your power base?
If you succeed in wiping out
one wave, then an even
stronger fleet is sent against
you. See how many of them you
can destroy before you are
overrun.

Sardaukar Assault is written
in BASIC for the Atari 400/800
with a minimum memory of
16K.The game is controlled by
a joystick plugged into the
lefthand port, but can be easily
converted to use the keyboard.

When the game starts, the
joystick controls the movement
of a gold coloured dot, which is
the point to which your defence
laser will fire. To destroy the
alien attackers you have to hit
them with the laser. The game
ends when the Sardaukar's laser
shots have penetrated the green
power base at the bottom of the
tower. After each successive
wave your tower is rebuilt.

Sardaukar Assault is written

Trapped on a remote outpost

variable.

10-25
30-90
100-130
L3513

140- 155

157-175

1000- 1050
1100-1180
2000-2110
3000-3080
4000-4100
5000-5090

6000-6110

7000-7100
7200-7260

has been pressed.

LINE FUNCTION

Sets up the position array and clears all its
positions.

Prints up beginning screen and rotates the
background colours.

Sets up specific variables, changes the
graphics mode and sets the colours.

Goes to the routines to print the mountains
and the golden tower. Also reads the
joystick,

Tests for the fire button. Checks to see
whether a ship has been encountered and
checks to see whether all the ships have
been cleared.

Plots laser track from base.

Plots laser aiming position.

Random jumps for alien fire and alien
appearance.

End of main program loop.

Draws mountains.

Draws golden tower and power base.
Reads joystick and examines new position.
Plots Sardaukar ship randomly on screen.
Checks to see if position is occupied by an
active alien and if so explodes it.

Changes graphic mode, prints wave
number and score so far.

Plots Sardaukar shots from random ship
position and checks to see if power base
has been reached.

Explodes base and prints end of screen
display.

Provides screen flash and wipes out base.

Personal Software Winter '83



SARDAUKAR ASSAULT

SARDALKAR ATTACK
v SOIM PO2EL,Z M RILL=4

I8 SRAFHICS Z+16

46 POSITION 16,8

S8 FRIMT #6, " SARDAUKAR"

BB POSTITION 17,2

78 FRIMT #5,"ASSAULT"

7o FOR P=1 TO 3

88 FOR I=1 TO 14:SETCOLOR 4,I1,19:
iIXiB+P:18:12=FDR T=1

98 MERT P

led REM SET UP UARIABLES

118 Z=11k=86:C0=aiFL=1

128 GRAPHICS 7+16

138 SETCOLOR 4,8,8:SETCOLOR @,1,1215ETCO
LOR 1,E,128SETCOLOR 2,11,12

123 BOSUE 1990

137 GOSUE zead

148 IF STRIGC@ )< -8 THEN 17S

158 IF L<>8 THEN GOSUE 4800

133 IF COx=KILL THEN G0TO 5088

157 SOUND 8,1568,2,15

168 COLOR 1:PLOT 290,50:0RAMTO .Y
1ES SOUND @,2806.2,15

L7d COLOR @:PLOT 20,508 0RAWTD X,Y
175 SOUND &,8,8,0

188 COLOR 1:PLOT X,7:COLOR @:PLOT X,Y
125 O=INTORNDC 1 xE2@+1 o

138 IF 016 AND 013 THEN GOSUB 2008
IF 0<15 AND 02 THEN GOSUER @86
EO0TO 137

REM DRAW MOUNTAINS

FLOT 1.75

FOR I=1 TO 159 STEF S
Y=INTCRMOE 1 x628+76 5

COLOR 2

DRAKTO I.,%

HE=T 1

218w REM DRAW BASE

1165 COLOR i

1i18 FOR I=F@ TO &9

1126 PLOT I,95:DRANTO I,96—( -GS 32 g
LI§E4PLDT 168-1,35:DRANTO 168-1,96-¢ -GS
e

L4 MEXT I

1145 COLOR T

1158 FOR ¥=%9@ TO 35

1188 PLOT 78.Y:0ORAWTO 82,y

L178 MEXT Yivy=59

1173 FOR P=1 TO 3:S0UND P»8,8,8:NEXT P
1158 RETURMH

@38 REM RERD JOYSTICK

2816 S=STICKIG)

€828 IF 53=7 THEN R=X+2

2838 IF S=11 THEN x=x-2

<848 IF $=13 THEN Y=Y+2

2838 IF S=14 THEN Y=Y-2

<835 IF 5=15 THEN RETURN

2868 IF X>159 THEN X=159

2878 IF ®{1 THEM ¥=1

2880 IF Y>7@ THEN Y=70

2338 IF Y1 THEN Y=1

2188 LOCATE X.Y.L

€118 RETURN

J86@ REM PLOT SRARDAUKAR

3818 IF PL>KILL THEM RETURM

3828 A=INTCRNDC 1 d%14845 )

o el T D 05D

2@
33
16
18
LE
1@
16
%

i1

(RN el ot i R

1}‘:‘__71

=

SARDAUKAR ASSAULT

2836 B=INTC{RNDC 1 2%20+5 5

284a PCZ01 3=RiP{ 7,2 =R 7=7+1: IF Z¥28 THE
M TEEE

3858 COLOR 3:FOR P=1 TO B

SEEE PLOT P-24A.B+P:ORAWTO CHHE 3~P <2, B+P
3?65 SOUND B.208,19,7+P: SOUND 1.201.12.7
SHVH HEXT PiPL=PL+1

2875 SOUND @,8.8,0: SOUND 1.8,8,:8

IS8 RETURN

4088 REM ALIEN HIT
43168 FOR I=1 TO 7
48260 IF Rr=PCI,s1) AND
FilsZy AND Y<PCI,2 046
4838 MERT I:RETURN
4840 [=FC L1 sE=PCI1,20
4368 COLOR @:FOR P=1 TO &

4878 PLOT Pr240,B4+P: DRAWTO CHYE P2, B+P
4875 SOUND 6,208-PEP8.16,15

4858 NEXT F

430 PiI,IF:B=P(I,Eﬁ=E:SC=SC+la:EG=Eﬂ+1
4035 SOUND G@,8,0,0

4108 RETURH

SEEE REF EMD OF MWELE

SH10 GRAPHICS 1+162 HE=HA+1

SHZE POSITION @.6

SEEE FRIMT #5:"HAUE “;WE:" COMPLETED®
SE40 PRINT #5;:"SCORE = “;SC

945 KILL=KILL+Z:CO=0:PL=1:FT=5

SHEE FOR T=1 TO 1G@GE:NEXT T

SHEA FOR I=1 TO 29:FOR T=t TO 2

SAVE PCILT =0

MERT TiMEST I

GOTO 183

FEM SARDALUKAR FIRE
FP=INT{RNOC 1 3%7+1 o

IF PUFP.1 =0 THEM RETURN

COLOR 2

SOUND B,188,5,15

FLOT POFP,1 M4Z,PCFF,2 45

URAMTD Z8,62+FT

SOUMD 8,50.E8,15

COLOR B

FLOT PLFP.1 MZ,PCFP,2 45

ORAWTO S6,524FT

FT=FT+1:IF FT>23 THEN ro9e

SOuUHD E:@:B:Q

RETURM

REM END

FOR I=5 TO -1& STEP -8.5

FOR T=1 TO 14

SOUND BT+200-1%2,18.T

FE3E SETCOLOR @.1.T

TE48 FOR F=1 TO I:iMEXT P:NEXT T:MEXT I
7e4S SOUND @,@,8,0: GOSUE 7260

7H58 GRAPHICS 1+16

FEED POSITION B8.8:PRINT #8:"GANE QUER™
TE7A PRINT #6:"SCORE = ";SC

TE38 PRINT #5:"PRESS FIRE TO START™"
7R3 IF STRIGCG @ THEN T@RgSE

7188 RUN

7288 FOR I=8 TO 14:SETCOLOR 4,8,I:NEXT I
SOUND B,18,4,15

7218 FOR I=14 TO @ STEFP -1

7215 SOUND @.1@,4.1

7228 SETCOLOR 4.8,.I:FOR T=1 TO 3%I

Yod@ HEXT T:COLOR &

F24@8 PLOT V@,98-1:0RAMHTO 98,908-1

¥258 NEXT I

T2E8 RETURHM

ALPCIL1 45 AND ¥Yi=
THEN 4a43

"'||'-’|!"..a.‘l|,‘_r,j|l.,"';il::‘5
s b L
Bl R U

: ol
|Hmmh$&”m

T I e S o o oy B U oy
DA R A R AR A R

P I Bt I R I s s i s e R S R I
iy

P e 051

15 5
(R

N
I
L

Personal Software Winter '83




Eric Smith

SPECTRUM

t the start of this game
A you are given three lives,
with your laser base
positioned at the bottom of the
screen.

The alien appears at the top
of the screen and moves down
towards your base line in one of
three directions; either straight
down, vertically left, or
vertically right.

The screen is wrapped
round from the alien’s point of
view, but not from the player’s.
You fire at the alien by pressing
the ‘0’ (zero) key and move left
and right by pressing the '8
and '8 keys respectively. If,
however, on your third shot you
miss the alien then it can
change direction, but will still
approach your base line.

If the alien touches your
base line then you lose one of
vour lives (if you are on your
last life the game ends). When
you destroy the alien then you
gain up to 2000 points,
depending on how far down the
screen it was when your laser
gun obliterated it.

Throughout the game
‘Mystery Ships’ will wander
across the screen. If you hit
them then you gain up to 10,000
points and a free life. (But you
have to hit them in exactly the
right place for the laser bolt to
take effect!!!). You are allowed
only three shots at them then
your laser base becomes
ineffective and the ship passes
across the screen whereupon
you lose a life, (this only applies
if you have one life to spare: ie
missing a ship cannot put you
out of the game.)

The game ends when three
aliens land. However, if you get
over 100,000 points the aliens
wrath rises and they start to
descend not from the top of the
screen, but slightly further
down so as to catch you out at
the wrong side of the screen.

Throughout the game sound
effects are produced as the
alien descends, when you fire
your laser bolt, when you hit
the alien, when the alien lands,
when the 'Mystery Ship’ appears
and when the game ends.

SPECTRUM ZAP

Anihilate aliens as they
descend from the skies
in this fast-moving
Spectrum game.

The program runs quite
quickly even though the
program contains no machine
code. The ‘Mystery Ship’
routine was written out with the
main printing loop as a separate
routine so that the speed of the
program was not impaired. The
highest score obtained so far is
110,349 before three aliens
landed. Good shooting!

HINTS ON CONVERSION

This program should be able to
be converted onto most
machines that allow text and
high resolution graphics to be
mixed onthe same screen. This

‘is necessary because the laser

shots are created using high
resolution line graphics while
the laser base and invaders are
made up of user defined
graphics characters. These are
placed on the screen by using a
PRINT AT statement and can be
replaced by a screen POKE on
any machine that doesn't
support this, but does have a
memory mapped screen.

Personal Software Winter '83

47



SPECTRUM ZAP

The screen on the Spectrum
is 255 pixels by 175 pixels with
the origin (0,0) in the bottom
left corner. The character
screen is 32 X 22 with the
origin for PRINT AT commands
at the top left of the screen. It is
worth noting that the
Spectrum'’s PLOT and DRAW
statements work differently to
most machines. If you want to
PLQOT at a point (50,50) and
then DRAW to the point
(100,100) you would have to use
the form PLOT 50,50 : DRAW
50,50. This is because the co-
ordinates in the DRAW
statement are offsets from the
PLOT statement, not a direct
reference to a screen location.

If you have a machine that is
capable of producing definable
graphics the conversion of the
Spectrum's definable characters
is simple. The BIN statements in
lines 20-70 contain all the
information for bit patterns of
the characters, expressed in
binary form. For your own
machine either convert them
into their decimal equivalents or
leave them as binary,
depending on which method
your machine uses.

D ESDX.
o~ —H07-90C
on -
HEBHEHI X
Z BZZPHRZI
2 ez

D HEQBEHO
D ZrDHGZDZIW

z

N
B~ B0 ~DOE~ KD

L I elel 10
IR
B
I ®rD PrD

=D 86
S RER

nro = eBONGS RBO~ B
GNEHMEBRHEEBEH M

4zZ6
SZOHOZOHRZHHF
5 6Zr BZ6 HIH

rCHEHDDOHD!
[l

L e Ll )

mMzeZDHE
-
o=

?
2
®
2
2
1
1
au

m-44we PRZ

H
I
5D 1

2]

. om
P T R e 1. L S S ot ]

2 EXT
LET C=s:
SUB _l10va

a

+

C.,d;

w

LTV R VTR
PeRGE~596 BOB6

Gl G0 0N

[(RND#7)

(B IE

LINE FUNCTION

1-3
5-70

Lines
Lines

100-115
120-160
170-280

400-490

Lines
Lines
Lines

Lines

Lines 500-540

Lines 900-940

Lines 980-990
Lines 1000-1050

Lines 1100-1110
Lines 2000-2160

PRPE

n=a® TO 7.
{183+ h) )

BIMN Qal1dd
la@iva

BX
1,8IN adld

MG HMA
H&RZ ZIZ

~ iy .~ =3 OB
=k
=]

Bk S~

i
PRINT AT 19
LET d=INT a

(RND #22)

AT =-1.,4d

”?“ ANLD BiE

GO TO 400
L

l1ive

Produce the instructions if necessary.
Produces the user definable space invader,
spaceship explosion and laser base.

Reset the game.

Reset the screen for ancther alien

Are the main screen print and the exit to
the fire routine.

Are the fire routine which draws and
undraws the laser bolt. This also provides
the exit to the scoring routine.

Contains the scoring routine and the exit
to the 'Mystery Ship’ routine. It also
increases the print position of the alien if
the score is over 100,000 and RND is
greater than 0.7.

Produces the whole "Mystery Ship’ routine:
ie the moving of the spaceship and the
base, the firing of the laser base and the
explosion the points scored and the free
life.

Deals with the loss of a life if the spaceship
was missed.

Ends the game.

Produce the random movement for the
alien.

Produce the effect of the wrapped round
screen.

Are the instructions.

THEN GO 3ug _ 1119
THEN GO TO 20
b
+

+1) +3
1

o
—Hno
L wEDvw

a
{
s
i
a-

Joi
..1

c) »8

R 1;uwu,q+24
VER 1@, -9
R (=8 TO 2&; BEEP 005,

bmd THEN GO TO 5@
TO 22

INT AT c,d;" E ": FOR (=¢
BEEP .01, L: NEXT {: PRI

-
10 LBt fc=sc+INT (99.9#ch: PRI
AT @,8; FLASH -1; BRIGHT 1, "&C

G

IF RND> .55 OR _RAND) .33 AN
@@ OR RND5>.7 AND_&c 120088
7.5 AND £c (3008 THEN RO TO
@ LET s=5+(5¢c)100@08 AND RNDO
@ GO TO

NEXT
£4@ LET o LET =0

Ua: =
8828 PRINT AT w,t;" ABRQY [ RT & b,

X
MOV Ur T GHH
onro

DOD
e £l
QOGHE-N
Cx ~ I =R
MO R ~J S0

nmoaH-
enoTw

HWFP PRAPRREEOOR
VHZNGALWINEORNT
MeEeOeREsREn

-G
OGO

OZ o

A-4NE_ ~ D0
purt

Lal

£-LWeDHVM

&
s

[
2e
ND

e

PRINT AT 189,

N
~- O
w
&
9
O
i
N
"
1~
L
-
s}
[~}
=

[}
A
&
e
m
-
n

t +20
INKEYS="8" AND LiR
AND b:&)

ANL cs <2 THENM

=

t+1
:2? THEN 20 TO 32a

-

Personal Software Winter '83




VENOALL
CONTDEREBODE

H=i-i
e 4 -1
3

Ll 1]

Nes o D=y DO
2aron{ev-o

- O~

-
S DEAXOH~®
eUr

'y
m-oreurroe

D _-moDMNDO

-
rOR

oD
ZOa~Lr - NEINHBH

m

b}

-
~ Gz
wZee 25O
a0
'CRIR]

Mn =

9
2
1
o %
3
=

PEeZ @
SRBMD :
-“NHE
p {1 1]
m .y
-0

-~ 0eHRIKL GO0
8 IONesSGer8uy

ngnuu"n
]

3Ia-4~
Z~a 0a30rsl

ZHHT AT D0+ AHTZ DO~

- QDRI Ao AMoD0o -

]

=R

"

J
AvEvaLTR ~-DOXHR -

[}
ae 2.886 THEN

4Q
S0

-

]
..‘
D=3

CH
m

BRETU
PRINT AT ¢=1,d;"

RET
PRINE AT ¢-1,4;"

rE6
P8
-]

P el k]
&

SR ARG MARNT HAN L
T L~ GOOREEY~Zs BUL
wy  woRp GRSTRE
we ~HTEE6 GOWA 60

®» W D

THEFABULOUS WANDA
AND THE SECRET OF LIFE

for COMMODORE 64
An adult fantasy
game with Arcade Action

You are travelling far
rom home |looking for good
times around the Universe,

when you are intercepted

by the evil Brutus of the Federation.

Brutus forces you to go and seek the Secret of Life,
the Universe and Everything - known only to the -
Fabulous Wanda, a hostessinthe Spaced-Outlnn in
Highsville on the planet COPUS. You are teleported
down to Highsville where the Customs man
demands money for Teleport Tax. There is a video
game in the Terminal with 3 credits left,
Now you are on your own and you must decide how
to proceed to Highsville Mainstreet to find the

various establishments toenterand ... ...

OGLES  for BBC/B

Designed with people of all ages in mind this
programme provides an aid to learn and match
colours as wel| as being very entertaining. Not only
have colours to be matched in seguence but co-
ordination skills can be developed by moving the
correct coloured OGLE to match a pattern displayed
on the screen. Interest and amusementare provided
by you as Gordon having 1o control your pet dog
Flash by guiding him to collect the matching OGLE,
carry it back and to drap it at the correct position.
There are two levels of play.

An easy lavel for the younger parson.

® TO S@: BEEP ,1,t:

ND
. 3B3 THEN LET w=-1*
@.333 AND rnd:ad.88

FLASH 1;RT .
GHT W:

THEN RETURN
THEN GO

THE UNIVERSE AND EVERYTHING

SPECTRUM ZAP

f" Lﬁltf YOU mUSt Preéss lthe -

2880 PRINT "The

hraee

L

L~ "E
O =3e3

3
TOANOHMTIT ~MO D e~

®
® R0 @RID: REICA

Q06 amd-
“4J33I®W GRNeI Ve

JO~AE

g ~ Wl O
VECIMLO<COIRNOZ G

LET m=3

“r LET o
“y LET 'd

“Wo
B Cr VMO

50

DAHIDD OWC S8 ORNHMTD

PR
ou wah1
1,12; "«

G WHNBPOT AR~ ~~IEBR ~U-RDYPArTRD
) DR~ "0 G~0T

O=w

[y

T B-wGLO

-

AL IEN

PORZIfM: OC T SRR IO <eBD

WA WITUED
@ ~p Db
[}

BARRELDROP! for 48K SPECTRUM

Poor Gordon! His drainpipes are blocked again and
the only way to clear them is to drop barrels down
them. Gordon stands on the top of his roof with &
barrels. When the‘?ame starts he'll roll one down
the roof. Press SPACE to drop it through the roof
accurately into the centre of a drainpipe and you'll
score the number of points in the pipe, which will
startto flash, and Gordon will get the barrel back for
another go. The barrel will be lost if the drop is
inaccurate, or into a pipe already filled, but - Flash
the dog is on hand! If you know you're going to lose
the barrel and you can see Flash peeping out from
the bottom-right corner, press D and Flash will save
itl Once you clean all 5 pipes, you will get a bonus,
but there's a surprisa in store before you get the next
set of pipestofill ......

SUPERSNAILS  for 16K or 48K SPECTRUM
Snails specially imported from West Africa are
being kept in Dr. Van Winklehoff's laboratory for
genetic experiments, The Doctor has turned them
into a super-breed of snail who now leave behind a
trail of super glue that will trap any snail touching it.
Two of the snails, continually moving and
controlled by the players, escape from their pens
into the laboratory. Unfortunately, only one of the
snails can escape from here into the outside world
without raising the alarm. You must therefore trap
your opponent and then try to escape through the
small door which will then appear.

Oy =mO=A8T7 t~0C

Ea=1 LI
R~ o~

H
G Z

cn

ey

ABATe0 DR T CO
F = Pmp] 0N A00T-

‘enuS T

02 A~rOMDD~r <> bD

-G B

S— ﬂO'IIIHII ¥

D0 ~° R~

z

063

('
Chs =Nl

g
]
~OONAM -

o

D
[olated s B = )
3Z 3

%23

o
ZreD =»rE0=0TY

Keapy HeaDarct®

=

<
BFRUN G0~ AP ADRTIW

RTH
we
o

T CRw-

™

Labe
nE Ca~Pkps

Wa 08 Sy MmN
wee b -

INODT=CR
RAR WD~

~
-
]

o

8 Tkl
AR BIDCOFF A« ]

‘AT WIFOIs

wo
ROE~E+BD

“TH H2TY FIeCwno
-

- L
» BOWCHT I
JIEQ
-\g
SREOwWOR
€ W

- BB N~ J00SIEATR WO
o5 APH=mI

»
I
Do
bl

3 e

;I

T 9+ CIVT- D= rbDANIE
L]
]

f

o
X BL e~ ~TRI

ma
<c

Zrell sl €+
]
c
BT 80

< L
hg
o

e

oo
D
TFUO Mn-
L4

ch
L 1 ]
< 3
ARHCOCH
<R BERION
A
Jwo =0

NAJI3ITBBTO as W
gﬁnﬁ F 2T =L

T "e® RAIR BT

v M

D S0
RePR. AT
e
Dt

r
U wWO~ ARD

as

EGBERT

for COMMODORE 64
A fast Arcade Action Game

for all the family to play
Written in 100% Machine
Code for super-fast action!
Egbert waorks on the
production line at 'LEYSPACE’
It was a comfortable life until
the invasion of the TEBBITES
from the planet TOR. Egbert's union has
been exterminated and the Tebbites have left their
deadly Pets running wild in the workplace. As if that
wasn’tenough, theevil invaders have forced Egbert
to take care of an Egg - damaging the Egg will have
fatal consequences for poor Egbert. Egbert is now
on piecewark - can he earn a decent wage? Can he
aven survive? WARNING! You may get an ulcer by
playing this game,
SIX LEVELS OF SKILLANYBODY WHO CAN DO
LEVEL § SHOULD WRITE AND LET US KNOW!

ARITHMETIC FUN-TIME  for TI99

Elementary addition, subtraction, multiplicatinn
and division exercises peasidng vaable practice
and drill for young children who are developing
their basic mathematical skills.

Uses colour graphics and sounds to give a good
presentation with the sums appearing in large
letters on a blackboard.

The Computer plays back sums which the child has
difficulty with showing the child the correct

solutions. Uses the basic T199 console, £5.95

% : + : : Games Machine Ltd,, Business & Technology Centre,

A professional level for tHe older person with pla Features:- Fast Action - 100% Machine Code ?

ag%inst the clock and Hall of Famg. M * Nine levels of difﬁoculw Bessemer Drive, Stevenage, Herts. 5G1 20X,

OGLE COMPETITIONS ARE FUN! £8.95 £5.95 * Keyboard or Joystick Control Telephane: (0438) 316561,
R R R R R R N N N R R R R R
o Please add 50p to cover post and packing. aTy. £ .
: SEND TO:- !
: | enclose a cheque P.O. payable to GAMES MACHINE LTD., for £ WANDA .
: or debit my Access/Barclaycard account na. Eg;:g#"ﬂop GAMES MACHINE LTD. ;
5 i i d Technology Centre, =
: Signature SUPERSNAILS Business agm :c ay :
: NAME OGLES - g :
- ARITHMETIC St enE .
= ADDRESS TOTAL Herts. SG12DX. s
. :
= HCW34 DEALERS AND DISTRIBUTORS REQUIRED.  GAMES AND EDUCATIONAL PROGRAMMES WANTED FOR ANY HOME COMPUTERS. .
R b - A Ao S A e o b i - - - -l g e e e O S N R R RN
Personal Software Winter '83 49




Andrew Thomas

hls program is based on

the popular game in which

one tries to re-arrange the
numbered tiles of the puzzle to
read 1-15 consecutively. Written
in a fairly standard BASIC, the
prograrm should run on most
machines supporting 4K or
more of memory.

The computer may take up
to 20 seconds to set up the
puzzle; this delay is due to the
set-up procedure necessary to
avoid impossible puzzles. The
computer will state the
maximurn number of moves it
should take to solve the puzzle
although it will sometimes be
possible to complete the puzzle
in fewer moves.

Replying to the question
‘WHAT [S YOUR MOVE?’, the
player must specify first the
direction of the move (Left,
Right, Up or Down) and
second, the number of pieces to
be moved (three is the
maximum). For convenience,
only the first letter of the
direction need be typed in and
if the number of pieces to move
is zero or non-existent, the
computer will assume you wish
to move as many as possible.
Note the numbers move in the
direction stated and not the
space — if vou find this
contusing change line 250 to
A%$="RLDU"” as this will reverse
the direction of movement.

The computer will then
check to see if the puzzle has
been completed and if not,
print the puzzle out again
(assuming the last move made
was valid).

HOW IT WORKS

For those of you interested
in the way the program actually
works, the following might
prove useful. The puzzle is

PUZZLE
SOUARE

Fed up with cubes?
Move on to squares. ..

;. __________________________ +
! |
r i 2 3
! !
! 3 b 7 4 !
! !
I L B 8
! !
13 14 15 12}
! !
B et e +
MOVE NUMRER 16

WHAT 1S YOUR MOVE LEFT
e ettt +
@ ;
P 3
|

§o o8 6 4
i !
| 8~ 9 g !
i i
B G R
1 |
+ ______________________ +
MOVE NUMBER 18

WHAT 1§ YOUR MOVE L

§ _________________________ i’
! !
o 2 3 4
! !
t 5 6 7 g !
! !
b9 10 1t 121
! !
| ¥ 14 15 !
! !
o e e e B s e i
WELL DONE .

10U TOOK

whkkkdk SAMFLE RUN #kddas

P

THE FUZZILE COULD HAVE BEEM SOLVED

e +
| !
P A 2 31
! !
L5 6 7 41
! !
e T g !
1 [
P33 4 s g |
! !
e +

MOVE MUMEBER

17

WHAT 18 YOUR HOVE R1

b i +
! 1
Lo 2 3 |
! |
S B R i
| ]
BB C§ g |
! !
L. BA R
! !
+ _____________________ I.

MOVE NUMEER

19

WHAT IS YOUR HOVE U

19 MOVES TO COMPLEATE THE FUZILE .
IN 146 MOVES

D0 YOU WANT ANOTHER GAME FLAY AGAIN SOHE TIME !!

READY,

50

Personal Software Winter ‘83




stored in the 16 element array,
AQ, and the space is
represented as a zero. P has
been designated the position of
the space in the array, N is the
number of pieces to move and
D represents the direction in

REM WRITTEN ON APRIL 1980 WRITTEN ON THE
'SORCERER’

DIM A(16),D(4)

PRINTCHR$(12); TAB(26)"NUMBER PUZZLE"
PRINTAB(26)"[13 — 1"

PRINT

PRINT

PRINT"THIS PROGRAM IS A COMPUTER VERSION OF THE
POPULAR"

PRINT”NUMBER PUZZLE"

PRINT

PRINT"THE OBJECT OF THE GAME IS TO REARRANGE THE
PUZZLE”

PRINT”SO THAT IT READS 1-16 IN SEQUENCE, WITH 1 AT
TOP LEFT"

PRINT"AND THE SPACE AT BOTTOM RIGHT.”

PRINT

PRINT"WHEN ASKED "WHAT IS YOUR MOVE’ YOU INPUT
THE DIRECTION"

PRINT”IN WHICH YOU WANT TO MOVE THE NUMBERS
AND OPPISITE”

PRINT”DIRECTION YOU WANT TO MOVE THE SPACE.”
PRINT*THE DIRECTIONS ARE "RIGHT’, 'LEFT’, "UP" AND
"DOWN".”

PRINT” FOR CONVENIENCE ONLY THE FIRST LETTER IS
NEEDED.”

PRINT”BEFORE HITTING ‘RETURN’ INPUT ALSO THE
NUMBER THAT YOU”

PRINT"WANT TO MOVE. IF YOU INPUT '0' THE PROGRAM
WILL ASSUME"

PRINT”YOU WANT TO MOVE AS MANY AS POSSIBLE.”
PRINT"THE MAXIMUM YOU CAN MOVE IN ONE GO IS 3'."
PRINT

PRINT"THE PROGRAM WILL VALIDATE YOUR MOVE.”
PRINT

A$="LRUD"

M=0

D(1)= -1

D(2) =1

D(3)= -4

Di4) =4

FORI=1TO 16

Al =1

NEXTI

Al16)=0

P=16

R=INT(RND(1)*10) + 12

FORW=1TOR

$=0

N=INTIRND(1)*3) + 1

IF ABS(D) =4 THEN D = D{INT(RND(1)"2} + 1): GOTO 420
D=DIINT(RND(1)*2) +3)

GOSUB 820

IFN<>0AND S=1THENN=0:S$=0: GOTO 420
IFN=0ANDS=1THEN S=0:D=-D:GOTO 420
NEXT W

PRINT

INPUT” HIT ‘RETURN’ TO CONTINUE “;Q$

W=0

PRINT

PRINT”HERE IS THE PUZZLE IT CAN BE SOLVED IN
".R;"MOVES."

PRINT

PRINT"[+1[20 - 1[ +]1"

PRINT”[!1[20SPCI[!]1"

M=M= +1

FOR |=0TO 12STEP 4

PRINT"I";

which the pieces move.

Moving on to the listing
itself, lines 310-450 set up the
puzzle, it is printed out by lines
490-650 and the two lines, 660
and 670, check if the puzzle has
been completed. The rest of the

570
580
590
600
610
620
630
640
650
660

680
690
700

1100

1110
1120
1180
1140
1150

. PUZZLE SQUARE
e R A e A e T e B B R~

program is concerned with
movement: lines 720-740 find
the numeric equivalent to the
direction chosen, lines 810-820
check the move vertically, lines
980-990 check the move
horizontally and lines 920-960
actually move the pieces.

FORJ=1TO4
IF All+J)=0 THENPRINT” [4 SPC]";:P=1+J : GOTO 610
IF All+J) <10 THENPRINT“ [4 SPC]”:All +J); : GOTO 610
PRINT” [2 SPC1";All+ J);

NEXT J

PRINT"1"

PRINT”[11[20 SPCI[!]”

NEXT |

PRINT"[ +1020 =1[+1"

FORI=1TO 15

IF All) =1 THEN NEXT | : GOTO 1040

PRINT

PRINT”MOVE NUMBER “;M;

INPUT"WHAT IS YOUR MOVE";Q$

PRINT

FORI=1TO4

IF LEFT$(Q$,1) = MID$(AS,1,1) THEN 780

NEXT |

PRINT"ENTRY FORMAT INCORRECT."

PRINT"NOW "

GOTO 700

D=DII)

GOSUB 810

GOTO 520

N=VAL(RIGHT$(Q3,1))

IFP-(D*N) >0ANDP-(D*N) < 17ANDP-D >0ANDP-D <17 THEN
870

IFW<>0THEN S=1: RETURN

PRINT”MOVE IS INVALID.”

PRINT”NOW";

GOTO 700

C=1

IF ABS(D)=1THEN 980

IF N < >0THEN 920

IFP-(C*D)>0ANDP-(C*D) < 1T7THEN C=C+1: GOTO 900
N=C—1

FORI=1TON

A(P) = A(P-D)

A[P-D)=0

P=P-D

NEXT |

RETURN

E=INTI(P-1)/4)*4+1

IF P-(N*D} <EOR P-(N*D)>E+3 OR P-D<E OR P-D>E+3
THEN 830

IF N< >0 THEN 920

IF P-(C*D)>=E AND P-(C*D)<E +4 THENC=C+1:
GOTO1010

N=C-1

GOTO 920

M=M-1

IF M< =RTHEN PRINT*WOWI! OUTSTANDING
PERFORMANCE !1111”:GOTO1090

IF M<R*2 THENPRINT”WELL DONE.”:GOT0O1090

IF M<R*4 THENPRINT”AVERAGE
PERFORMANCE.”:GOTO1080

PRINT”YOU NEED MORE PRACTISE 111"
PRINT”YOU TOOK ";M;"MOVES TO COMPLETE THE
PUZZLE."

PRINT”THE PUZZLE COULD HAVE BEEN SOLVED IN
”:R;"MOVES."

PRINT

INPUT”DO YOU WANT ANOTHER GAME”:Q8

IF LEFT$(Q$,1) = "Y"THEN 20

PRINT”PLAY AGAIN SOME TIME 11"

END

Listing 1. The program for Puzzle Square.

Personal Software Winter '83



Derek Hufton

SERPENTS

VARIABLE FUNCTION

Line

Function

Play this classic snake
game written for the

BBC Micro.

erpents is a very simple
S but addictive two player

game. Each player controls
the movement of a snake within
the screen border. These snakes
can be moved up, down, left or
right by the use of the following
keys:

Player 1 (top)
W

Z
Player 2 (bottom)
— (underscore)
| RETURN
DELETE

The basic aim is simple, do not
bump into anything. You must
not hit the trail. If you do, your
opponent scores one point, the
first player to reach ten is the
winner, If the top snake crashes
a high tone is sounded, if the
bottom snake crashes a lower
tone is sounded. In the event of
a head on collision, the lower is
decided randomly. At the end
of a game press the space bar to

A%  Colour of player 1 snake play again.

B% Colour of player 2 snake Full use is made of the

F%  Selected speed number BBC's impressive colour

H1% Character number of player 1 snake head graphics and sound to give a

H2% Character number of player 2 snake head game that requires quick think-

1% X-axis position of player 1 snake ing apd dexterity, and is also

J%  Y-axis position of player 1 snake pleasing to watch. At the start

K%  X-axis position of player 2 snake of each game the colours are

Lo Y-axis position of player 2 snake chosen rgnd@ml_y, 80 mo_st

K1% Increment in X-axis position of player 2 snake games will be visually different,

L1% Increment in Y-axis position of player 2 snake and a speed level between 1

M%  Time delay factor (hundredths of a second) and 3 can be selected, 1 being
fastest. The listing given is for a

32K BBC machine, but for those
with only 16K suggested
changes are given in 'Hints On
Conversion' to enable the pro-
gram to run in 16K.

Lines 26-34 Defines the characters to be used as the
snakes’ head in the 4 different directions and
for the body.

Lines 50-60 Defines sound envelopes, used when crashing.

Lines 80-200 Main program loop.

HINTS ON CONVERSION

Change the following lines as
indicated and the program will
then run on a 16K machine:

) Personal Software Winter '83




(]

e

Procedure

PROCmove

PROChorder

PROCcolours

PROCcrash:

PROCend

PROCspeed

Function

Lines 1020 to 1130 check tc see if specific
keys have been pressed at that instant and
sets the appropriate user defined head
character and the amount to advance on the
X and Y axes. In Mode 2, one position
horizontally corresponds to 64 graphics
positions, one position vertically corresponds
to 32 graphics positions.

The keys used generate the following for
INKEY:

W=-—34, A=—-66, S=—82, Z=—98
_=-—41, 1] =-89, RETURN= — 74,
DELETE=-—90

Line 1210 checks to see if the next position
for player 1 is already occupied (ie if the
colour is not black). Line 1220 does the same
for player 2.

Lines 1240, 1250 set the colour of snake 1
and moves on one position.,

Lines 1260, 1270 repeat the above for snake
2 P
Lines 1280, 1290 update the screen co-
ordinates for each snake head.

Lines 1300, 1310 perform the time delay
depending on the chosen speed.

Line 1320 flushes the keyboard buffer.

Lines 2015, 2017 set colour for border and
clear screen.

Lines 2020 to 2065 draw the border.

Lines 2072, 2074 set start positions and
increments for snake heads.

Lines 2076, 2090 print score headings and
snake heads in start positions.

Lines 2100 to 2170 randomly selects the
colours for the border, snakes and score
headings. These will change for each game.
Line 3020 updates the score.

Line 3030 generates the sound under control
of the appropriate envelope depending on
which snake crashed. High tone is player 1
(top snake), low tone is player 2 (bottom
snake).

Lines 3040 to 3050 pause until sound has
played.

Line 5004 resets the screen and prints final
scaore.

Lines 5010, 5020 selects a flashing colour to
print "GAME OVER".

Line 5030 waits until the Space Bar has been
pressed before continuing with another
game.

Lines 6000 to 6040. Sets colour green, clears
the screen and asks for a-speed value in the
range 1 to 8. Line 6030 then sets a delay
factor based on the selected speed. This is
used in conjunction with lines 1300 and 1310
in PROCmove. Line 6010 CHRS(7) generates
a beep.

; FReehy - : SERPENTS
U s e e e e e e e s s e U e e |

15 Change to MODE 5§

2120 to 2150 Only 4 colours are
available in Mode 5, one of
these is normally black, so lines

2120 to 2150 become:

2120C% = RND(3)

2130 A% = RND(3):IF A% =
C% GOTO 2130

2140B% = BND(3):IF B% =
ORB% = C% GOTO2140
2150D% = B%

5010 GCOLQO, 3 (In Mode 5
logical colour 13 1is not in
range)

Other Machines
To help with conversion to other
micros, the following notes may

be helpful:

MODE 2 This selects one of the
BBC's graphics modes. Mode 3
has sixteen colours available,
colours | to 7 can be used for
game display, where:

Red
(Green
Yellow
Blue
Magenta
Cyan
White

/I

=11 s WO B —

VDU?24 This sets the co-
ordinates for the graphics
window.

CLG Clears the graphics
screen.

VDUS5 Followed by the
character code and eight
further numbers defines a
graphics character as the bit
pattern of the decimal
characters.

*FX15.1 Flushes the keyboard
buffer.

% The % on the end of a
variable indicates on integer.

Personal Sottware Winter '83



10
15
20
26
28
30
i
34
50
50
70
80
85
100
110
120
130
140
z00

1000
1010
1012
1015
1020
1030
1040
1050
1100
1110
1120
1130
1200
1210
1220
1230

REM Serepents - D Hufton 3 Dec 1982

MODEZ

vpUs

VUDUZ23.231,0,62,103,255,15,255, 126,60
VDUZ3,232,0,124,230,255,240,255, 124,60
UDUZ3,233,40,108,238,234,250,254,126,50
VDUZ23,234,60,126.254,250,234,238,108,40
VDUZ3,241.255,255,255,2595,255,255,255,255
ENVELOPE1+1+30:20:0:,50,6,50:;2,1,0,=2,100,128
ENVELOPEZ,1,100,-30,0,50.:6.50,2,1,0,~2,100,1286
UDUZ24,0507 1245710237

FPROCcolours

FROCspeed

PROCborder

PROCmouve

PROCerash

IF S%=10 OR T¥=10 THEN PROCend:GOTD B0

GaTo 100

END

DEF PROCmoue
REM check Kevs and move snakes
Z%=0

REPEAT

IF INKEY(-34)
IF INKEY(-E8)
IF INKEY(-82)
IF INKEY(-98)
IF INKEY(-41)
IF INKEY (-89}

J1%=32111%=0IH1%=233IG0TO 1100

[1%=-641J1%=01H1%=231:60T0 1100

I1%=641J1%=0HI%=23ZIG0T0 1100

J1%=-32II1%=0IH1%=234

L1%=3Z2IK1%=01HEZX=233!G0TO 1200

K1%=-B4.L1%=0H2%=231:60T0O 1200
INKEY(-74) K1¥=GB4IL1%=0IH2X=232:!G0TO 1200
INKEY (-90) L1%=-32IK1%=01H2%=234

REM test crash and mouve

IF POINT(IWN+ILX,J%+J1%~12) <32 O

IF POINT(KUE+KLI¥,LU+L1%-12) <> O

IF 2% GOTO 1350

1240 GCOLO.AX

1250 MOVE I%,JYXIPRINT CHRS(241):MOVE

CHRS(H1%)

1260 GCOLOQ.B%

1270 MOVE K% ,LXIPRINT CHRS(241)1MOVE

CHRS{HZX)

1280 SIV+ILNI JU=J%+11%

1280 KA=KU+RIXILA=LA+LI%

1300 WX=TIME

1310 REPEAT UNTIL TIME >

1320 #FX15.1

1350 UNTIL Z%>0

1400 ENDPROC

1999 ####eaadAttrd A0 2B USRS AN HHREH

2000 DEF PROCborder

2010 REM draw Perimeter etc.

2015 GCOLO.CH

2017 CLG

DEMON KNIGHT

A terrifyingly difficult adventure.

Only £6.50 (plus 25p p & p)

Available for. Spectrum, BBC B
and Commodore 64

Zh=Zh+1
ZU=ZU+2

IX+T1%. JA+J1ILIPRINT

KA+R1ZLE+L1XI PRINT

WHR+ME

Had any good Adventures lately?

Try this one. It is difficult, deadly and
logical. Your task is to find, face and
defeat the Demon Beelzebub. You will
need a strong nerve and a clear, incisive
mind to succeed.

In order to defeat the Demon, magic
must be used - so don't think you're just
going to stroll up to Beelzebub and start
swinging a sword around. Not a good
idea. This is an Adventure in which it will
be a long time before you get that far - so
don't blow it!

ASP Software
London WC2H OEE.

e i e i e e e st o e e e

1 Please send me. ... tape(s) — (delete as necessary)

I of Demon Knight for.............../(state which version required). |
I enclose my cheque/Postal Order/ International Money Order |

| (delete as necessary) for: (made payable to ASP Ltd) |

| OR Debit my Access/ Barclaycard (delete as necessary)

(S T

| Please use BLOCK CAPITALS
| Name (Mr/ Mrs/ Miss).........
IAddross.................

I L R T I

Signature..........

e & -

Please allow 28 days for delivsr'y

et Y p—

S 20zZ0

You only get one life,
onto tape at any stage and restart later if it
all gets too much to cope with. DEMON
KNIGHT is a challenge to Adventurers of
all levels— can you meet it?

Fill in the coupon and return it to:

145 Charing Cross Road

MOVE1Q, Q0 IPLOTES .0, 10231PLOTBS,10,1023

MOVES, 1018IPLOTE5,1245,1023PLOTBS,1245,1013
MOVE1Z35,1013IPLOTB5,1245,0:PLOTES,1235,0
2030 MOVEIZ35,53IPLOTES,10,0IPLOTBS,10,53

2039 MOVELl,.983!DRANWIZ34,963:PLDTES, 1234,953!
DRAW11.,953PLOTES 11,963

Z06% MOVELSO.1012IDRAWISO,964:PLOTBS, 1088, 1012
PLOT8S. 1088 ,.964

2072 I%=2210%=950:11%=64!J1%=0

2074 K¥=1173IL%=851K1%=-64!11%=0

2078 GCOLO.D%

2080 MOVEZ1S, 1O00IPRINT "####SCORE®##+" IMOVE20, 1000
PRINTFSXIMOVEL100,1000IPRINT!TY

2082 GCOLO.AY%

2084 H1¥=2321H2%=231

2085 MOVEIX:JZIPRINT CHRS(H1%)

Z087 GCOLO,B%

2090 MOVEKY,LYIPRINT CHRS(H2¥)

2098 ENDPROC

2000 HAEFRHARSRBARFE R BB RS RR R

2100 DEF PROCcolours

2110 REM set coleurs fFor border &
2120 C%=RND(7}

2130 =RND(7})!IF A¥=CY GOTO 21230
2140 RND(7).IF B%=A% OR B¥%=C% GOTO 2140

2150 DYL=RND(7).IF D¥=A% OR DZ=B% DR D¥=C%Z GOTD 2150
2170 ENDPROC

2030
2040

snakes

3000
3010
3015
3020
3030
3040
30850
3100

DEF PROCerash

REM erash routine

IF Z%=3 THEN Z¥=RND(Z2)

IF Z¥=2 THEN S%=5¥+1 ELSE TX=T%+1
SOUNDIL 2%, 53,40

Wx=TIME

REPEAT UNTIL TIMEXWX+150

ENDFROC

5000
So0d
3010
5020
3030
S030

DEF PROCend

PROCborder

GCOLO,13

MOVE3S0,B50: PRINT"GAME OVER™
REPEATII%=GETIUNTIL I¥%=32
ENDPROC

[={aluls]
BO0Z
E004
EO0E
Golo
GOZ0
GO30
G035
G040

DEF PROCsPpeed

GCOoLo, 2

REFPEAT

CLS

PRINTTAB(Z,4): "SPEED (1 -
UNTIL FX>D OR F¥<B
Mi=(Fi=1)%5

SU=01T%=0

ENDPROC

=) "ICHRS(7)7IINPUT F%

but you can save




Simon Goodwin

Imost without exception
Athe current range of

personal computers use
an 'interpreted’ BASIC as their
main language. This means that
when you enter a normal
BASIC program you are not
loading the computer memory
with the machine code
instructions your processor will
execute when you type RUN.
Instead you are loading a
stream of symbols which
describe what you want to do to
a large machine code program
called the ‘interpreter’, this then
executes many thousands of
instructions trying to work out
what you want to do. An
interpreter looks at a set of
‘rough notes’ (rather like
shorthand) and then uses a kind
of programmed initiative to
work out what the symbols mean
and to carry out the appropriate
operations.

This process is fundamental

to an understanding of how a
micro-based system works: this
article will explain (in general
terms) how your interpreter
executes @ BASIC program.
We'll also compare the common
interpreters with ‘compilers’,
explaining the difference
between the two. Whether your
computer is an Apple, PET,
TRS-80, Sharp, NASCOM or
whatever, the principles used
are much the same.

INTERPRETATIONS

Take this simple program line
as an example:

100 A = B+1: GOTO 200

We'll assume that it is a single
line from a larger program, and
that a while ago you typed RUN
and the computer has just
reached the line above. It looks
at the first part of the line, after
the line number, and scans
through it until it finds a
character that is not

‘alphanumeric — in this case,

the eguals sign. It then looks at
the character it has read so far
(the letter A) and checks that it
is not a reserved word (LET, IF,
GOTQO, etc). In this case it
decides that 'A’ is not reserved.
Consequently the computer
assumes that the statement is an
assignment. [f your BASIC
requires you to use 'LET"
statements then it would give an
error message at this point, but
most popular interpreters permit
LET to be optional.

The interpreter assumes that
‘A’ is a variable name. A
routine is called to search a
table of current variables. This
is set up as the program runs
and comprises a list of variable
names and their values. The
routine will search through for
the name 'A’. When it finds the
entry it will store its memory
address in an area of RAM
reserved for the use of the
interpreter (either on the stack
or in a fixed place). The main
section reads further and finds
the name 'B’. It calls up the
variable-search routine again
which tries to find 'B' in its
table. If it can't find it, the
routine creates a new entry at
the end of the table enabling it
to find that variable the next
time it is needed. Most versions
of BASIC (but not that on an
Acorn ATOM) will set the value
of the variable to zero when it is
created.

The search routine is finally
able to return the address of the
variable B to the main
interpreter. The main program
can now look at the fourth
character on the program line!
It finds the plus sign (which also
marked the end of the name B)
and makes a note that it will
have to do some adding — but
first it must work out what to
add. It reads further and locate
the figure '1’' then the colon
which signifies the end of the
statement. Other types of

INTERPRETERS
e S B Eey o

Just what does turn all
that BASIC code into
something the computer
can run? The answer is
a special program
called an Interpreter.

[ e e T S il ST R TR e S
BASIC might use a different
character to mark the end of a
statement — on a Sinclair
computer, for example, the end
of the line signifies the end of a
statement since only single-
statement lines are allowed.

Now the computer calls a
routine to convert the figure 'l
from its format in the BASIC
program (an ASCII character
with code 49) into the binary
format used by the
microprocessor. When you type
in your numbers in base ten
using one character for each
figure. When your computer
does arithmetic in base two it
uses one character for every
eight figures! Consequently the
interpreter has to use a quite
complicated routine to convert
numbers from decimal to
binary. Even though in this case
we are only converting a single-
digit number (in either base!),
the routine used must work for
all lengths of number allowed
by the system and make the
appropriate changes if it finds a
minus sign or a decimal point.
Once it has discovered the
correct value, it can call a
relatively short subroutine to
actually add what it has worked
out to the number in the
workspace area. Once the
calculation is complete, it
retrieves the location of variable
A (remember variable A7) and
stores the result there.

Hardly pausing to catch its
breath, the interpreter now has
a look at the next statement. It
checks that GOTO is a valid
word — this is where your
WHAT ...IFand IF. ..
NECESSARY statements get
thrown out. In the case of this
line, the GOTO part tells the
interpreter to get ready to
change line numbers. It reads
the next part of the statement —
the line number — and converts
it into a binary number. Then it
will merrily search all through
the program lines in the

Personal Seitware Winter '83



INTERPRETERS

memory trying to find a line
with a number that matches the
one in its buffer. If it finds one,
it stops searching and gets
ready to work out or ‘parse’ the
first statement on the new line.
If it fails to find a match
anywhere in the program, it
gives up and prints an error
message; unlike the case of
variables, it is not considered
good form for an interpreter to
create a new line of program if
it can't find the one requested!
The only computer which comes
close to doing this is the ZX8]
which jumps to the line with a
number closely following the
one chosen if you try to GOTO
a line which isn't there.

TOO SLOW?

That was a simple example of
the execution of a program line
but it summarises the workings
of virtually all BASIC
interpreters. Various
programming tricks are

somtimes used by their authors
to make the program text easier
for the interpreter to parse or to
convert; reserved words may be
compressed into special
character-codes, or pointers
may be used to help the
interpreter find its way from one
line to another. Whatever
methods are used, a relatively
small proportion of the time
during the running of an
interpreted program is taken .
up in searching through tables
in memory or in converting
information from one format to
another.

All this may not worry you
much as a personal computer
user. So long as the machine
can do it faster than you can
work it out on your fingers or at
the typewriter, all is well,
Sconer or later, however, you
will find that your program isn't
running quite as fast as you
would like. Maybe it is the
unnerving way the Space
Intruders judder to a halt when

Location Contents Meaning

10F9 00 Header

10FA __*_[O?. Pointer to next line

10FB 1]

1OFC OA Line number

10FD 60] (10 in Hex)

IOFE 4] A

10FF B4 =

1100 35 5

1101 00 Newline

1102« | 0A Pointer to next line

1103 11

1104 14 Line number

1105 Q0 (20 in Hex)

1106 42 B

1107 B4 "

1108 38 S

1109 00 Newline

110A «— I | 13 Peinter to next line

110B 11

110C lE Line number

110D 00 (30 in Hex)

110E 9E PRINT

11CF 4] A

1110 2C

1111 42 B

1112 00 Newline

1113 «+— .00 End of program
rmarker

1114 00

Fig. 1. How a short section of
BASIC is stored in the
memory. The program reads
from top to bottom and the
BASIC has been tokenised.

you try to move your laser and
shoot them at the same time —
maybe it's the long wait while
your computer sorts your
massive list of friends into order
of protocol. Either way the fact
that the computer is executing a
few thousand machine
instructions evey second doesn't
seem to help much. You will
probably have come across a
variety of suggestions to be
used to speed up programs —
peculiar things like using as few
variables as possible, putting
your subroutines at the start of
the program, using variables
instead of constants, etc. Maybe
this article will explain how
some of these tips are of use in
reducing the overheads
imposed by the interpreter.
Another chronic problem
when a computer uses an
interpreter is the way it never
learns by its mistakes. You
would expect any sensible
machine, surely, to know where
line 200 is after it has been sent

_there a few times?

Untortunately this is not the
case; each time the interpreter
executes a line it has to start
working out what the contents
mean from scratch.

Hopefully you have now
guessed what a compiler does.
It translates a program written
in 'source’ form — the PRINT
and INPUT statements you are
used to writing — into a
program which the processor
can execute more or less
directly, without all that
searching and conversion. A
compiler usually makes two or
more 'passes’ or repeated
searches through the program
text from start to {inish. Usually
the computer must be told by a
special command to compile the
program before it can be RUN
at all. There is a vital difference
here between compiled and
interpreted programs: when you
type RUN under an interpreter,
you are telling the ‘editor’ (a
part of the BASIC which allows
you to. type in lines) to start
executing the interpreter; when
you type RUN under a
compiler, you are telling the
computer to actually execute
the machine-code generated
when the source was compiled.
A few compilers will operate

56

Personal Software Winter '83



automatically when you type
RUN - they compile and
execute as one step, as far as
the user can tell. Some will
compile each line as it is typed
in although these are not
usually as efficient a the ones
which treat compilation as a
separate process.

Generally a compiler will
first pass through the program
text working out where each
line will be in the final code
and reserving space for the
variables used. Once that
analytical pass is complete, the
compiler is able to go back
through the BASIC program,

converting GOTOs and similar

instructions into direct machine
code jumps to the lines
concerned, having worked out
the appropriate addresses
earlier.

All the variable references
are converted into simple
instructions which tell the
processor to transfer information
to and from memory. Constants
(eg 32767, 0.778, 1.6775E-6,
"TOAD") are converted from
the text typed by the
programmer into binary that
can be easily used by the
micro. It is usually still
necessary to provide some
routines outside the actual
program code — for example,
most microprocessors cannot
handle floating-point
calculations internally — so
these functions are set up as
subroutines and either built into
a 'library’ at one end of the
compiled program or inserted
into the code when they are first

used. Unless the subroutine is a
very simple one, it will only be
built in once. Other parts of the
program that need it will just
call it when necessary by
loading memory or registers
with the parameters (the data to
be processed and a note on
where to put the result). Then it
calls up the required routine.
The final result is a machine
code program which will do
everything that the equivalent
BASIC would have done — but
maybe 10 times faster!

THE REASONS WHY

At this point it is worth
considering the advantages of
using an interpreter. The most
important advantage becomes
apparent when you try to
modify a compiled program. . .
you will usually have to reload
and recompile the entire source
listing source listing before you
can test even a one-line
change. Once a program has
been compiled the original text
is no longer in the computer
memory and the machine code
that replaces it is almost
impossible to modity.

In the compiled program
you cannot simply insert a few
extra instructions; the rest of the
program relies upon the fact
that the instructions (variables
and so forth) are in fixed
places, worked out when you
first compiled. After you have
changed a compiled program
those addresses will probably
be wrong. A jump which used
to send you to line 100 of the

INTERPRETERS

original program might now
drop you into the middle of the
previous line. The source
program must be translated
again before it will work. An
interpreter makes a search for
each item of data whenever it is
referred to, so the problem
doesn't arise.

This problem becomes even
more annoying when you are
trying to track down an elusive
bug in a compiled program. An
interpreter will let you insert
STOP and PRINT statements at
crucial places in the program;
you can even patch in a GOTO
to skip over a given section of
the listing. It is easy to start a
program from a point in the
middle, perhaps using variables
set up earlier but as most
compilers generate pure
machine code (without line
numbers or comments), they
rarely permit interruptions of
this kind and each and every
temporary change must be
compiled with the whole
program. As a compilation
usually takes minutes rather
than seconds, the speed
improvement cffered by a
compiler begins to look slightly
less attractive to the
programmer.

WHICH TO CHOOSE?

So far we have made no

mention of the relative sizes of
compiled and interpreted
programs. The main advantage
of a compiler is that once it has
done its job, it can be removed
from memory as the compiled
program is self-supporting
machine code. An interpreter
must be resident with your
program when you type RUN
(really the interpreter does the
RUNnning!). In practice quite a
few routines used by an

“interpreter must be duplicated

inside a compiled program —
for example, code to handle
arithmetic, read from the
keyboard or write to the screen.
Generally a compiled program
will take up slightly less space
than an interpreted one with its
interpreter but the difference is
not great. Many micros have
their interpreters in ROM so
that the space occupied cannot
be used by a compiler anyway.

Personal Software Winter '83

57



Simon Goodwin

COMPILERS

ACCEL 3

OO0 0O0O0
4

we explained some of the

features of compilers for
BASIC personal computers.
Here we look at one ingenious
commercial product — the
ACCEL2 compiler tor TRS-80
and Video Genie. This program
demonstrates may of the
strengths and weaknesses of
compilers in general. We're
grateful to Southern software,
the UK authors, for permission
to describe some of its inner
workings as they illustrate many
of the points that a user should
consider when attempting to
enhance the features of almost
any BASIC micro. There is no
reason why a compiler along
the lines of ACCEL2 could not
be written for any of the
popular computers.

LOADING AND USING
ACCEL2

Briefly, a compiler is a
program that translates BASIC
statements from the 'tokens’ in
memory (eg FOR, GOTO, etc)
into machine code. Once a
program has been translated it
is much more difficult to modify
than when it was ‘interpreted’
but it can be run ten or more
times faster!

In the article on Interpreters

The compiler was supplied on
digital cassette, accompanied
by a strikingly-bound 18-page
manual (it is compatible wth
disc systems). Two identical
copies of the program are
recorded on the tape, which is
loaded using the Level 2 BASIC
SYSTEM command since it is a
machine-code routine. When
first run, the message "TARGET
ADDR?" appears. This feature
allows you to store the compiler
anywhere in your computer's
RAM. The program will
automatically move itself to the
target address that you specify
in answer to the prompt. That
means it is compatible with all
‘memory sizes’ (so long as there
is enough room for it to load
in the first place). Normally you
should reserve an area of
memory out of reach of BASIC
when the machine is switched
on. The program doesn't check
that the memory address
specified contains free memory
but only the most confused
programmer would consider
that a problem. The manual
contains a useful table of
suggested storage areas for
different systems.

The ACCEL2 compiler is
remarkably small — it only

}

—

Here is another method
of getting BASIC
programs into a form
that can be used by the
micro,

T e T e e e e I T
occupies 5%2K of user RAM and
loads in less than two minutes.
About three-quarters of it can
be deleted once compilation has
taken place (most of the
program does the translating
rather than suport the operation
of the final compiled BASIC
program). Once the compiler is
in memory, you may load or
type in any BASIC program
that will fit into your remaining
RAM. You may even RUN the
program in the normal way and
it will execute as if the compiler
was not there. When you think
there are no more errors in the
program, you may compile it by
typing the new command /FIX.
A 14K program should compile
in about two minutes. There is
no way to interrupt the compiler
while it is working; if you press
the Reset button before the
prompt re-appears, you will
have to reload both programs
betore you can get any sense
out of your system.

HOW IT WORKS

The compiler works by locking
through the BASIC program in
memory and trying to find
instructions that could easily be
performed in machine code. [t
would not be possible to fit a
full-feature compiler into only
5632 bytes of Z80 machine
code, so ACCEL2 sets out to
translate only those functions
that can be enhanced most
dramatically by compilation. It
relies upon the tact that once the
program is compiled, it cannot
be edited. That means that most
of the searches carried out by
the interpreter can be replaced
by simple instructions that fetch
data directly from some pre-
calculated memory address.
These addreses are worked out
by ACCEL2 while compilation
takes place and are stored
immediately inside the compiled
program. The Z80 processor
used in Video Genie can only
directly process numbers in the
range — 32768/ + 32767 (the

m—

58

Personal Software Winter '83

i o —r



range that can be stored in one
of its 16 bit registers). Integer
whole number) values on most
mini and micro-computers fall
into this range and are useful as
general-purpose stores in
programs. Loop counters,
graphics co-ordinates and ‘flags’
are generally integer values and
Apple, Tandy and PET
computers all support special
integer variables'.

The Z80 instruction set
includes integer addition and
subtracticn but not
multiplication, division or
complex functions such as
square-root. These must be
performed using a large
number of machine code
instructions and consequently
ACCEL2 does not directly
compile them. All GOTOs and
other line number branches can
be compiled since the target of
a branch is static. ACCEL2
replaces those instructions by
machine code JUMPs. This is a
most valuable improvement over
interpreted BASIC — a Z80
jump takes about five millionths
of a second on a TRS-80or
Video Genie (even less cn a
computer with a 6502 processor
like Apple or PET). The BASIC
interpreter won't even have
worked out what comes after the
GOTQ, let alone check the
syntax, convert the number to
binary and search all the way
through memory to find the line
required!

There are quite a few other
BASIC functions that can be
handled directly by the
processor. Graphics commands
such as SET, RESET and POINT
are really only elaborate ways of
setting or clearing bits in the
computer’s video RAM.

ACCEL2 replaces them by calls

to a set of simple subrcutines.
GOSUB and RETURN have
direct machine code
equivalents, and very little code
is needed to simulate a FOR. . .
NEXT loop since it usually only
uses integer addition,
comparison and jumps (so long
as the index variable is an
integer — and this is usually the
case). PEEK and POKE are
simply compiled and constants
(such as "FRED", — 1000, 3.14,
etc) are stored as binary values.
As well as translating those

statements into machine code,
ACCEL2 is faced with a large
number of other more complex
operations: floating-point
calculations; string-handling;
and so forth. These are
compiled in a rather different
way. The data to be processed
is fetched as detailed above but
rather than operate upon it
directly, ACCEL2 calls up
routines within the ROM
interpreter to actually work out
the results. Even though it is the
same code 'doing the work’, the
BASIC intepreter normally
spends so much time searching
for data that ACCEL2 can
usually speed up those functions
by three or four times. Most
functions that are very complex
(such as SIN and all the
varieties of PRINT) are left in
their interpreted form, keeping
the size and complexity of the
compiler down. You may
choose to compile only a part of
vyour program at a time and
ACCEL?2 will automatically take
over from the interpreter when
it comes to a compiled
statement, relinquishing contral
later. It is this feature that
makes ACCEL?2 interesting to
the programmer since it permits
a compiler to be written
piecemeal, one function at a
time. In fact ACCELZ was
written in this way — the
original 'ACCEL' being a 2%4K
program that only compiled
branches and most integer
operations. It is still available
(for half the price of ACCEL2)
and is ideal for games and
similar programs.

ACCEL2 converts compiled
statements into REMs followed
by machine code. To prevent
confusion and to reduce the size
of the compiled program,
genuine comments are removed
from the BASIC before it is
compiled. Despite this,
compiled programs are usually
larger than their intepreted
eguivalents.

HANDING OVER

To accomplish the handover

of control between compiler and
interpreter, a very valuable
feature of Microsocft (and most
other) BASIC interpreters is

~used. You may have been

disappointed to discover that on
your PET, TRS-80 or Apple not
all of the internal memory can
be used to store BASIC
programs. The interpreter
borrows a few hundred bytes to
store partial results of
calculations and various other
notes on the progress of a
session at the keyboard. There
is also a table of memory
addresses (or JUMP
instructions) in RAM and the
interpreter calls at those
locations at various key points
in the execution of a program.
There are about fifty ‘vectors’ in
reserved memory on a Video
Genie or TRS-80, and two of
them are of special interest to
compiler authors since they ar
used just before each direct
command is processed and
before statements are executed.
On a Video Genie or TR3-80
(Model 1 or 3) these vectors are
stored at 41B2 Hex and 41C4
Hex — other interpreters will
have equivalent vectors at
different addresses.

Normally the vector
locations contain nothing more
than a jump back into the
depths of the BASIC ROM but if
a machine code program wants
to take over at times, it need
merely replace the vector in
RAM with one pointing to its
own routines. It can check
what's going on when it is
called up and either jump back
to ROM it it doesn’t want to
interfere or process the
statement in its own way and
then re-enter the interpreter at
the point where the next
instruction is fetched. Extended
BASICs and 'Toolkits' use these
vectors to add to the commands
on a computer — once the
relevant locations have been
found, a user can expand the
system software of his computer
little by little; there are books
available describing the
workings of most of the popular
microcomputer interpreters. My
recommendation for TRS-80/
Video Genie users is 'Pathways
through the ROM' distributed
by The Softwarehouse.

To ensure that ACCEL2 will
use the same variable storage
area as BASIC, it checks
through memory during
compilation working out where P

Personal Software Winter '83

59



COMPILERS

B B e R S SRy

each variable will be stored and
where each line of the program
will eventually end up. To make
the compiled program exactly
compatible with normal BASIC,
ACCEL2 has to do a certain
amount of ‘housekeeping’ as it
runs. For this reason the
compiled program is usually
somewhat larger than the
original version. To try to
minimise that effect, ACCEL2
removes comments and
unnecessary spaces form the
BASIC before compiling it.
ACCELZ2 will issue an QUT QF
MEMORY error if the compiled
program ends up too large to fit
in your computer. Often you
can get around this by only
compiling the part of the
program that is executed most
often. This keeps code
expansion to a minimum and
with care, the mixed code will
run almost as fast as if it were
all compiled. After such an
error you have to reload a copy
of the original 'source’ BASIC
entered using the interpreter;
you cannot edit the partially-
compiled program to cut it
down.

ACCEL?2 has facilities to
allow a compiled program to
load another from disc. It
automatically locks for a
compiled version first and then
for an interpreted one if the first
search fails. That feature allows
a disc user to compile a set of
linked programs one at a time
(without having to re-compile at
each stage). The new disc
commands are /[LOAD, /SAVE
and /RUN.

EXAMPLE PROGRAM

Figure 1 shows a simple
program before and after
compilation. The ‘%’ signs
indicate that X and Y are
integer variables. These should
be used whenever possible in
compiled programs since they
can be processed much faster
than normal floating-point
variables. It is not very valuable
to try to compare the speed of
individual instructions when
interpreted and compiled, since
the larger the program the
longer the interpreter spends
finding a given variable or line.
A compiler will take a long time

o e e e R A S G e e e T e

130 REM ** ACCEL2 DEMO PHROGRAM

119 FOR X&=0 TO 127

128 FOR ¥%=¢ T0 47

138 GSET (X%,¥%)

140 NEXAT ¥3

158 NEXT X%

160 END

{126 BYTES, RUNS [N 35.5 SECONDS)

130

110 REM

128 REM

130 RE#M

14g RE#

158 RE#

160 END

(169 BYTES, RUNS IN S.0 SECONDS)
Fig.l. The example program before and
after compilationby ACCEL 2.

oo T e el A e e S Y 30
to translate such a program as it
is doing at one step all the
searching and converting that
the interpreter does bit by bit
(and generally over and over
again!). This tiny example was
compiled by ACCEL2 in less
than a second and ended up
using rather more memory than
the original — 169 bytes instead
of 126. The routine simply turns
the entire computer display
white by individually turning on
each of 6144 graphics pixels.
Interpreted BASIC took 36.5
seconds to execute the
program; after compilation it
ran in just five seconds. This
speed improvement of around
seven times is obviously not
typical since most programs will
use complex functions such as
PRINT and decimal arithmetic.
There again, ACCEL2 is at its
least impressive when compiling
small programs, and most
programs will be accelerated by
at least a factor of two or three
times if they are compiled.

The compiled program may
look rather odd: the original
REM has been removed from
line 100 but the line number
alone ig left there in case it is
referenced by other parts of the
program. The REMs conceal the
compiled machine codes;
ACCEL?2 deliberately prevents
the machine code from being
listed (it wouldn’t make sense,
either to you or to the LIST
routine . . .). END is never

. compiled so it appears

unchanged.

COMPILER
RESTRICTIONS

ACCEL?2 cannot compile array
references with more than one
dimension but this is not
normally a major restriction.

The size of an array must be
known at compilation time (10
INPUT A 20 DIM CD(A) is not
legal) but this can be avoided
by always dimensioning arrays
to the largest size required.
ACCEL2 will be of little use in
programs limited by the speed
of peripherals such as disc, tape
or printer. A version of
Conway's game of LIFE has
been written and found to be 39
times faster under ACCEL (the
original 2% K subset of
ACCEL2) than when the BASIC
interpreter alone was used.
However, the program was
written especially to be
compiled and consequently a
slightly faster interpreted
routine could probably be
found.

READ and DATA statements
are not compiled since ACCEL2
cannot tell whether DATA is
going to be stored in string or
numeric format when the
program is run. READ and
DATA can be invariably be
replaced by assignment
statements so this is not a major
problem. ACCEL2 will only
compile statements that it can
translate completely. Although
SIN, TAN and most other
complex arithmetic operations
are not compiled directly,
ACCEL2 uses a neat dedge to
compile comparisons using
them. The line:

M [P SIN(X) =850R (%) Tied 1d8
ELSE 2d0

is compiled into:

300 FOS=SIN [X) =S0R (X} HEM

(That first statement is perfectly
legal interpreted BASIC!) The
compiler uses TO% as a
temporary variale to store the
result of the comparison (try
PRINT 2=2 and PRINT 2=1 on
your computer). The compiled
code behind the REM tets the
value of TO% ; it will be zero if
the values are not equal, — 1 if
they are. TO% is not a legal
user variable anyway because
the BASIC editor treats it as a
reference to the reserved word
TO),

Most compilers generate a
good many problems as well as
advantages by comparison with
an interpreter. ACCEL2 is a

60

T
Personal Software Winter '83



special case since it remains
dependent upon the computer’s
ROM interpreter. It is possible
to test a program 'in slow
motion’ with the interpreter and
the usual BASIC debugging
aids, and then to compile the
program when it is (hopefully)
more or less free of errors. This
is important since there is not
much room for error-trapping
code inthe 1280 bytes of run-
time routines. Aftter ACCELZ
has been used you cannot edit
the program, delete lines or
change the text in any way. lf
you try to do so, the interpreter
will ‘fall over' the machine code
generated by ACCEL2 and the
system will probably re-boot.
You may still set or print
variable values in immediate
mode and then GOTO the start
or middle of the program to test
specific routines. It can be risky
to GOTO lines in the middle of
the program since ACCEL2 will
not recognise an accidental
'‘Return without Gosub’ error
and will probably jump away to
some indeterminate location
quite possibly crashing in the
process. GOSUB and REM are
not allowed as immmediate
commands since ACCEL2 uses a
different type of GOSUB from
BASIC and it uses REM to
signify compiled code. When
the raachine holds a compiled
program, you should not use the
commands EDIT, AUTO,
CLOAD?, CSAVE, DELETE,
MEBGE and SAVE, since they
assure that the prograrm is in
interpreted tormat.

The compiler gains some of
its extra speed by dispensing
with part of the 'housekeeping’
done by the interpreter; it
doesn't check the current line
number while executing
compiled code so ON ERROR
GOTO may not go where you
want it tol Likewise TRACE will
only display the line numbers of
statements that have not been
compiled. ACCEL2 doesn't
check the 'Break’ key while it
executes compiled lines; if you
‘get stuck’ in a compiled loop
you will have to use Reset to get
out.

We were only able to find
one minor bug in the purchased
compiler; if INKEY$ was
followed by certain statements a

Personal Software Winter '83

* cumulative Out of Memory error

could develop. However, this
problem has been fixed in the
current issue of the compiler.

ACCELZ2 imposes & number
of subtle restrictions upon the
programmer. Lazy BASIC
programmers have been known
to write code that jumps out of a
loop without terminating it, as
in Fig. 2. This may fail under
ACCEL2 since the ocmpiler
never realises that the loop has
been terminated. The code in
Fig. 3 works correctly whether
interpreted or compiled and as
o T e T L = S RS A

1n REM *% ACCELZ COMPILEWR
RESTRICTION

20 GOsuB 50
30  PRINT "RETURNED"

40 sTOP

50 FOR I=1 TO 1@

59 IF I>X THEN RETURN
T0 NEXT I

8¢ RETURN

Fig.2. A lazy programmer’s loop which
might fail under compilation.

1 HEM ** ACCELZ2 REVISED LOOP
CODING

20 GOsSUB 50

3% PRINT "RETURNED"

4@ STOP

5¢ FOR I=1 TO 10

60 IF I>X THEN J=1:1=1¢:REM ** SAVE
VALUE OF 1 BEFORE RETURN

To  NEXT I

Fig%?i. ;ﬁ;ug:)rreci way to do it for both
interpreted and compiled programs.

i A e e TR R S R U Sy e
BASIC on the Apple 2 also
requires this construct, the
limitation is quite a reasonable
one. The program will also fail
if the default type of variable is
changed (eg from integer to
string). This can sometimes
happen by accident when
Microsoft 12K BASIC is being
used since variables are
assumed to be floating-point
until declared otherwise. Arrays
should be dimensioned at the
start of our program.

COMPILERS

With the exception of the
INKEY$ bus, these restrictions
are clearly listed in the
ACCEL2 manual, Generally the
compiler will work faultlessly on
programs that have been written
with it in mind and the effort
needed to conform with its
idiosyncracies is not great. A
machine code monitor is
required to save compiled
programs on tape since they are
a mixture of BASIC and
machine code, and must be
saved along with the 1280 byte
ACCEL2 run-time routines. If
this is done a compiled program
becomes a self-contained file
that can be loaded from
SYSTEM and then RUN as if it
were high-speed BASIC. If no
monitor is available then all of
ACCEL2 must be loaded
whenever a compiled program
is required and each program
has to be re-compiled from the
source before use.

CONCLUSIONS

ACCEL2is a British
development that illustrates a
fascinating system of ‘selective
compilation’. The same
techniques could be applied to
almost any BASIC micro-
computer and in fact, an even
more powerful compiler could
be developed step by step.
Program compilation seems
certain to become a popular
technique in the future —
ACCELZ demonstrates an
ingenious approach that
combines many of the best
points of compilers and
interpreters.

ACCEL3

The cassette version of Accel is totally relocatable, a useful
facility allowing you to have a variety of other programming or
editing aids resident in memory at the same time.

61




COMPILERS

COMPILERS

R R R I S S S TR T

POSTSCRIPT

Since ACCEL?2 was reviewed
we have received a pre-release
copy of the latest Southern
Soltware compiler,
imaginatively named ACCEL3.
The new program is apparently
a complete re-write of ACCEL2
and incorporates some new
features.

ACCEL3 will compile non-
structured FOR. . .NEXT loops
making it possible to compile
programs containing jumps out
of loops, conditional NEXT
statements and so forth.
ACCEL?2 didn't do this often
leading to changes being made
to a program before it could be
compiled. The snag is that the
extra code to handle
unstructured loops slows up
compiled programs — FOR . ..
NEXT statements used with the
new compiler are about half as
fast as they were under
ACCEL2. Similarly ACCEL3
now compiles references to
arrys with more than one
dimension but the speed of

access to one-dimensional
arrays has suffered.

ACCEL3 compiles some
functions that ACCEL2 used to
leave for the BASIC interpreter
to handle. In particular,
floating-point FOR. . NEXT
loops and functions such as INT
and SQR are now compiled into
ROM calls. The compilation of
the functions (eg SIN, etc)
doesn't really speed them up
since they take much longer to
process than to interpret but it
does mean that expressions
using them can be compiled.
This would speed up the
multiplication in
X=S5IN(X)*3.1416, for example.
The USR(n) function, used to
call a machine-code routine, is
no longer compiled. ACCEL3
will also compile programs
which use variable-bound
arrays, such as —20 INPUT N :
DIM A$(N,2).

The ACCELS3 sales literature
claims it is faster and generates
more compact code than
ACCEL?2, but the difference in
performance does not seem to
be that great; the new compiler

no longer has the disc
commands /SAVE, /RUN and
/LOAD. ACCEL3 allows
compiled programs to be
SAVEd, RUN and LOADed just
as if they were normal BASIC
although they will not work
unless the run-time routines of
ACCEL3 are in memory. Even
the cassette commands, CSAVE
and CLOAD, can now be used
to store and retrieve compiled
programs.

The pre-release version of
the ACCEL3 compiler has been
tested using it to speed up a few
well-known programs — it even
found one or two unnoticed
syntax errors! More than half of
the programs compiled first
time and most of the rest could
be compiled once a few lines
were shortened or expressions
simplified.

EDITOR'S NOTE

Since this article was originally
written, ACCELZ is no longer
available (ACCEL3is) but it still
serves as a good example of a
compiler.

ALLIGATA e SIMON HESSEL e ULTIMATE e
GUIDED DISCOVERY .
from =
< i
ETNA SOFTWARE > Business Games for the BBC 3
§ lI;'Iave the children finished playing? I Z
ime they started learning? They’ve done Tabl X o
T ests and Hongmanr o0 | & Database for the Dragon
WHY NOT TEACH THEM ABOUT THE BBC MICRO? 8 g
GUIDED DISCOVERY is a suite of Ultra for the Oric .
ten Oprograms designed to stimulate an interest in %
HOW programs work. Aimed at age 9+, ever
program is simple yet effective in structure. g é Splatl for the Speotrum
The cassette comes with approximately "
60 pages of guidance - personalised with the * <
child’s name if you wish. i and BOOKS GALORE e
COVERS THE FOLLOWING TOPICS: L 3
Sound, *Keys, Animation, Graphics, Filing, Time, UO) : : 8
Screen Plotting, Loops, Modes, RND, etc. % O\/er 550 dlﬁerent tltleS Q
% FULLY LISTABLE % PARENTS' NOTES o - .
S AT SIS o WL R o available off the shelf from
* EDUCATIONAL ORDERS WELCOME : w
I To receive your copy send £9.95 + 25 TH E DATA STO R E o
80p p & p to: ; >
ETNA SOFTWARE, WEST END TR 8 5
HOUSE, WEST END LANE, \\%"{ e 6 Chatterton Road, =
MARSHCHAPEL, LINCS. 4 7 s - =
Please include your name and ?‘ % § Bromley’ Kent' o
address and your child’s name @ o 5
IF you wish the written 2 s -
material personalised. E TEL' 01 460 8991 °
Q
S e d401d3dNs e 7134NA ° odd

—



Mike James

ELEGANT

PROGRAMMING -1

your first computer language,

you might be worried by the
fact that even though vou are
convinced that you understand
the language it is still very
difficult to write programs.
However, this should not come
as any surprise because
knowing a language and having
anything sensible to say in it are
two very different things! In
other words:

If you've just finished learning

Knowing a compuler (or any

other) language does not mean
that you know how fo use it.

The question which is
immediately raised is 'how do
vyou become a programmer?’
The most obvious answer is that
it is only experience and
practice that changes a novice
into a skilled programmer. It is
the purpose of this series of
articles to explain some general
programming methods and
ideas and so shorten the time it

takes for a beginner to graduate
to an expert. However, this is
not to say that the expert will
find nothing of interest!

The techniques to be
discussed in these articles are
not dependent on any particular
computer language. However,
to make it possible to give
examples and illustrations, it is
necessary to use a particular
language and because BASIC is
such a popular language there
is an obvious advantage in
using it. So, to be able to
understand the examples, etc,
you do need to be able to read
BASIC.

Each part of the series will
be as seli-contained as possible
but it will sometimes be
necessary to make use of
material introduced earlier. In
this first part of the series we
will look at what a program is
and what methods can be used
to help in its production.

SOLUTIONS AND
PROGRAMS
A program doesn't really have

anything to do with a computer!
People were using programs

CODING VS. PROGRAMMING
R hen, S et S|

We start this series by
explaining the
difference between
programming and
coding.

long before the invention of the
digital computer, for example,

" recipes, knitting patterns and

mathematical formulae are all
examples of programs. A
program is nothing more than a
list of instructions leading to
some predefined end — a meal,
a scarf or the solution to a
guadratic equation. It is
unfortunate then that ‘program’
has come to mean something
especially to do with digital
computers as this causes the
emphasis to be placed on

. '‘computer’ rather than

‘program’. So 'to program' has
come to mean the mastery of a
computer language along with
all its particular grammar. An
expert programmer is supposed
to be one capable of using
many computer languages.
Whereas, in fact, a programmer
may know many languages and
know nothing of programming!

The ability to program is in
part the ability to find solutions
— people who are good at
solving problems usually turn
out to be good programmers;
those not too good at problem
solving take a lot longer and
some never make it at all!
Problem solving in general can
be taught and if you're not too
good at it then don't give up —
it is possible that no-cne ever
showed you how to tackle a
problem.

Solving a problem gives you the
solution,

Knowing how you solved the
problem gives you a program.

CODERS

To make things clear let's
examine which stage in the
production of a computer
program is correctly called
programming. First, some

sEmwEn
Personal Software Winter '83



-statement of the problem must
be found. However, this is not
programming. Second, a few
basic requirements for
achieving the solution are
lined. This is connected with
rogramming but is more about
hat computers and humans
n do. Third, a sequence of
ps leading to the solution is
posed. This is programming.
urth, the program is realised
a wrltten program in a
mputer language. This is the
tage that is most often referred
o as programming. It is, in
fact, the least skillful of all the
stages and involves mainly the
correct placement of commas
and other matters of simple
grammar. Given a program in
the form of a detailed
explanation or flow diagram,
the translation te code can be
done automatically, and if this
were programming, it would be
a very dull subject indeed. In
short,

)

1(1)'[.

w0y a0 1-0 Q

morn(-.

CODING is not
PROGRAMMING.

EXPRESSING
THOUGHT —
ALGORITHMS

All that we have said about
programming is obvious from a
consideration of normal human
behaviour. Just as a thought is
independent of the language
used to express it — the colour
red is the same concept whether
written in English or German —
a program is independent of the
computer language used to
express it. The fact that it is
possible to convert a program
from one computer language to
another should convince even
the most practical mind that
something abstract lies behind
any program: they both use the
same algorithm. In simple
terms, an algorithm is a way of
doing things and it can be
expressed in many ways.

At this point it is important
to realise that although it is
convenient to think of an
algorithm as something separate
from a computer language, it is
impossible to express an
algorithm without using
language. It is often thought

ELEGANT PROGRAMMING — 1

that the flow diagram is in some
way a pure’ expression of an
algorithm but it is certainly no
better than expressing it in
language. Indeed, it's much Jess
usetul as no one has produced a
computer that reads flow
diagrams (yet)!

FINDING AN
ALGORITHM

So far it sounds as though
producing a program is a very
magical process. You read the
problem, go off into a dark
corner and an algorithm enters
your head from nowhere and
the rest is just coding! This is,
of course, nonsense! Splitting
the production of a program
into finding an algorithm and
coding doesn't make it any
easier but it does help to
identify where any difficulties
lie. An algorithm is similar to
an English sentence — it has a
verb, telling us what to do, and
a noun, the object that we do it
to! For example, in BASIC the
instruction:

B+C

tells us to add (verb) the
contents of B (noun) to the
contents of C (noun). In
programming languages the
nouns are usually called DATA
and the verbs are given a wide
variety of names including —
operators, functions, executable
statements, etc. .. There is also
another type of instruction that
we might find in an algorithm
as sometimes it is necessary to
define what a 'noun’ or 'data’
object is. For example, in
BASIC the statement:

DIM B(28)

contains a noun 'B(20)" but no
verb! What it is doing is
describing the object —
an array of 20 elements.
Computer languages vary
in the amount of data definition
they require for a program. The
language Pascal requires every
data cbject to be defined before
its use, but BASIC is a little
more forgiving and supplies a
wide range of predefined types
such as 'standard’ real variables
and strings. Another way of
looking at the sort of statement

ie it is

that describes data is to regard
it as not just a passive definition
but as an instruction to
‘organise’ simpler data types.
For example, the statement used
previously, DIM B(20), could be
read as an instruction to
organise 20 variables into an
array called B. Seen in this
light such statements are often
referred to as structuring the
data.

At this stage it should be
clear that the problem of
finding an algorithm comes
down to finding ocut what to do
and what to do it to. However,
once you have solved the task of
what objects/data types you're
going to use, the problem of
what to do with them very often
solves itself!l Which is fortunate
because there is very little
specifically helpful guidance
that can be given. There are,
however, a number of general
methods which will help you
tackle a large problem and
produce a program which is
useful to other people. One of
these methods, stepwise
refinement, is dealt with below
but, before we move on to it,
there remains one last difficulty
in programming that is worth
discussing — background.

BACKGROUND
KNOWLEDGE

It is surprising the way people
expect programmers to move

Irom one subject to ancther and

still write useful programs. For
example, professional

programmers at various points

in their careers might be asked

to produce a stock control

program and later find

themselves working on a project
involving graphical display in

three colours. It is clear that, to
make any progress with either
problem, the programmer must

first spend some time becoming
familiar with the problem. The
trouble is that all too often
insufficient time is spent at this
stage of building up a i
background in the area before i
starting to construct a program. i
The result is that the programs

often work perfectly but do the
wrong job or solve the wrong
problem.

64

Personal Sofhvara Winter '83




Difficulties in writing a program
can come from three sources—
1) lack of knowledge and ap-
plication of data structures.

2) lack of knowledge and ap-
plication of problem solving
methods.

3) lack of specific background
information.

STEPWISE REFINEMENT

When you lock at someone
else’'s program or a program
that you wrote so long ago you
have forgotten all about it, the
first thing to do is to try to get
an overall feeling for what it is
doing. You might identify the
first twenty lines as an
initialisation part, the middle as
doing scme calculation and the
final part as cutput. Once you
have this overall structure you
can move on to seeing how
each part does its job and find
out how the calculation is done.
Slowly your understanding
grows as you identify the role of
smaller and smaller parts of the
program. Finally, you arrive at
the point of view that the writer
of the program must have had
— you can see each instruction
operating on every variable and
know what each is for.

Now, let's return to the
problem of writing programs
rather than reading them.
Instead of thinking of the
program that you are trying to
write as a long list of
instructions, think of it as a
collection of modules each
doing part of the job of the
whole program. This, of course,
brings with it the difficulty of
deciding how to split the
program into modules but, once
again, considering how
someone understands a
program usually suggests a
method. When trying to
formulate a program you start
with an overview and work
down to smaller and smaller
modules. You could think about
writing a program as trying to
understand one that you haven't
managed to write yet, so why
not start at the top! For
example, the problem of writing
a chess program is so

CODING VS. PROGRAMMING

overwhelming that most
programmers have difficulty
starting. However, to start the
ball rolling the first attempt at a
chess program would be
something like:

start game

play chess until end of
game

give results of game

This may not seem like very
much progress but we can now
look at each module and try to
‘refine’ its definition. The next
step, of course, is to attempt to
reduce each of the smaller
problems vet further. For
example, our next attempt
might be:

start game —
print titles
set difficulty level and who
is white
initialise board and other
'‘play’ variables

play chess —
get move
record move
analyse board
make move
end of game?

results —
vou win or [ win message

This process can be continued
until the program is complete.
In fact, what normally happens
is that the refinement continues
until one of the modules can be
written in BASIC and from then
on, the refinement is carried out
as part of program development
on the computer.

This idea of taking a bigger
problem and splitting it down
into a number of smaller
problems and then taking each
one of the smaller problems and
splitting them down further and
so on is called stepwise
refinement or top down
programming. [t has a great
many advantages but the one
which people find most helpful
is that it gets you started | In
practice, the neat theory that
programs are written by
successive refinement is a little
way from the truth. Even the
most skilled programmer
sometimes gets it wrong and has
to backtrack. Sometimes a stage
in the refinement throws light

on earlier versions and a better
method can be seen or, sadly,
sometimes a stage in the
refinement can demonstrate that
the overall approach is
incorrect and there is no choice
but to go back and start again.
Still, at least you will now know
one way how not to do it!
However, it is very rare that it is
impossible to salvage some part
of the program designed during
stepwise refinement.

SUBROUTINES

While we were discussing
stepwise refinement, the idea of
a module was introduced as a
way of grouping together
instructions with a commeon
purpose. It would be an obvious
advantage if the computer
language the program was
being written in made some
provision to keep this grouping
and, if possible, made it stand
out in some way. Various
methods are possible but the
only one available in standard
BASIC is the subroutine.

In BASIC you can collect
together a list of statements and,
as long as you end it with
RETURN, you can treat it as a
subroutine. The list of
instructions can be referred to
by writing GOSUB N where N
is the line number of the first
line in the list. Most BASIC
programmers will recognise this
description of a subroutine but
might be a little confused by the
way in which they are being
likened to modules. Instead of
writing the list of instructions
out every time they are needed,
a subroutine is constructed and
GOSUB used instead. This is a
valid reason for using
subroutines but what we have
discovered is that subroutines
are useful even if the list of
instructions is only going to be
used once! This use of
subroutines as modules makes a
BASIC program which has been
constructed by stepwise
refinement reveal the stages it
has been through. The first
stage gives rise to a program
which is often nothing more
than a list of GOSUBs. The
second stage of refinement
produces the BASIC which
makes up the subroutines used

Personal Software Winter '83

85



ELEGANT PROGRAMMING — 1
L D T e e D e e e e e |

in the first stage and so on until
all the subroutines have been
defined. Thus, the stages of the
stepwise refinement are frozen
into the final structure of the
program — the hierarchy of
subroutines.

This sort of programming is
often referred to as fop down
modular programming (TDMP
for short!). The advantages of
TDMP are immense —
programs are easier to change,
easier to understand and easier
to debug. The only real
disadvantage of this sort of
program construction is that it
doesn't give the most efficient
version of the program. It is
difficult to give an example to
show clearly the advantages of
TDMP because it only becomes
apparent in medium to large
programs — short programs are
easy to write using any method!
However, a short example might
help to show what a TDMP
program looks like. Consider
the problem of reading in a
string of characters and
reversing its order.

14 GOSUB 1440
2@ GOSUB 2409
3@ GOsUB 3pd@
48 GOSUB 4808
5@ STOP

Initialise

Get input string
Reverse string
Print result

1900
1818

Bg=nn
RETURN

Clear output string

2968 PRINT "TYPE ANY MESSAGE"

201@ INPUT AS Read in string
2028 RETURN

39P@ FOR I=LEN(A$) TO 1 STEP-1
3@1@ GOSUB 5098 Get Ith character
328 B$=BS+CS inte variable C$
3838 NEXT I and add it te BS
3048 RETURN

4000 PRINT

4@1@ PRINT "OLD STRING=";A$

4328 PRINT "NEW STRING=";BS

4838 RETURN

50808
5a1@

C$=MID$(B$pIle
RETURN

The subroutine structure for this
program looks like this:

main program
1
[ | |
1000 2000 30?0
5000

|
4000

You may feel that having
subroutine 3000 call another
subroutine (ie 5000) to extract
the Ith character is going a little
too far but, apart from
illustrating the idea of the

‘second stage of refinement, the

use of subroutine 5000 makes
conversion to BASICs that do
not have the MID$ function a lot
easier.

PARAMETERS

The short example in the
previous section shows up a
number of the problems using
BASIC's GOSUB and RETURN
instructions to write modules.
Computer languages vary to the
extent that they recognise the
need to use modules — Pascal
is very good and BASIC is
terrible (indeed, BASIC's lack
of a good method of forming
modules is its biggest let down
as a programming language).
The first problem with the
BASIC GOSUB. ..RETURN is
that it is impossible to give
names to subroutines. Some
versions of BASIC (eg BBC
BASIC) do allow names to be
given to a special form of
subroutine (known as a
procedure) but in most BASIC
programs, the only real option
is the extensive use of comments
to make sure that the purpose of
any subroutines used is obvious.
One trick which can be used in
any BASIC that allows
expressions to be used in
GOSUB statements is to define
variables with the appropriate
names and assign the correct
line numbers to them. For
example, in Sinclair BASIC
(used on the ZX8] and ZX
Spectrum) you can write things
like GOSUB 2*1+ 56, So
instead of GOSUB 1000, etc,
you could write:
1@ INITIALISE=10@8
2@ GETSTRING=2888

3@ GOSUB INITIALISE
4@ GOSUB GETSTRING

A second and more serious
limitation on the BASIC
subroutine is that there is no
way of using parameters (a
parameter is perhaps most
familiar to BASIC programmers
from its use in functions). For
example, in the function
definition:

DEF FNT (A,B)=A+B

the variables A and B are
parameters. They have nothing
to do with any variable of the
same name in the rest of the

CODING VS. PROGRAMING

program. The parameters
simply show what the function is
to do — ie add the first
parameter to the second. When
a function is used, real
variables are substituted for the
parameters. For example:

18 C=2
20 D=3
38 PRINT FNT(C,D),FNT(D,C)

The reason why parameters are
so useful is two-fold — first the
function can be written without
worrying about what variables
have been used in the rest of
the program and second, the
function can be used any
number of times with different
data. These advantages would
be no less welcome as part of a
subroutine facility.

Unfortunately, standard
BASIC doesn't make any sort of
provision for parameters in
subroutines. It is true that one
or two versicns of BASIC (BBC
BASIC again!) do provide
extended subroutine facilities
that include parameters but if
you want to stay with standard
BASIC, you have to either
abandon the idea of parameters
or settle on a system of naming
variables within each
subroutine.

Consider the string reversal
example. Subroutine 5000
returns the [th letter of the
string A% vet can be re-written
in a form which does not
depend on the particular
variables | and AS$.

5008 C5@%=MID$ (A50$,150,1)
5818 RETURN

Using the subroutine is now a
little more long winded:

3019 ASP$=AS:I506=I:GOSUB 5860
3815 C$=C5508

but the subroutine can be used
to extract the [th character from
any string variable and the
answer can be stored in any
other. The main advantage,
however, is difficult to see in
this 'static’ example. Using the
variables A50% and 150,
subroutine 5000 can be written
before the rest of the program
secure in the knowledge that no
other subroutine will use its
variables!

66

Personal Software Winter '83

e




¥

Mike James

STRUCTURED PROGRAMMING
EEEEEsmeT e

ELEGANT

PROGRAMMING -2

this series we discovered

that writing programs using
modules was a good idea in that
it provided a systematic way of
constructing a program. What
we have said nothing about so
far is what sort of programming
goes on within a module. If you
are writing a large program
then you can use the idea of a
module, or subroutine, to break
the problem down into a
hierachy of smaller problems —
but at some point you still have
to write some statements that do
something!

What this comes down fo in
practice is using IF statements
to select between alternatives,
FOR loops to repeat things and
GOTO to get to other parts of
the program. Notice that
although it is possible to be
precise about what IF and FOR
are used for, the statement
about the GOTO is very vague
— why should we want to 'get to
another part of the program'?
The answer to this question will
emerge in the course of this
article but along the way we
will meet a collection of ideas
that are usually referred to as
‘Structured Programming’ or
SP. So, if you've ever wondered
what SP was all about — read
on

AN ITALIAN MEAL?

A program is executed one
instruction at a time and at any
moment the instruction that is
being obeyed may be thought
of as ‘controlling’ what the
computer is doing. Thus, as a
program runs, control is passed
from statement to statement.
This often referred to as the
‘flow of control’.

In a BASIC program, the
rule is that control flows
through the program in order of
increasing line number unless
otherwise directed by a 'control’
statement such as IF, FOR,
GOTO or GOSUB. It you are

In the first article of

given the listing of any BASIC
program then you should find it
possible to take a pencil and
draw lines through a program
to trace all the possible paths
that the flow of control might
take. In a very simple program
with no control statements the
flow of control line would go
from top to bottom. Its ‘shape’
F\rould therefore be a straight
ine:

18 a=lg@
280 B=p+2
3@ PRINT &
4@ PRINT B

As programs become more
complicated and use control
statements such as GOTOs,
then the flow of contral line
becomes split and doubles back
on itself and its 'shape’ becomes
complicated:

1a A=A
28 B=4
9 1E]
o 46 A=2-8
58 GO A
60 PRI

10

L=

|

Neither of these two example
programs does anything useful
so don't think you are missing
their meanings!

As you might expect, the
more tangled and twisted the
flow of control line becomes,
the more difficult it is to
understand the associated
program. In BASIC the biggest
cause of tangled flow of control
is the GOTO statement. If you
are used to writing programs 'as
you go along’ without planning
then you will be both haphazard
and opportunist in your use of
GOTO. In other words you will
use GOTO either to get you out
of a situation that you have
programed yourself into or you
will suddenly see how you can
save a few lines by jumping to
another part of the program.
you go back and modify such a

Producing a working
system using structured
Lubalin programming.

J=— o e s e e
program then the chances are
that you will make the flow of
control even more tangled than
it was in the first place!

R

ap v

The free use of GOTO in BASIC

produces a complicated flow of
control.

The result is that most BASIC
programs resemble spaghetti.
Unfortunately, this spaghetti
image has tended to rub off on
BASIC rather than on the
programmers who produce it.

There is another important
problem with spaghetti
programs. If you look at any
small section of a program then,
if the flow of control is very
mangled, it is almost certain
that there will be more than one
way of reaching it. Now this
may not be a problem if the
program is working, but if
you're trying to debug it then it
Can cause unnecessary
confusion. The value each
variable in the section is
supposed to have depends on
two things — its initial value
and what is done to it in the
section. Although what is done
to it is fixed and easy to see, if
there is more than one way to
reach the section of program
then it is very difficult to work
out its initial values because
these depend on which route
was taken.

If you agree that spaghetti
programs are something that we
could well do without then you
will be interested to learn that
there are some very simple
rules that help produce clean,
‘well-structured’ programs. If
you do not see what is wrong
with spaghetti then much of
what follows will at best seem
irrelevant and at worst an
unnecessary cramping of your
programming style. The usual

Personal Software Winter '83



ELEGANT PROGRAMMING — 2

argument against SP is that 'free
style’ programming can
produce the fastest and most
compact programs. This is true.
However, you can produce a
program that is just as efficient
by writing a well-structured
program and then, by changing
only the parts that are causing it
to slow down, you can make it
run at an acceptable speed.

STRUCTURED
PROGRAMMING

The basic idea behind
producing well-structured
programs is very simple.

Use only a small number of
ways of changing the flow of
control.

If we choose very simple ways
of changing the flow of control
and build up larger programs
using these then the overall flow
of control should be easier to
follow for two reasons!

1) It should be easier to spot the
standard 'shapes' that make up
the flow of control line, and

2) There should be no 'tangles’
in the flow of control line.

If, in addition, each of the ways
of changing the flow of control
can be put together so that each
part of the program can only be
reached by one route then so
much the better.

At this point you may think
that although this solution
sounds simple it is impossible to
use. Surely you cannot restrict
the ways in which control can
pass through a program to a few
simple forms? After all, think
how complicated the flow of
control can be in a spaghetti
program. Is it really possible to
rewrite such a program so that
it is well structured?

The answer to both of these
questions and many similar ones
is YES! And this is not just an
opinion. It can be proved that
ypu can write any program
using a very small range of
simple changes in the flow of
control. In particular, any

68

program can be written using
only some form of IF statement,
that will select between two
alternatives, and some form of

conditional loop, that will cause -

a group of statements to be
repeated until a condition is
satisfied. In terms of the flow of
control, the IF statement divides
it into two and the loop causes it
to go back on itself.

You can write any program us-
ing a combination of condi-

tional loops and IF statements.

Although vou can write
programs using only these two
types of control it is easier in
practice to invent a few more.
Traditionally, four types of flow
of control have been used to
write structured programs:

1) The sequence (see Fig. 1) —
This is the default flow of
control in all computer

languages and corresponds to
instructions being executed one
after the other.

2) The DO...WHILE (see Fig. 2)
— This repeats a sequence as
long as a condition, P, remains
true. The test is made before the
sequence block is entered.
Therefore, it is possible to
bypass the execution of the
sequence at the first test.

3) The DO...UNTIL (see Fig. 3)
— This repeats a sequence until
a condition becomes true.
Notice that in contrast to the
DO...WHILE, the test is made
after the sequence has been
executed — hence the sequence
must be carried out at least
once.

4) The IF (see Fig. 4) — This

. tests some condition and carries

out sequence 1 if it is true and
sequence 2 it is false.

The choice of these four is
sensible in that it includes two
types of loop — one that can
skip the sequence without ever
allowing it to be carried out and
one that insists that it is carried
out at least once — and an IF

‘ BEGIN ’

3

PROCESS 1

P?
PROCESS 2

P ——

PROCESS N

'

END

Fig. 1. A straight sequence.

‘ sean ) Fig. 2. The DO...WHILE loop structure.

FALSE

SEQUENCE
BLOCK

TRUE

T

SEQUENCE
BLOCK A

0 FALSE

TRUE

Fig. 3. The DO...UNTIL loop structure.

Personal Soitware Winter '83



that will select between two
alternatives. Using these
statements you can build any
program, no matter how
complex.

Many computer languages
contain this traditional set as
direct instructions. For
example, Pascal includes an IF,
a WHILE and UNTIL
statements. Other languages,
for example many versions of
BASIC, do not and as a result it
is often said that it is impossible
to write well-structured
programs using them. This,
however is not true. This
traditional selection is just that
— a SELECTION. As long as
you include some sort of IF and
some sort of conditional loop
then you can choose your own
set of control statements and use
them to write well-structured
programs.

In practice there are many
advantages in using, or at least
knowing about, the traditional
set — they are the basis of many
computer languages and are
used by many other people.

STRUCTURING BASIC

The discussion about structured
programming has so far been in
general terms and seems to
make no reference to any
computer language in
particular. However, lurking
behind this discussion is the
shadow of a computer language
such as ALGOL or Pascal that
includes the traditional
structured control statements
described above. What this
means is that most descriptions
of structured programming
concludes with some statement
like 'SP is not possible in
BASIC'. Indeed, the argument
that SP is a goed thing is often
incorrectly taken to mean that
BASIC is a bad thing! But,

STRUCTURED PROGRAMMING

Fig. 4. The conditional branch structure.

TRUE FALSE
P? B
SEQUENCE SEQUENCE
BLOCK BLOCK
1 2
END it

statements

GQOTO
end of loop 4

SP is a programming technique
applicable in any computer

language.

The easiest way -of using SP in
BASIC is to find equivalents of
the traditional set of forms of the

flow of control. This is not
difficult. For example, a WHILE
loop can be written as follows.

IF not condition THEN GOTO
other BASIC

The UNTIL loocp can be written
as:

start of loop ¢—

BASIC statements

IF not condition THEN GOTO
end of loop

The standard form of the IF
statement is more difficult
because of the different ways
that the BASIC IF is
implemented. Using only the
simplest form of the BASIC IF,
ie IF .. .THEN GOTQO, the
structured IF of Fig. 4 can be
implemented as:

the ELSE part

GOTO
BASIC statements ge—won—_1
corresponding to

the THEN part

end of IF

These days most BASICs come
complete with a full

IF ... THEN ... ELSE ...
form of the IF statement which
is the exact equivalent of Fig. 4.
An important point to notice is
that if the list of statements
following the THEN or the ELSE
is very long, it is advisable to
turn them into subroutines.
Although vou can write any
BASIC program using just these
forms of flow of control, it
would be silly to ignore the very
convenient FOR loop. You can
use the FOR loop to repeat a list
of statements a known number
of times. SP does place a couple
of restrictions on the way you
can use a FOR loop, for
example, you should not jump

IF condition THEN GOTO—»—

BASIC statements
corresponding to

to a statement that is in a FOR
loop nor jump out of a FOR
loop before it is completed.

Personal Software Winter '83

>



ELEGANT PROGRAMMING - 2

THE 'ONE STATEMENT'
IF

There is a simpler form of the IF
statement which is well known
to BASIC programmers. It is the
one that carries out a statement
if the condition is true and skips
to the next statement if it is
false, ie

[F condition THEN statement
rest of the BASIC program

This is just a special case of the
general IF with no statement
following the ELSE. However,
this 'single statement’ form of
the IF is more difficult to handle
than it locks. For example, the
one statement [F can be
constructed from the two
statement form of the IF simply
by not writing any statement in
the ELSE part:

IF condition THEN GOTQ=——
GOTO

BASIC statements
forming THEN part

end of [F

But this can be simplified by
changing the condition to 'not
condition’ and leaving the
THEN part empty:

IF not condition THEN GOTQO
BASIC statements

forming the ELSE

part

end of [F <

In BASIC it is easier to SKIP a
list of statements when a
condition is false than to carry
out the list when a condition is
irue.

FOR EXAMPLE . .

At this point, an example is
long overdue. It might be
thought that the best sort of
example would be one that
introduced two programs — one
written in free style spaghetti
and the other doing the same
thing but well structured. In
practice though, a program that
is long enough to show the full
horror of free style
programming is too long for the
newcomer to SP to appreciate

STRUCTURED PROGRAMMING

what is going on in the
structured version. Instead, a
short program illustrating the
use of the BASIC equivalents of
the WHILE, UNTIL and IF will
be given. If you want to see the
transformation that SP can bring
to a spaghetti program then I
would urge you to convert an
existing program and see for
yourself how much more clearly
you understand the program
and appreciate the method.

g
T’k.—/”ar
Structured programming is an
activity on-lookers rarely ap-
preciate,

The example given below is a
simple sorting program. Given
an array A of size N, it sorts the
contents into ascending order
using a technigue known as a
bubble sort. The array is
scanned and adjacent elements
(ie A(I) and A(I+1)) are
compared. If they are in the
wrong order then their contents
are swapped. The array is fully
sorted when no swaps are made
during a complete scan.

A structured BASIC
program to implement this
method is given below. Notice
that the lines of BASIC that
correspond to the traditional
structured flow of control are
indicated.

18 DIM A(N)

58 K=0

60 I=1

70 IF I>=N THEN GOTO 178

80 IF A(I)>A(I+l) THEN
GOTO 118

99 I=I+1 ~

188 GOTO 169

118 T=A(I)

120 A(L)=A(I+1)

al

RS ZC
-

138 a(I+l)=T

148 K=l

158 I=[+1

169 GOTO 74

1780 IF K¢>8 THEN GOTO 59
188 ....RE3T OF PHOGRAM

(8 ol R 48
=

I

The IF in the middle of the
program compares the two
adjacent elements. If they are in
the wrong order, the 'THEN'
part swaps them and increments
the index . If they are in the
correct order, then the 'ELSE’
part simply increments the
index [. The WHILE carries out
the scan of the array A. As long

as the index is less than N then
the IF will be carried out (ie the
loop continues WHILE [ <N).
The UNTIL is responsible for
the repetition of the scan until
no swaps are made. The
variable K is set to zero inside
the UNTIL and remains zero
unless a swap occurs when it is
set to 1. Thus, if a swap is
made, K is not zero and the
scan is carried out again.

There are a number of
things that can be done to
improve the readability of this
program. For example, as we
know how long the array A is,
the WHILE loop can be
replaced by a FOR loop. That
is, instead of line 70, write:

78 FOR I=1 TO HN-1

and remove lines 90 and 150
and replace 160 with NEXT 1.
Remember that this program is
an illustration of SP methods
and not necessarily the only
way it should be written.

PROGRAMMING STYLE

Now that you know something of
structured programming you
should try to write some
programs taking particular care
over how you handle the flow of
control. As you gain
experience, you do not have to
feel that you are forced to apply
structured programming as if it
were a straight jacket. What is
important is that you understand
the ideals of good programming
style. Within these ideals you
are free to develop your own
methods. Do not value tricks
that take a week to explain to
another programmer, but try to
make your programs clear and
easy to understand. If your
programs are easy to
understand there is much less
chance that a logical error will
remain undetected for long.
Remember, bugs love spaghetti!

70

=
Personal Software Winter ‘83




Mike James

CRASH-PROOFING PROGRAMS

ELEGANT

PROGRAMMING -3

considered what makes
good and elegant programs
from a programmer’s point of
view. In other words, we have
been looking at programming
as an activity but we have not
considered the product in much
detail. If you use a logical and
ordered approach to
programming then the program
you produce will be better than
if you hadn't. Elegant
programming methods de not
guarantee a program that a user
will admire, only a program that
the programmer will admire!
What makes an 'elegant’
program from a user’s point of
view? The term ‘elegant’
applied to a program means a
wide variety of things to
whoever is using it. Clearly how
fast and how small a program is
are aspects of program
efficiency. Just about everything
else is a matter of elegance.
Two programs may carry out
the same job using roughly the
same amout of time and memory
but deliver entirely different
degrees of service to the user.
Orne may 'crash’ (ie not
complete the job) given only a
small amount of user ignorance
or perversity, whereas the other
may allow the user the liberty of
completely ignoring any
instructions concerning the
‘proper use’ of the program.
Other important aspects of
elegance are not so obvious.
Take, for example, maintenance
and extendability. A program
may do the job in hand today
but what about tommorrow's
job? Some programs can be
modified easily, others are such
a nightmare that it's preferable
to start from scratch! These and
other aspects of elegance are
mainly about using a good
programming method and
testing the product well, but this
is not true of the degree to
which a program is crash proof.

So far in the series, we have

A good program is well written
and well behaved!

In the early days of computing,
the demand was for a program
to solve a specific problem and
if the result was a program that
worked if it was treated with
care then everything was fine.
Users had to be content with
what they got! These days there
is no excuse for producing a
scrappy program along with a
list of do's and don'ts. Indeed
the average user demands a
program that not only works in
the sense of getting the right
answer but a program that does
not crash no matter what is
thrown at it.

One reason for this is that
the average user is becoming
less technical as computers find
their way into domestic
applications. This means that
programs have to be good due
to the intolerance of the non-
programmer. We can all
imagine a typical scenario —
the computer game fanatic
kicking his machine to pieces
because just before he managed
the score of 1,000,000,000
(something only achieved once
in a lifetime), the message:

*%%%% INTEGER OVERFLOW IN 17839 #**¥*=
*% SYSTEM ABORT FUNCTION INITIATED **

appeared on the graphics
screen.

Another reason is that the
number and quality of
programmers is increasing. This
has led to an awareness that
things do not have to be quite
so bad.

ELEGANCE VS
EFFICIENCY

Some programmers would

It's bug-hunt time as our

series takes a look at
crash-proofing programs.

T S e e e T e R R e R e e
argue that elegant programs are
all very well but an efficient
inelegant program is much
better than an elegant program
that takes a week to get its
results. This is a valid but
misleading argument. It is too
often used in order not to
bother about elegance. The
claim that a better job would
have been done if more
machine power were available
is really no more than an
excuse. This is thought to apply
to micros in particular because
everyone knows that they are
not very powerful. However, the
following points should be kept
in mind:

1) A single user micro can be
more powerful than a heavily
loaded time share system.

2) The bulk of most
conversational programs are not
speed critical.

3) The time consuming parts of
any program can normally be
isolated and treated separately.

As computer hardware becomes
cheaper and more powerful, the
importance of efficient
programming becomes less and
perhaps in the limit, vanishes.
In other words:

Efficiency is a hardware
problem — programming is
about elegance.

Remember that you can double
the speed of any program
simply by using a double speed
microprocessor but the same
factor of two is normally very
difficult to get by programming
alone.

The reason the above maxim
is only close to the truth and not
entirely true is due to the | 4

Personal Software Winter ‘83

71



ELEGANT PROGRAMMING — 3

| 2l —

existence of an area of
theoretical computer science/
logic known as complexity
theory. You can show that for
some problems, if you use the
wrong algorithm the problem
can take as long as the universe
has left to it to work out and
most algorithms are the wrong
algorithm. In this sense,
programming is also about
finding a good algorithm.

CORRECTNESS, BUGS
AND CRASHES

Assuming a program is using a
method that will in theory do
the job required, there are a
number of reasons why it might
fail:

1) There may be syntax errors
— this is equivalent to a
spelling mistake.

2) The method might not be
implemented properly, ie the
program may not be correct.
This is equivalent to not saying
what you intended to say.

3) The program might fail
because of some user generated
condition — this is equivalent to
being ambiguous.

The first two are what most
programmers will recognise as
‘debugging’ a problem. The
first problem is easy to deal with
because your friendly
interpreter or compiler will let
you know what is wrong. The
second program is very difficult
to give any general advice
about as it all depends on what
alogorithm vou should be using
versus what algorithm you are
using! You can also find that
you are using the wrong
algorithm for a wide variety of
reasons ranging from just not
knowing the correct algorithm
to using the wrong variable at
some point in a program
because of a typing error. The
third reason is a subtler but more
common reason for a 'fully
debugged' program crashing in
use. It is worth examining why.

When FORTRAN was
introduced as the first high level
programming language, it
started an important trend —
programming by default. For
example, the letters I to N were
taken by FORTRAN to mean

integers unless otherwise
instructed. A language such as
ALGOL or Pascal would
demand that the programmer
declare that I,], K, .. .N were
integers (or something) before
they were used. Thus, in
ALGOL-like languages nothing
is assumed about variable
names, but in FORTRAN-like
languages (including BASIC)
variable names are assumed to
be one type unless otherwise

‘instructed. The effect of this is

that in one case programmers
have to build something into
their algorithm to deal with
variable types and in the other,
it can be ignored.

Programming by default
seems harmless enough and
indeed as long as it's confined
to this sort of thing, it is
positively an advantage; it saves
a lot of time when writing a
BASIC program to ignore
declaring all the variables
betore they are used. The
trouble with programming by
default is that, without realising
it, it has managed to work itself
into the way an interpreter/
compiler implements your
algorithm!

ERRORS BY DEFAULT

The most dangerous area of
programming by default,
because most programmers rely
on it, is the automatic definition
and handling of run time errors.
Look at the error message lists
of your BASIC interpreter —
each one indicates an error
condition that in a good
program should never happen.
If one of them does occur then
the sequence of action which
results is usually not under your
control. To summarise:

¢ = e £
S e
e iy i 3

‘

The detection of run time er-
rors and the subsequent ac-
tions are usually part of the
definition of the interprefer or
compiler and are forced on
your program,

To make all this clear, let's
consider the innocent looking
problem of inputting data.

Normally, all that is involved is
writing INPUT in a box in a
flow diagram and then
translating it to an INPUT
statement in BASIC. However,
INPUT is a very complex
operation and there are a large
number of ways of interpreting
it. For example, what is to be
done if the input is of the wrong
type? Most interpreters will give
a cryptic error message and ask
for the input again, some (the
worst) simply give the error
message and stop! The
implementation of INPUT on the
PET is particularly frustrating
for a beginner — if you type a
Return without any inputs the
program stops! This is clearly
programming by default!

In the first generation of

 BASIC interpreters, error

handling was very poor. Most
people felt lucky that they had a
BASIC interpreter at all and so
handling errors was a small
problem. As time passed, things
got better and more error
detection was built in. The
trouble was that the writers of
interpreters think that most
errors are best handled by
them!

If we examine how errors
come about it's possible to
define two types:

1) Inner errors — these are
intrinsically difficult to detect
within the language being used.
For example, it is difficult to
discover if arithmetic overflow is
going to occur before the
execution of an expression.

2) Quter errors — these are
detectable, in theory, at some
point in the program before
they occur. For example, in
theory, it is possible to check
that a file exists on disc before
attempting to read it and
generating a FILE NOT FOUND
type of error. '

In an ideal world, the writer of
an interpreter would transform
all inner errors to outer errors
and allow the programmer to try
to detect them. Of course, if
they are not detected the
interpreter must still attempt to -
deal with them without crashing
the program, ie programming
by default is not all bad.

72

Personal Soitware Winter '83



TE:

lll!'!llllllllllllllIIIII---r———————————————————————————————————__________________________________ EL

o ——

CRASHING IS
UNNECESSARY

Now that we have recognised
the problem in all its
complexity, the solution is
obvious. Rather than allow the
interpreter to program parts of
our algorithm that we haven't
bothered about, we must take
control! This is easy to say but
often very difficult to do. In
some cases, it turns out to be
impossible because of the poor
quality of the BASIC
interpreter. There are three
broad methods of programming
at the level of detail required,
however, and some combination
of the three should solve most
problems.

1) Smaller steps. In the
example quoted, programming
by default came about because
of the different ways in which
the INPUT box of the algorithm
could be expanded. If, instead
of using the blanket term
INPUT, we had taken the
trouble to define our
requirements in detail then (if

‘we are lucky) no crashes should

occur. Thus, our first solution is
to program ambiguous parts of
an algorithm in smaller, more
precise steps. This depends on
there being a way of breaking
the action down into smaller
steps and not all dialects of
BASIC will allow this. For
example, in PET BASIC (and
many others), the statement
GET will return a single
character typed at the keyboard
without waiting for a Return or
checking it in any way. (If no
key has been typed then a null
string """ is returned.) This is
obviously the smallest input
action that can be defined in
common BASIC. Using this
simpler instruction, it is possible
to build uncrashable input
routines. For example, the
following short program will
read in positive numbers.

18 GET AS

26 IF A$="" THEN GOTO 10

3@ IF AS=CHRS$(13) THEN GOTO 188
4@ IF A$<="9" THEN GOTO 78

5§ PRINT "DIGITE ONLY PLEASE!"
68 GOTO 18

78 IF AS5<"@" THEN GOTO 58

80 I=1*10+VAL (A$)

9@ GOTO 1@
16@ PRINT I

Lines 10 and 20 get a character

CRASH-PROOFING PROGRAMS

from the keyboard. Line 30
checks to see if Return has been
pressed and if it has transferred
control to line 100 to print the
result. Lines 40 to 70 check that
the character typed is a digit
and line 50 prints a message if
it isn't. If the character is a digit
then it is converted to numeric
form using the VAL function
and added to the running total
entered so far in I. Although
this program is virtually
uncrashable (see later for how
to crash itl), it is far from
friendly. For one thing it
doesn't allow you to edit any
number that you enter. Friendly
uncrashable input routines can
become very long and have to
be very comprehensive. (See
MAXIMANDER in Personal
Software, Vol 2 No 1, Summer
1983 for an example.)

2) Use prechecks. It is usually
easy to detect an outer error
before it happens. The problem
is what to do if you succeed in
detecting an error. For
example, suppose you check the
existence of a disc file before
trying to read it — what if it's
not there? If the program
should have created it earlier,
the only reasonable conclusion
is a machine error — but what
if someone has changed the disc
during the run or started the
program somewhere other than
at the beginning. A possible
answer is to ask the user if it's a
good idea to start again. One
thing is certain, however — it is
not a good idea to print FILE
NOT FOUND and stop the
program! If the user was
supposed to supply the file
name then a polite message
suggesting that the user ‘have
another go at getting it together’
is often not enough. I have often
been stuck in the middle of a
program with the prompt NO
SUCH FILE — INPUT FILE
NAME AGAIN appearing each
time I type another guess at the
file name! It may be that the
user cannot remember the file
names so it is a good idea to
offer the chance of looking at
the disc’s catalogue.

Taken to extremes, acting
on the detection of an outer
error can border on an exercise
in artificial intelligence. So
remember, if life gets tough,

ask the user what to do — he
might after all have some non-
artificial intelligence!

ON AN ERROR?

It is possible to pre-check for
most inner errors but in general
it isn't easy. For example, the
input routine given earlier is
only almost uncrashable — if
you try to enter a number that is
larger than the machine can
hold it, will crash with a cryptic
message from the interpreter.
You might think that you can
avoid this problem by adding
the lines:

75 IF MAXNUM=(I*1@+VAL (AS))<® THEN
GOTO 119

PRINT "HUMBER TOO BIG"
I=0
GOTO 1@

119
12e
138

to the program where
MAXNUM is the largest number
that the computer can handle.
The trouble with this solution is
that the program will still crash
when the interpreter works out
the expression in the IF
statement. It doesn’t matter even
if the whole expression works
out to less than the largest
number—if you reach the
largest number in the course of
the calculation then the
program crashes! The correct
solution is to change line 75 to:

75 IF (MAXNUM-VAL(A$))/18<I THEN
GOTO 118

This is the same test but it
cannot cause a crash because
the expression on the left of the
‘<’ sign is certain to be smaller
than MAXNUM.

3) ON ERROR GOTO. Some
dialects of BASIC convert a lot
of inner errors to outer errors
by using an ON ERROR GOTO
statement. In BASIC, the ON
ERROR GOTO statement is
unique in that it doesn’t do
anything when it is encountered
during the running of a
program. Following an ON
ERROR GOTO ‘line number’
statement, any error detected by
the interpreter causes a GOTO
or a GOSUB to that line
number. Hence, every error is
detectable by the user and is an
outer error. (Unfortunately,
some BASICs define a set of

Personal Software Winter ‘83

=
73

B




ELEGANT PROGRAMMING — 3

errors that always cause
interpreter controlled handling
— this is unnecessary.) Most
micro BASICs do have an ON

complex if full error handling is
included. For example, the very
simple addition program:

ERROR statement; the notable 18 i
exception being PET. The way il
that these work varies quite 46 GOTO 19

widely but most supply an
additional variable called ERR
or ERROR which contain the
code of the error that has
occurred and a variable called

becomes very long if you use
ON ERROR to crash proof it.

CRASH-PROOFING PROGRAMS

the error codes — 6 is overflow,
13 is type mismatch and 23 is
linebufter overflow.) Notice that
the action taken depends on the
error code and the line number
that the error happened in.
Also, the only condition that
causes the program to stop is
when the error is totally
inexplicable and could only be
due to a machine fault.

If a BASIC has an ON ERROR
statement then there is no
excuse for any interpreter
generated error messages.

5 ON ERROR GOTO 108
ERL or ERRLINE which contains Sl i
the line number of the line that 38 PRINT A+B
3 3 40 GOTO 18
the error occyrred in. Usmg' {41 - 1% DAB=E SN GUEG 5%
these two variables it is possible 116 1F ERr=13 THEN GoTo 250
5 1z2@ IF ERR=23 THEN GOTO 288
to deCIde What to do abou‘t the 134 PRINT "AN ERROR HAS OCCURRED
error. After the error handling WHICH SUGGESTS A HARDWARE
has been completed, control R
can be passed back to the main 209 PRINT "THE NUMBERS ARE TOO BIG
TO CARRY OUT THE ARITHMETIC"
program by J[_he RESUME, 210 IF ERL=3¢ THEN RESUME 18
statement which will continue 220 RESUME:
execution at the line the error Rt SSE“EETiéing Ve et
occured or by RESUME ‘line 260 RESUME

number’ which will continue
execution at the specified line
number,

The trouble with using an
ON ERROR statement is similar
to that of dealing with detected
outer errors. A very simple
program becomes quite

If any error occurs while the
program is running then control
is transferred to line 100. The
variable ERR is checked to see
what error has occured and
various messages are generated
to inform the user. (To explain

In the next article of this series
we move away from
programming technigues to look
at some very necessary
background information —
randomness and its use in
programs.

Choose your character type carefully

LEY

¥ © ASP LTD 982

A Wizard? Slow on the draw and slo

lightning bolts are almost unstoppabl

You've read the program (Computing Today — April °82 .
each inc P&P and VAT) available for: ZX Spectrum (48K), Atari 400 and
BBC Model A and B, Sharp MZ-80A,
inc P&P and VAT) available for: Apple TI (DOS 3.3), Sharp MZ-80A and P
Full instructions are included with the game, but if you want more

reprint of the original ‘Computing Today" article is available at £1.95

Fill in the coupon and

Please send me the following versions of

return it to: } The Valley Tape...... ... @E11.45 all
inclusive of PEP and VAT, S
ASP Software, I Disc.........@£13.95 all inclusive of ’f‘—]
ASP L, | P&P and VAT, —
145 Charing Cross Road, |

| Please use BLOCK CAPITALS

London WC2H OEE

and becorneone I ADDRESS ..........

74

_.J

THE S=—~====What are you. . . Barbarian or Wizard?

recover quickly but their magic doesn’t come easily.

live long enough and grow wise enough and your

Wraith in the Black Tower. In fact, live out
. more die than live to tell the tale,

- . Now buy the tape. Tape versions (£11.45
VIC-20 (with 16K RAM pack). Disc

detail on the program, a 16 page

I enclose my cheque/Postal Order/
International Money Order (delete as necessary) for:

or Debit my Access/Barcla

|NAMl-Z{Mr/Mts/Miss).....__.‘_.._...._.‘,...___......_.......

of themanytoplay... | ... ... ... .

. . . Barbarians
w (o mature...but

e. ..

800 (32K) Dragon,
version (£13.95 each
ET 8032 (8050 drives).

all inclusive.

(Made payable to ASP lid)

yeard @

(delete as necessary)

|
|
|
I
|
I
|
|
|
[
i )

Personal Software Winter ‘83



Mike James

RANDOMNESS AND PROBABILITY
S e Sy L]

ELEGANT
PROGRAMMING -4

fter spending so much eftort

A in previous parts of this

series describing how to
go about writing programs that
behave predictably, it might
seem counter-productive to
spend this episode considering
how to make programs
unpredictable! However, since
the start of the personal
computer boom, playing games
has been a major occupation
and most computer games
involve an element of
randomness.

Randomness in programs
may be something that a user
takes for granted but it can pose
quite a problem even for the
most experienced programmer.
The trouble is that using
randomness in programs
depends upon knowing about
something other than
programming — ie probability.

RANDOM
COMPUTERS?

The idea that a computer can
be random in the same way as a
thrown coin or a rolled dice is a
strange one. A computer is a
very complex mass of electron
circuitry but at no point is its
operation 'vague’ in the same
way as the behaviour of a
thrown coin. If you know a
computer's state at any moment,
you can predict its state at any
time in the future. This very fact
is the basis of program
debugging — for if we couldn't
predict what the computer
should do, how would we ever
know that a program was
behaving 'not as expected’! The
first law of programming is that:

=

o 5
-

A working computer is
absolutely predictable

and its obvious corollary is that

‘an unpredictable computer is a
broken computer’!

All this talk of absolute
predicability seems to widen the
gulf between computers and
randomness rather than
reconcile them. However, the
key to the problem lies in the
previous suggestion that the
flight of a coin was 'vague'. The
toss of a coin is entirely
predictable — in theory at least.
In practice, its behavicur is so
complicated that it is beyond
the powers of most people to
predict how it will land.

This sort of randomness is
different from most people's
idea of randomness. A truly
random event is one that is
unpredictable in theory as well
as in practice. An event that we
regard as being random just
because it is too difficult to
predict deserves a different
name. 'Pseudo-randomness’ is
the term that has been coined to
cover this class of happening
(pseudo meaning false or
imitation.) Most of the things
that we think of as being
random are in fact pseudo-
random although sometimes it's
difficult to decide. The point is
that, in practice, there is little
difference between randomness
and pseudo-randomness. [f
something is too difficult to
predict, it matters little that it is
theoretically possible to predict!
You may be wondering at this
point if there is anything that is
truly random and theoretically
impossible to predict. The
answer is yes, but you have to
look into the realm of atomic
physics before you find it!

PSEUDO-RANDOM
NUMBERS

The idea that you might bet on
a single number can be
extended to the case where a
computer produces a whole list
of numbers which are
unpredictable (rather like

Personal Software Winter '83

Our series advances
into the world of
uncertainty and
randomness. Can you

compute the odds on a
successful return?

tossing a coin more than once).
If this list or sequence of
numbers is going to prove
useful as a source of
randomness then it must be, for
all practical purposes,
unpredictable. Now the trouble
is that most of the sequences of
numbers which come out of a
computer are predictable or at
the very least they show general
patterns of behaviour, ie they
tend to increase and decrease
in regular ways. .

A seguence of numbers is

. said to be psuedo-random if:

1) there is no ‘practical’ way of
predicting the next number in
the sequence, and

2) there are no 'patterns’ of any
sort in the sequence that could
be used to 'guess’ the next
number in the sequence.

This definition sounds
reasonable enough — the only
trouble is that it is entirely at
the mercy of the words
‘practical’ and 'patterns’. What
one person might find practical
may be another's impossibility!
And as for the word 'patterns’
well .. . I

PRANGING IT

The emphasis has now moved
away from producing random
events or happenings to
something a little more abstract
— a pseudo-random sequence

"of numbers. As we shall see

later, given a pseudo-random
number sequence you can make
any event happen seemingly at
random with any given
probability, so producing such
a sequence is of great practical
importance. A program which
produces pseudo-random
numbers is often called (very
reasonably) a Pseudo Random
Number Generator or PRNG for
short. It is very much more
difficult than you might think to
write a PRNG. The condition
about the number not being




easy to predict is simple enough
— for example, how many
people can compute SIN(x) in
their heads?! The other
conditions cause the problem
because most calculations, no
matter how complex, tend to
produce sequences of numbers
which show a regular pattern.

One of the first PRNGs, the
mid square method, was
suggested by the mathematican
and computer scientist Von
Neumann in 1951. It is fairly
easy to use but it has a
tendency to produce numbers of
the form 00XY and XY0Q0
periodically. Each number in
the series is determined by
squaring the previous number
in the series and throwing away
all but a fixed number of the
middle digits of the result. For
example, if we are generating
four digit random numbers and
the last number was 5069, the
next number is given by
squaring 5069, giving 25694761
and then take the middle four
digits ie 6947. The following
short BASIC program
implements the mid square
method:

1@ INPUT “STARTING VALUE";A

2@ A$=STRS (A*A)

3@ A!VﬂL[MIDS(hS.INT(LEN(AS}/2J,4}
4@ PRINT A

58 GOTO 28

(STR$ is a function which
converts numbers to strings and
MID$%(string, I, J) extracts the
substring of length J starting at
the Ith character.)

CONGRUENTIAL PRNGS

Although the mid square
method serves as an illustration
of how a complex calculation
can produce a pseudo random
sequence, it's not the best or the
most popular method used
today. This position is held by
the so-called ‘congruential’
method. Although this method
has the sort of name that might
make you hide behind your
computer, it is not much more
difficult to understand than

the mid square method. A
congruential generator
produces the next number in
the sequence by multiplying the
previous result by a constant
and then finding the remainder
after dividing by a second

ELEGANT PROGRAMMING — 4

constant. The quality of the
random numbers produced
depends very much on the
choice of the two constants used
and it varies from hopeless to
excellent! The BASIC program
given below implements a
congruential PRNG which was
used on one of the first
computers — ENIAC.

18 INPUT "STARTING VALUE";a
2B A=p*23
30 A=A-INT(A/lO0000Q0L)*100000001

4@  PRINT A

5¢ GoTO 1@

In this case, the first constant is
2 and the second is 100000001.
Line 30 works out the remainder
when A is divided by the
second constant.

One other feature of
congruential PRNGs is that the
quality of the random numbers
that they produce depends on
the starting value as well as the
two constants. For example, to
see a very non-random
sequence try entering O in
answer to line 10 in the above
program!

RND AND RANDOMISE

If you know BASIC at all well
you might be wondering what
all the fuss about generating
random numbers is about.
Nearly every version of BASIC
includes a function called 'RND’
which can be used to produce
random numbers in the range
from zero to one and is as easy
to use as SIN or COS. This is,
of course, very useful but it
does tend to lull one into a false
sense of security — of course
the numbers are random, they
were produced by RND weren't
they ?!? The sad fact of the
matter is that:

A

RND doesn’t always produce
numbers that are random
enough

The BASIC random number
generator isn't any different
trom the PRNGs that we have
been considering — they are
just as fallible. The big
advantage of the RND function

is that, as part of BASIC rather
than a program written in .
BASIC, it is very fast. .'

On a more practical level,
RND presents a problem to any
programmer trying to write
programs which can be run on
different versions of BASIC.
The trouble is that there is no
standard for the meaning of any
parameters which are allowed
in RND. Some versions of
BASIC don't allow any
parameters (eg Sinclair
BASIC), someneed a — 1 as a
parameter to produce random
numbers (eg Microsoft) and
others allow the parameter to
control the range of numbers
produced (eg BBC BASIC). The
safest thing to do is to assume
that RND will produce numbers
in the range O up to but not
including 1 (I don't know any
tull versions of BASIC for which
this isn't possible) and just face
up to the fact that when
converting programs, you may
have to change all your RNDs to
RND(— 1)g or vice versa.

The BASIC function RND
should seem perfectly
straighttorward by this point,
but most BASICs also have an
associated command
‘RANDOMISE’ which seems to
be an unnecessary
complication. A lot of BASIC
manuals recommend that if you
want really random numbers
you should always use the
RANDOMISE command before
using the RND function. This
often strikes programmers as a
rather strange idea — either the
numbers from RND are random
or they are not and if they are,
how can RANDOMISE make
them more random? The answer"
to this sort of question should
now be obvious by thinking
about RND as just another
PRNG. If you look at either of
the two BASIC programs given
earlier, you will see that you are
invited to give a value to start
the sequence off.

This value is often referred
to as the 'seed’ because the rest
of the random sequence 'grows’
from it. If you start a PRNG off
using the same seed then you
will get the same sequence of
numbers. The BASIC function
RND is no different from any
other PRNG and it needs a seed

76

Personal Software Winter '83




to start it off. Just think for a
moment where this seed might
come from. Ideally, the seed
should be random because we
don't want to use exactly the
same sequence of numbers
every ime the computer is
switched on. This would make
games boring to say the least!
However, where do you get a
random number from to start
the’p random number generator
off"

The answer is that the
RANDOMISE command starts
the random number generator
off with a seed that is obtained
from an area of the machine’s
memory where the value is
constantly changing. What area
of memory this is, varies from
machine to machine — in most
it contains a number related to
how long the machine has been
switched on. (Sinclair users
note that everyone else's
RANDOMISE is your
RANDOMISE 0O.)

USING RND

Given that the BASIC function
RND is good enough (and for
most applications, especially
games, it is) how do you go
about using it to produce
random events? Let's suppose
that we need to choose between
one of two things that a
program might do such that
each is equally likely. RND

returns a number in the range O,

to (but not including) 1 and as
this sequence is pseudo-
random, each number in this
range is equally likely to 'come
up'. If you consider the interval
from Oto 1:

B

0 0.5 1

you should be able to see that
the number that RND produces
is equally likely to fall into the
range from O to 0.5 as it is from
0.5to 1. In other words, RND
0.5 will be true about half of the
time and this is exactly what we
need. So the statement:

IF RND<@®.5 THEN <action 1> ELSE
<action 2>

will cause the program to ‘do’

RANDOMNESS AND PROBABILITY

action 1 and action 2 at random
and roughly equally often. This
leads to the simplest and
perhaps most often written
random program:

14 RANDOMISE

2@ IF RND<P.5 THEN GOTOD 5d@

3@ PRINT "HEADS"

4@ GOTO 68

5@ PRINT "TAILS"

6@ PRINT "PRESSE ENTER/RETURN FOR
~ ANOTHER THROW"

78 INPUT AS

8@ GOTO 28

This is fairly straightforward but
the problem which causes most
difficulty is in extending this
‘two-event' case to making a
number of things happen
possibly with different rates or
probabilities. In fact, this is not
at all difficult once you realise
that the probability of getting a
value of RND in any interval is
proportional to the length of the
interval. For example, suppose
we want to a program to choose
between one of three different
alternatives A, B and C, such
that A should happen 10% of
the time, B should happen 20%
of the time and C the remaining
70% of the time. If the interval
between zero and one is divided
up in the following way:

0.7 0.2 0.1
\ A ‘ B C ‘
0 0.7 0.9 1

then the number produced by
RND will fall in the interval A,
70% of the time and in B, 20%
and in C, 10% of the time. This
is exactly what we need and
translating this into the most
economical set of IF statements
gives:

18 R=RND
28 IF R<B.7 THEN GOTO <action a>
38 IF R<@.9 THEN GOTO <action b>
48 <action c>
The logic behind this program
is that the first IF detects R
smaller than 0.7 and the second
IF detects a value of R smaller
than 0.9 (but it only gets the
opportunity to do so if the first
IF was false, ie if R was greater
than 0.7). This means that the
second statement following the
second IF is only carried out if
R is greater than 0.7 and less
than 0.9 which is exactly what
we want.

In general, if you have N

" different events and the first

must happen P1 of the time and
the second P2 and so on to PN,
then you can program this as:
R=RND

1F R<Pl THEN <action 1>

IF R<P1+P2 THEN <action 2>
IF R<P1+P2+P3 THEMN <action 3>

RANDOM RANGES

Sometimes, rather than using
BND to choose between a
number of possibilities, it is
usetul to change the number
produced by RND to lie in a
range other than Oto 1. For
example, if you want to write a
program which will mimic the

.roll of a dice you could use the

method give in the last section
with six equally likely events or
you could change the 0,1 range
of RND to 1 to 6. This is just a

"matter of simple arithmetic. If

you want to generate a random
number in the range from a up
to but not including b then use:

RND* (b-a) +a

You can test that this works by
working it out with values of
zero and just less than one for
RND. If you want to produce
integers (whole numbers) from a
to (and including) b, use the
following:

INT (RND* (b-a+1) +a)

For example, in the case of the
dice program, ais l and bis 6
so!

19 PRINT INT(RND*6)+l

28 GOTO 19

will print random integers in the
range 1 to 6.

TESTING
RANDOMNESS

Any program which involves
randomness is very difficult to
fully test. The reason for this is
two-fold. First, if any of the
parts of the program are carried
out only very occasionally, you
may wait a long time before you
see them in operation. Second,
even if you do see a section of
the program in operation and
an error comes to light, it may
be difficult to repeat the exact
conditions that caused it. There
are no complete solutions to
these problems and as a
consequence, you have to allow >

Personal Software Winter '83

7




ELEGANT PROGRAMMING — 4 RANDOMNESS AND PROBABILITY

il . p— 1

extra time for debugging any errors by re-running the A SERIOUS SIDE

program which contains program. Another technique _
randomness. There are two which is worth trying is to Although tbe emphasis has _
things that you can do to help replace the RND function by been on using randomness in
with the problem, however. You  constants that will force the games, the time has come to
can use RANDOMISE or a program to go through each point out that there are other
particular parameter value in and every section in turn. In uses for the RND function. Most
RND (which depends on the practice, there are often good computer games are based
version of BASIC that you are reasons why testing ‘modified- upon some aspect of the real
using) to set the value of the easy-test’ versions of a program ~ World. A program which plays a
seed at the start of the program.  is not possible, eq it destroys card game, for example, is

This will force the random any interactive aspect of a copying something that happens
number generator to always game, and so testing by with real cards using nothing
start from the same value and ‘extensive playing is the only but programming logic. This
means that you can repeat any option! idea of modelling, or

simulating, can be extended to
things other than games. For
example, you could write a
program to simulate the way a
nuclear reactor works and find
out the best way to run it by
‘playing’ with the program. If
you think that this is far-fetched
then all I can say is that putting
the real world inside a
computer is one of the growth
areas of computing.

By now you should have
realised that we can structure
programs! But, what on earth
are data structures? To solve
this elementary riddle you'll
need to read the next article.

SOFTWARE
FOR YOUR

CBM 64

N

A\
7 IE YOU HAVE A BBC MIC \ N Sera

e E mble £7.00 Matrix £8.00

: I'HEN YOU NEED Frogger £7.00 Star Trek £7.00

Sprite Man £7.00 Rox £4.95

Crazy Kong £7.00 Grid Runner £8.00

=== Panic £7.00 Pakacuda £5.75

_ Lander £9.95 Cyclons £5.75

. Attack of the Mutant Escape M.C.P. £5.75

At o : Gamels £8.00 Ceniropods £5.75

aton o A NEW ADVENTURE FOR YOUR 64
Dead Man's Gold £9.00. We dare you to seek the treasure
and return it to the correct grave.

NEW ADVENTURE FOR YOUR VIC 20+ 16K
The Enchanted Chalice £8.50. Find the chalice if you can.

NEW FOR ANY SPECTRUM .
Race Fun, Quackers, Escape M.C.P., Centropods,
55 ger, all at only £5.75, and for 48K Spectrum: Phantasia

, Hidden City £5.95
Now in stock from “Imagine Software” for any Spectrum —
Please supply me with [ | more details about | S and your special offers Juu'l“e “m £5.5° . .
[ = sample copy for £1.00 and an A4 SAE (17p postage) This is one game we just can't stop playing.
[ ] 1 UK 12 Menth Subscription for £12.00 "
| Cheques/P.O.s to:
[

] 1 UK & Month Subscription for £6.00

| 1 Overseas Surface Mail Subseription for £14.00
(air mail rates on application) B Y E w
Please send the goods 10! ’

e SR e 203 COURT ROAD, BARRY, S. GLAM. CF6 7EW.
1enclose a chegae/ . p made payable to LASERBUG,
Please send rfon:owfuL:SEkﬂL‘G Dept. C, 10 Dawley Ride, Colnbrock, Skugh, Berks., $13 DOH Tel : (0446) 742491

i e o e r

78 Personal Software Winter '83

B e Dt e e s e




Mike James

ELEGANT
PROGRAMMING -5

The idea that a program

consists of two parts —

iactions and objects — was
introduced right at the
beginning of this series.
However, up to this point we
have only examined the way the
actions could be specified. In
other words, we have only
looked at the subject of
program structure. Now it is
time to consider the other side
of the coin — data structures.
Although data structures have
been left until after a discussion
of program structure, this
shouldn't be taken to imply that
they are any less important.
Prcgrams are easier to construct
if the programmer has as wide a
range of alternative data
structures as possible at his or
her fingertips.

There are two distinct ways of
producing ‘objects’ for
programs to operate on. First,
there is a range of simple or
fundamental 'data types’ which
programs can use for
calculations, etc. Second, there
are ways of taking these
fundamental data types and
putting them together to make
ordered arrangements. Ways of
arranging simple data types into
larger objects are usually called
‘structuring methods’. For
example, a character is a
fundamental data type, but an
array is a structuring method
because you can define arrays
of numbers or characters. In
this article, the subject of
fundamental data types will be
examined paving the way for a
discussion in the next article of
data structuring methods.

REPRESENTATIONS

As most programmers know but
often forget, the only sort of
data which a computer can deal
with directly takes the form of a
binary number. The reason why
it is so easy to forget this
elementary fact is that it is the
purpose of a high-level
language to extend the range to
include more exciting and
useful forms of data and so hide
the strict limits of the hardware
from its programmers. This is a
good thing because the largest
binary number which most
micros can deal with in one go
is only eight bits or, in other
words, in the range 0 to 258,
Clearly, to be able to do
anything useful, it is necessary
to use this very limited form of
data to represent every type of
‘object’ that we would like to
write programs about. Although
this sounds like an awesome
task there are in fact, only two
fundamental types of data and
everything else can be
produced by organising these.
The two fundamental types
correspond to the two types of
numbers in common use —
integer and real numbers.
Integers are the simplest
type of number that we use on a
regular basis. An integer is a
whole number; for example, 3,
-3 and O are all integers wheras
3.14, -3.8 and 3.0 are not
integers. This all seems easy
enough apart from 3 being an
integer and 3.0 not being an
integer because, surely, 3 and
3.0 are equal and therefore the
same? The point is that two
guantities being equal doesn't
imply that they are the same in
every way. A real number is
one that has a fractional part —
and 3.01is a real number with a
fractional part of zero! If you
find this confusing or hair-
splitting then perhaps it is
better to think of a real number
as one which has the possibility

Personal Software Winter '83

DATA STRUCTURES
RS e L

Writing structured
programs requires the
use of the correct data
structures.

T S P e R T R R
of having a fractional part.

The idea of integers and
real numbers is something that
most programmers meet in one
form or another even in high-
level languages. However, it is
quite possible to use some
versions of BASIC and never be
troubled by the difterence
between numbers with fractional
parts and numbers without
fractional parts. Indeed, one of
the strongest of BASIC's many
good points is that if you don't
want to know about such things
then you can ignore them
almost completely. The way this
is achieved is by making every
variable capable of storing a
real number and then treating
integers as real numbers which
just happen to have zero
fractional parts!

It's beginning to sound as if
introducing two different types
of number into computing is
unnecessary and that other
languages should follow BASIC.
This is to some degree good
sense, in that there is a lot to be
said for protecting the user from
unnecessary complications.
However, even BASIC has to
admit that it is sometimes
important to be able to convert
a real number into an integer
and normally provides the
function INT which will round a
real value down to give an
integer. Also, there are many
occasions where fractional
values are logically
unacceptable; for example, it
makes no sense to write TAB 3.4
where a TAB moves the current
printing position, ie the cursor,
to a specified column —
obviously column 3.4 doesn't
exist.

FUNDAMENTALLY . ..

[ntegers are the most
fundamental of all the data
types and are the starting point
for everything else, so it's not
surprising that they cannot be
avoided completely. For




ELEGANT PROGRAMMING — 5

example, if you want to extend
the range of data types to
include the usual printed
characters, then the only way
that this can be done is to
assign an integer to represent
each different character. Such
assignment of integers to
characters is known as a
character code (probably the
best known of which is the
ASCII code) but it is important
to realise that it is not the only
one in use.

No matter what you may ke led
to believe, you cannot store a
character inside a computer —
merely an integer that
represents it.

The pair of BASIC functions
CHR$ and ASC (or CODE in
some dialects) make the
connection beween integers and
characters clear. CHR%(I)
returns the character whose
code is the integer I, and
ASC(C$) returns the code of the
character stored in C$. Apart
from just being a way of storing
characters inside a computer,
the way that integers are
assigned to characters also
governs the results of
comparisons. For example,
"A'<"B" is true only if
ASC("A")< ASC("B") is true.
In other words, the order of the
character set is simply a
reflection of the order of the
integers in the character code.

SCALARS

In the same way that integers
can be used to extend the range
of data types to characters, they
can also be used to represent
other equally simple 'objects’ —
the scalars. A data type is a
scalar if the values that it can
take on are 'countable’. You
may at this point find the idea
that a data type can take on
values which are un-countable a
little difficult to comprehend
but, as we shall see later, this is
entirely possible.

The only two scalars which
most versions of BASIC

recognise are characters and
the Boolean data type which has
the two values 'true’ and 'false’.
A Boolean data type is the
result of any sort of comparison.
For example, 'X > is either
true or false depending on what
is stored in X. As with the
characters, the values true and
false are stored by assigning
each one to an integer. Which
integers are used depends on

the dialect of BASIC, but O for

‘true and — 1 for false is quite

common. Some versions of
BASIC try to cover up this use
of integers to represent Boolean
data by not permitting you to
use the results of Boolean
expressions in arithmetic or
PRINT statements but many will
allow you to write things like:

PRINT (2=3),(2=2)

which will first print the integer
which represents false and then
prints the integer which
represents true. (It is worth
trying this line of BASIC as a
simple experiment to see what
your version of BASIC makes of
it.) An unwanted side effect of
the use of integers to represent
'true’ and 'false' is that, in the
same way as the characters 'take
up' the order of the integers
which represent them, so do the
two values true and false. Let us
suppose that true is represented
by — 1 and false by O (the
representation used by
Microsoft BASIC -80). In this
case, false’ is greater than 'true’
and if 'x" and 'y’ are a pair of
comparisons which are either
true or false then we can draw
up the following table to show
the results of x not equal to y.

x Yy X<>Y
false false false
false true true
true false true
true true false

If you look closely at this table
you should be able to recognise
the truth table for exclusive OR!

WEEK ENDING

BASIC may not provide cother
scalars as standard data types
but BASIC programmers

certainly make use of them. For
example, if you want to write a
program that records the day of
the week that something
happens to you, you might start
by assigning a number to each
day, ie Monday = 1, Tuesday
= 2 and so on. By assigning
integers in this way you are '
creating your own data type —$
days of the week. Some
computer languages, Pascal for
instance, have special facilities
allowing the introgduction of new
scaler data types in such a way
that you can write satements
such as:

day=friday

It is sometimes said that one
problem with BASIC is that it
cannot cope with user-defined
scalars in this way and has to
resort to statements such as:

day=5

instead. In fact, it is simple
write programs in BASIC which
make user-defined scalers easier
to understand by defining
variables with appropriate
names and values. For example,
(assuming the version of BASIC
you are using can handle long
variable names) given the
following list of definitions:

18 MONDAY=1
2¢ TUESDAY=2

';';J SUNDAY=T7
you can write something like:
188 DAY=FRIDAY

and:

118 IF DAY=MONDAY THEN PRINT "First
day of the week"

This simple use of variables to
store the integer codes assigned
to each value of the new scalar
type gives BASIC nearly
everything which languages
such as Pascal have except the
automatic checking for
nonsense such as:

day=38

The above statement is
something which an application
program should pick up before

e

80

Personal Software Winter '83

SMURSIRE




it happens anyway! Using this
method you can even write
things like:

1¢ FOR I=MONDAY TO FRIDAY
2@ PRINT "WORKING DAY"
3@ NEXT I E

ar evern

1@ FOR DAY=MONDAY TO FRLIDAY
20 PRINT "WORKING DAY"
3@ NEXT DAY

The data type scalar —
encompassing integers,
characters, Boolean and any
user-defined scalars — is the
most commonly encountered
and most useful data type in
BASIC or any programming
language. Indeed, it is difficult
to think of applications which
don't use scalars apart from
those involving nothing but
long numerical calculations.

BACK TO NUMBERS

The importance of scalar types
is a reflection of the fact that,
contrary to popular opinion,
computers don't spend much of
their time doing 'different sums'’
but are more often busy moving
non-numeric data from one
place to another and making
decisions. However, it would be
a mistake to ignore the
problems involved in using
numbers and doing arithmetic
on computers completely. Even
in a high-level language it is
helpful to know what is going
on!

A more difficult problem is
the storage of numbers smaller
than zero — in other words,
negative numbers. There are
many ways of extending the
range of integers to include
negative numbers, but all of
them involve a little
mathematics to be fully
understood. Fortunately, all the
BASIC programmer has to be
aware of is that to accommodate
negative numbers, it is
necessary to split the range of
numbers which can be stored
into two — the first half is
considered positive and the
second half negative.

Storing and using integers
is only complicated by needing
to use negative numbers and
needing a large enough range
to avoid overflow errors.

Personal Software Winter ‘83

However, storing real numbers
is considerably more difficult.
The point is that if you can store
an integer then you can store it

‘exactly, but no matter what

scheme you choose to store real
numbers there will always exist
numbers that you cannot cope
with.

For any two real numbers
there is always another which
lies between them.

This is clearly not true for
integers — after all what integer

‘lies between 2 and 3! This

observation should also indicate

that real numbers are not simple -

scalars as it is not possible to
count how many reals there are
in the same way that you can
count how many days of the
week there are. Another
difference is that for a simple
scalar there is the concept of
‘next’, ie the next day of the
week, the next integer after 2
(ie 3), and so on; but for reals,
there is no such concept of
‘next’. Consider for a moment,
what is the next real number
after 2, isit 2.1, or 2.01. or

_.? All of this should convince
you that there are integers and
their associated family of simple
scalar types and there are the
reals, and both present their
own particular set of problems.

REPRESENTING REALS

Before going on to consider the
sort of problems that real
numbers cause ini everyday
BASIC (and other high-level
languages) it is worth spending
a little time considering how
real numbers can be
represented inside a computer.
The most obvious way of
representing a real number is to
change an integer to a real by
assuming that there is a decimal
point written after a particular
bit of the number. For example,
if you assume that an eight-bit
number is in fact made up of
four bits, a decimal point and
followed by another four bits,
then 10101011 would represent

DATA STRUCTURES

a real number given by
1010.1011. Notice that the
decimal point isn't stored inside
the computer, we just remember
where it is when interpreting
the contents of a memory
location. Although the dot
written in the middle of the
number has been referred to as
a decimal point, it is more
correctly called a binary point!
If you try to work out what
real number 1010.1011
represents, you should have no
trouble with the first part as
1010 is easily converted to 10
using the usual method for
changing from binary to
decimal, but what about the
part following the binary point?
In the same way that the values
increase by a factor of two for
every place to the left of the
binary point, they decrease by a
factor of two for every place to
the right of the binary point:

8 4 21 h V4 Y8 Ve

L8 T @ . Il i

This gives a value of

8+ 2+ ¥ + ¥ + /s for the entire
number, or in other words, 10
and /s or 10.6875. This sort of
representation is known as
'FIXED point’ and it was very
common in the early days of
computing. However, it suffers
from the problem of not being
flexible enough for general use.
The trouble is that it simply
cannot cope with the range of
numbers use in calculations,
especially scientific
calculations.

The solution is to abandon
the usual decimal point notation
altogether in favour of the so-
called ‘exponential’ or
‘scientific’ notation. This
separates a number into two
parts, the first — the exponent
_ giving the overall magnitude
of the number, and the second
— the mantissa — giving the
most significant digit of the
number. In normal use a
number is written in exponential
form as:

'mantissa' E 'exponent'

and can be converted to the
more usual decimal form by:

number=mantissa*l@"exponent

e )
8l




ELEGANT PROGRAMMING — 5

Where A is to be read as 'raised
to the power of'. So .43E3is
.43 % 1000 or 430 and .321E-2is
.321 % 0.01 or .00321.

Using this format a wide
range of numbers can be
represented. When used as a
method of storing real numbers
inside a computer it is usually
called 'floating point'’
representation rather than
exponential, but it essentially
the same. The exponent is
stored as an integer in one
memory location and the
mantissa is stored as a fixed
point number in several other
locations. The exact details of
how this is done varies from
BASIC to BASIC but all that
should concern the BASIC
programmer is:

— how many digits or bits are
used for the mantissa

and:

— how many digits or bits are
used for the exponent.

These two factors govern the
accuracy and range of numbers
which a BASIC program can
handle. For example, Microsoft
BASIC-80 uses three memory
locations for the mantissa and
one for the exponent — this
gives about seven digits of
precision and a range of about
10® to 10~ (both of which I find
difficult to imaginel).

PUT TO GOOD USE

The fact that some BASIC's
don't even bother to distinguish
between integers and reals has
already been mentioned, but
this doesn’t mean that we can
throw caution to the wind and
treat reals and integers in the
same way. Some versions of
BASIC do provide a range of
different types of number and
hence variables. For example,
both Microsoft and BBC
BASICs provide integer
variables (indicated by a ' %"
sign at the end of the variable’s
name). As any arithmetic with
integers is a lot simpler than for
reals, the use of integer
variables is often to be
preterred to reals. To see if
your BASIC works faster with

integer variables, time the
following programs:

16 K=@

20 K=K+l

30 I=K*K+K/K

4@ IF K<1@P@ THEN GOTO 1@

and:

1¢ Ks=g@

290 Kt=K$+l

39 I%=K3*K3+K8/K%

48 IF K%<l@@@ THEN GOTO 1@

There are other advantages to

using integer variables apart
from speed. In particular, if you
are trying to write programs
which handle money, it is
comforting to know that integer
variables will keep track of the
last penny!

More seriously, it is
important to realise that real
variables cannot carry out
calculations exactly. For
example, try the following
program:

18 K=0

20 K=K+1/7

3¢ IF K=1 THEN STOP
44 Goro 20

On most versions of BASIC this
program will never stop
although you would expect it to
end after adding !7 to K exactly
seven times. To see why, add
the line:

25 PRINT K

and run the program again.
Because of difficulties with
accuracy, you should never
compare real numbers in [F
statements. Instead of:

IF A=B THEN

82

DATA STRUCTURES

use.
IF AB5(A-B)<C THEN ....

Where C is small enough to
ensure that A and B are close
together when the condition is
true and vet large enough to
ensure that the condition is true
when the difference between A
and B is about the same as the
accuracy they are stored in.

IT ALL ADDS UP

A second, less publicised
problem with floating point
numbers reveals itself when you
try to take the difference
between two large numbers that
are roughly the same magnitude
or add together two numbers of
very different magnitudes. In
the case of the subtraction, the
result you get will have more to
do with the error involved in
representing two large
numbers.

To see this for yourself try
1E20+ 1E10 — in many case
you'll discover the answer given
is 1E20. This is rarely a
practical problem, but a great
many quantities of interest
between two large numbers. For
example, many BASIC
programs which calculate the
standard deviation of a list of
numbers give results which are
almost random when the
average of the numbers is large
and the true standard deviations
is small.

To sum up.

Q;‘u:&ﬁ-‘; &

e
Real numbers deserve to be
treated with more caution than
they usually are.

Personal Software Winter '83




Mike James

ELEGANT
PROGRAMMING -6

at some of the fundamental

data types that can be used
to construct programs. Even if
we added all the obscure data
types to this list we would still
lack such familiar things as
arrays and strings. To produce
the wide variety of data 'objects’
that are essential to
programming we have to
discover ways of organising the
fundamental types into 'data
structures'. In other words we
need to define ways of
‘structuring data'. The best way
of understanding this idea is by
locking afresh at a well known
example.

THE ARRAY

Because of the way that
programming languages are
taught it is quite common for
programmers to miss the idea of
constructing new data items by
applying a structuring method
ot existing data types. For
example, the idea of a one-
dimension BASIC array is often
introduced as a completely new
idea. It is described in terms of
the rules for using it and what it
can be used for. However, a
one-dimensicnal array is
nothing more than a ‘collection’
of real variables with a special
way of naming each variable.
The traditional way of thinking
of this collection is as if the
variables were lined up in a row
(or column!). The whole
collection is given a name —
the array — and in order to
refer to any of the variables thal
make up the array it is
necessary to supply a two-part
name. The first part is the name
of the array, there may be more
than one array in a program,
and the second part specifies
which variable within the array
you are referring to. This
second part of the name is often
called the 'gualifier’ and the
whole two-part name is
gualified name'. This idea of a

L ast time we locked brietfly

gualified name will crop up
time and again when learning
about structuring methods.

This rather academic
description becomes a lot more
familiar when related directly to
the one-dimensional array that
we have been considering. The
array name is (in most versions
of BASIC) a simple variable
name — A, tor example. The
qualifier comes from the idea of
the variables lined up in a row.
Any variable can be picked out
by giving its place in the line.
The only problem is what to call
the first variable — O or 1.
Some versions of BASIC call
the first variable O and others |
but, for the sake of simplicity,
we will assume that the first
variable is called 1. Thus the
gualifier part of the name takes
the form of a number starting at
] and ending with the number
of variables in the array. A
gualifier that takes the form of a
number is more often called an
'index’ so the usual way of
writing the name of a variable
in an array is:

array name (index)

For example, A(5) refers to the

fifth variable in the array called
A.

Once you have realised that
forming an array is a
structuring method it is possible
to use the same method to
produce a wider range of arrays
than are normally present in
BASIC. The first thing that can
be done is to allow other types
of fundamental variables to be
organised into arrays. For
example, you can line up
integer variables to form integer
arrays and character variables
to form character arrays (not to
be contused with strings). No
matter what fundamental
variable is used to form an
array the basic idea is the same
— to reference a single element
you have to use a gualified
name.

A less obvious way of

STRUCTURING DATA

Following from the
previous discussion on

data types we take a
look at the methods
used to structure them.

extending arrays is to allow the
type of the gualifier to be
something other than a number.

For example, A(wed) would
refer to the variable that was
used to store something to do
with Wednesday. In general it
is possible to imagine arrays
where the gualifier part of the
name is any scalar (see last
time's article in the series) apart
form a real number. In practice
BASIC ignores this extension
and restricts gualifiers to
integers only. This is no great
disadvantage because if the
method for constructing scalar
types suggested in Elegant
Programming — 5 is used,
expressions such as A(mon)= 56
will work because 'mon’ is a
simple variable holding an
integer.

ARRAY EXTENSION

The most important

extension to arrays arises from
the observation that a
structuring method isn't
restricted to ordering
fundamental variables but can
be used to order data types
produced by an earlier
application of a structuring
method. For example, applying
the structuring method that
results in a one-dimensional
array to organise a collection of
one-dimensional arrays results
in what is more often called a
two-dimensional array. Each
one of the data items that is
lined up in a row is itself a one-
dimensional array consisting of
a line of real variables. Now, to
refer to one of the real variables
it is necessary to supply two
qualifiers (indices). The first
indicates which element of the
first array is required and as
this element is itself a one-
dimensional array, a second
gualifier is needed to indicate
which real variable in this array
is needed. If a two-dimensional
array A consists of a line of
three data types, each of which
is itself an array of five real

Personal Software Winter '83



ELEGANT PROGRAMMING — 6

variables, then A (2) (4) is the
fourth element in the second
constituent array. Some versions
of BASIC allow this doubly
guaified name to be written as
above (ZX BASIC, tor example)
but most demand that the
indices are written within one
set of brackets and separated by
a comma; ie instead of A (2) (4)
you must write A(2,4). This
difference in notation hides the
fact that:

A

A et
A two-dimensional array is not
something new and different, it
is simply the result of applying
the same structuring method
twice =

The traditional way of thinking
about two-dimensional arrays as
a table of variables with each
individual identified by a
particular row and column
number also hides this fact.
However, if you notice that the
table can be thought of as a row
of columns (or vice versa) you
should be able to see the
connection between one-
dimensional arrays and two-
dimensional arrays.

IMPLEMENTING
ARRAYS

The job of actually creating an
array is normally carried out by
whatever BASIC interpreter or
compiler you happen to be
using. All you have to do is
write DIM A(10) and an array of
ten elements is created for you
to use. However, it is sometimes
usetul to be able to create
arrays directly. For example, if
you want to use an array with
1000 elements where each
element will only be used to
store a number in the range
0-255 then you can save a lot of
storage by implementing your
own array. If you simply write
DIM A(1000) then BASIC will
allocate 1000 variables for you
to use and each variable will be
capable of holding numbers of
a much greater range than you
need. A real variable will often
use four memory locations to

store a single number — thus
A(1000) typically uses arcund
4K of memory. However, if your
version of BASIC gives you
some way of reserving memory
for such things as machine code
routines etc then you can
implement the array A(1000)
directly into 1K — a guarter of
the usual storage. The method
is simply to use POKE to store
values in the elements of the
array and PEEK to recall them.
The only problem is finding
which variable corresponds to
which memory location. If we
suppose that the start of the
memory area 1s stored in the
variable START and the index
of the reguired element is held
in I then the address of the
memory location is simply
START+1—-1. (The '— 1" is
necessary because the first
element has an index of 1 and
its address is START.) To store
VALUE in A(I) we use:

POKE (START+L-1) ,VALUE

To recall the value in A(I) we
use:

VALUE=PEEK (START+[~1)

The expression START+1-1
gives the address of the memory
location used to hold the value
corresponding to A(I). Because
this expression relates elements
of the array to a particular
memory location it is referred to
as a Storage Mapping Function
or SMF for short.

The idea of an SMF can be
extended to include cases where
each element takes more than
one memory location to store. If
each element takes N memory
locations to store and the first
one is numbered 1 the SMF is:

SPART+ (I-1) *N

which, if N=5, gives START+ 5
for the address of the second
element in the array.

Using what we have already
learned about one- and two-
dimensicnal arrays it is easy to
extend this to an SMF for a two-
dimensional array. If the array
is to be DIM A(X,Y) and each of
its elements takes only one
memory location to store then

the SMF is

A(L,J)=STARI+ (L-1)*T+J-1

If you lock carefully at this SMF
you should be able to see that
the first part is the address of an
element of a one-dimensional
array where each element is |
memory locations long.

STRINGS AND THINGS

As the above discussion of the
way that the BASIC array can
be extended (using any data
type to form the elements and
any scalar type to form the
indices) was followed by the
admission that these things
cannot be done in BASIC, you
might imagine that BASIC is
lacking in data structures.
While this is true it might come
as something of a surprise to
discover that the humble BASIC
string is a very advanced (and
necesary) data type that isn't
present in some very
sophisticated languages —
standard Pascal, for instance. [f
you've followed the discussion
of arrays in any detail you may
be wondering what the fuss is
about — surely strings are just
one-dimensional arrays of
characters. Well, it is true that
one-dimensional character
arrays are often used to perform
the same job as strings but they
are not strings.

R g
S w ~ - ‘5,. I
.;,.(' LA

The key difference is that an
array of characters has a fixed
length but a string can change
its size.

Some versions of BASIC (ZX
BASIC for instance) provide
both character arrays and
strings and this can be a
constant source of trouble to
beginners. For example, in ZX
BASIC DIM A$(10) results in a
character array being formed
with exactly 10 elements. This
means that you can write things
like A$(3)="2Z" which stores Z
in the third element of the
array. But, if you print now out

84

Personal Soitware Winter '83

—



the array using PRINT A% you
will get all 10 character
variables printed even if you
have only ever stored one letter
in the array. However, the
string B$ behaves in an entirely
different way. Just like the
character array, it is a
collection of characters but it
alters its size as the number of
characters stored in its changes.
That is, B$="2Z" doesn't just
store Z in the string variable BY,
it also creates the storage space
necessary to hold one
character. If you had written
B%$="XYZ" then enough storage
would have been allocated to
hold three characters. You can,
therefore, think of a string as a
character array that has a
variable number of elements. A
data type that can change its
size while a program is running
in the way that a string can is
known as a 'dynamic variable’.
In general dynamic variables
are more difficult to implement
than static variables and so
many programming languages
ignore them.

The similarity between
character arrays and strings is
something that is not often
brought out by BASICs. One
exception is ZX BASIC where
individual elements within
strings and character arrays can
be accessed by specifying an
index, ie B$(3) is the third
character in B$ whether B$ is a
string or a character array.
Other versions of BASIC,
Microsoft for example, don't
even allow character arrays and
treat strings as fundamental data
types. To access the Ith element
(character) in a string you have
to use a function such as
MID$(AS$,I,1).

As before, the structuring
method that produces an array
can be applied to character
arrays or strings to produce
two-dimensional character
arrays or arrays of strings. The
differences between these
superticially similar data
structures once again stems
from the variable length
property of strings.

RECORDS

Now that the idea of an array
has been explored in detail the
idea of a data structuring

method should be easy to
understand. Unfortunately, the
array is the only real data
structuring method that BASIC
possesses. However, it is worth
looking around to see what
other languages have to offer
and BASIC lacks. In particular
it is worth knowing something
about the 'record’, a structure
related to the array. Even
though BASIC does not contain
any way to construct records it
can make programming easier
to think in terms of records.
Before computers records
were kept on paper and
contained entries such as a
person's name, address and
telephone number. In other
words, a record is a collection
of variables of different types —
the name and address are string
variables but the telephone
number is an integer. Some
languages, Pascal for instance,
provide facilities to define such
collections of different variables
under a single name. One way
of thinking about this is to
imagine a record as a one-
dimensional array where each
element can be a different data
type. For example, the name/
address/telephone number
record might be defined
something like:
RECURD

person = name : string

address : string
telenumber : integer

(The details of such a definition
obviously depend on the
language being used but the
general form remains the same.)
The name of the whole record is
‘person’ and this plays much the
same role as the array name.
Each element of the record is
known as a field — thus 'person’
is a record with three fields —
‘name’, ‘address’ and
‘telenumber’. Each field has an
associated data type that defines
what sort of information can be
stored in it — thus 'name’ is a
field that can store a string of
characters while ‘telenum’ is a
field that can only store
integers. The only problem left
is how to specity which one of
the fields is being referred to.
The answer is once again to
provide a two-part name
consisting of the record name

STRUCTURING DATA
e R R R T AP T S T N B e i R B R

and a gualifier. In this case the
qualifier is the name of the field
separated from the record name
FE a'.. So, we can write things
ike:

person.name="mike"
person.telenumber=123

In the same way that the array
structuring principle can be
applied twice to yield two-
dimensional arrays a record can
contain a field that is another
record! For example, the record
‘person’ defined above could
have a field called 'bday’ that is
itself a record —

RECORD bday = day : string
menth : string
year : integer

To reter to an element in bday it
1s necessary to use a doubly
gualified name, as in the case of
a two-dimensional array. For
example

person.bday.year

gives the year tht someone was
born.

If this sounds interesting,
now is the time to recall that
most versions of BASIC don't
support records! However, you
can still use collections of
strings and numeric variables
with similar names as if they
were records.

DYNAMIC DATA
STRUCTURES

There is one class of data
structures that can be added to
BASIC by any programmer
and, surprisingly enough, these
are all dynamic data structures!
The most important of these are
the 'stack’ and the 'gqueue’ but
there are others such as 'linked
lists" and 'trees’. The trouble
with describing these data
structures is that if you've never
wanted to use one it is difficult
to see how they could be usetul.
However, if you don't know that
they exist then there are some
programs that, unless you re-
invent the wheel, are very
difficult to write.

The best known, and
simplest, of all the dynamic data
types is the stack. A stack is an

=
>

s

Personal Software Winter '83

85



ELEGANT PROGRAMMING — 6

area of storage that can be
accessed through just two
operations PUSH and PULL.
PUSH stores an item onthe stack
and PULL retrieves an item
from the stack. The more formal
name for a stack, 'Last In First
Cut’ or LIFQ, gives a clue to
the order in which a sequence
of items PUSHed on the stack
will be recalled by PULL
operations. The best way of
visualise a stack is to imagine
each item PUSHed onto the
stack as being placed on the top
of all the earlier items PUSHed
onto the stack with a PULL
operation always removing the
topmost item. The last item to
be PUSHed onto the stack is the
first one to be PULLed off.

A stack is easy to implement
in BASIC using a one-
dimensional array and a single
variable. The array is used to
hold the items on the stack and
the variable is used as a pointer
to the current top of the stack.
For example, to reverse three
numbers is easy:

18 DIM 5(18)

28 LEr P=1

36 FOR (=1 TO 3
4@  [WPUT N

54 LEF S{L)=N
60 LET W=N+1

78 HEXT [

8@ FOR I=1 TO 3
99 LET P=pP-1
198 LET N=5(P)
118 PRINT W

128 NEXY I

Line 10 sets up the array to be
used as the stack. Line 20 sets
the variable P to 'point to' the
top ot the stack, in this case the
top of the stack corresponds to
the first free location in the
array. Lines 30 and 60 form the
PUSH operation. The number is
stored in S(P) and then the
pointer is incremented to point
to the next free location. Lines
90 and 100 form the PULL
operation and this should be
easy to understand as it is
similar to the PUSH operation.

That's all there is to
implementing stacks and apart
from worrying about PULLing
data off the stack when there
isn't any more and PUSHing
more items on the stack than the
size of the array allows there is
nothing else to do. The most
common application of stacks is
in language processing, ie

compilers etc. However, this is
probably due to the fact that
programmers who write
compilers tend to know about
stacks. In general a stack is
usetul whenever the order in
which things have to be
processed is different form the
order in which they arrive.

QUEUING FOR IT

Once you have understood the
idea behind a stack then a
gueue is just one step further
on. The data structure called a
gueue mimics the behaviour ot
people gqueuing. A gueue has a
first person and a last person.
People join the gueue at the
rear and leave the queue from
the tront. In the data structure
called a queue the addition of
data items happens at the rear
and the retrieval of data items
happens from the front.

The easiest way to
implement a queue in BASIC is
to use two pointers in place of
the stack’s one. The first pointer
indicates the front of the queue
and the second pointer
indicates the end of the queue.
In addition to these two pointers
we can associate two new
operations with every queue —
JOIN and LEAVE. If F is the
pointer to the front of the queue
and R is the pointer to the rear
then the two operaticons in

BASIC are as follows:

JOIN

Q(R)=DATA
R=R+1

LEAVE

DATA=Q (F)
F=F+1

Thus the front of the gqueue
moves relentlessly up the array,
the trouble is — so does the

88

STRUCTURING DATA

rear! In order to stop the array
having to be enormous you
have to employ the extra trick of
making the gueue circular. [f
either of the pointers goes past
the top of the array they are rest
to point to the beginning of the
array. The two operations now
become:

JOIN

Q(R)=DATA
R=R+1
LF R>TOP THEN ®=1

LEAVE

DATA=] (F)

F=F+1

I[F R>TOP THEW F=1
The queue starts off empty and
the two pointers 'point’ to the
same place. This can be used to
detect when the queue is empty.
If after removing an item the
pointers point to the same
element of the array then the
gueue is empty. However, if this
happens after an item has been
added it means that the queue
is full. The best way to find out
how gueues work is to dry run a
queue on paper.

ity o

A program is part control
structure, part data structure. If
you select an inappropriate data
structure then the program’s
control structure will be more
complicated than it need be,

Data structures are important and
in this brief introduction we

have examined some of the
elementary ideas involved.

There is no doubt that the best
way to learn about data
structures is to use them
creatively in actual programs —
so experiment!

Personal Software Winter '83




|

Mike James

ELEGANT

PROGRAMMING -7

here is no way that a
T programmer can avoid

using graphics on today's
crop of microcomputers.
Indeed, many a micro is
dedicated to the production of
graphics displays of all kinds.
The trouble is that most
programmers have to learn the
necessary techniques by trial
and error. If you turn to text
books for information about
graphics programming, you'll
find that most of them
concentrate on the more
‘serious’ aspects of graphics
such as three dimensional
representations etc. What you
are unlikely to find information
about is the comparatively
crude static graphics used to
‘brighten’ an otherwise dull
screen presentation or about the
special technigues needed to
produce synchronised dynamic
graphics of the sort used by
video games. This lack of
information is probably due to
the difficulty in producing any
sort of theory of graphics
programming.

-

RIS .Lin—:»—“"'”"”
A= s

In practicme a good graphics
programmer achieves his end
product by a mixture of ad hoc
rules and methods and a sense of

good design.

[t is possible to learn something
about the ad hoc rules and
methods but if you don’t have a
sense of design the best thing to
do is tc ask somecne who has
what they think of your product
and take notice of their
comments.

GRAPHICS
HARDWARE

Before going on to consider the
software side of graphics it is
necessary to consider the
various ways that computers
nandle graphics. Rather than

give a complete list of every
possible technique for
producing graphics, which
although interesting would take
a lot of space, it seems more
useful to limit the description to
the few methods used by
microcomputers. The world of
microcomputer graphics is
divided according to whether
the electronics for the graphics
facility is ‘'memory mapped’ or
‘port controlled'.

Memory mapped graphics is
the most common way of
providing graphics on micros
because it is cheap and easy to
use. The key feature of memory
mapped graphics is that a
portion of the computer’'s main
memory is assigned to the
production of a screen display.
The contents of this area of
memory is 'converted’ by the
computer’s video circuitry to an
image on the screen in such a
way that a single memory
location controls what is
displayed at a particular area of
the screen. The exact way that
this happens varies quite widely
but it is possible to distingush
two general approaches —
block character graphics and
pixel graphics. If each memory
location controls an area of the
screen so that what it displays

GRAPHICS
EE S e e T S

Our series on advanced
programming techniques
takes a sideways step
this time into the world
of graphics. It's really
moving stuff!

B s s e R S e i
depends on a code stored in
memory location then this is
block character graphics. If
however the pattern that
appears on the screen depends
on the pattern of Os and I's
stored in the memory location
then this is pixel graphics.
(Pixel being short for picture
element.)

Port controlled graphics are
tar less common in the
microcomputer world. Instead
of allocating an area of memory
in the main machine to graphics
an alternative approach is to
build a separate 'graphics
device' with its own memory éte
and allow the computer to
communicate with it over an
interface port of some
description. A typical example
of this approach is a graphics
VDU which can be attached to
any computer via a serial port.
Port controlled devices have two
main advantages — they do not
use any of the computer’'s main
memory and, in principle at
least, they can be connected to
any computer. Their principle
disadvantages are cost and
speed. Such a device duplicates
many facilities already in the
computer and communicating
over a port is usually slow
compared to memory mapped

Memory mapped —

Port controlled —

port
Pixel graphics —

Block graphics —

each memory location controls what
is displayed on an area of the screen
What is displayed on the screen is
controlled by sending codes and
other information over an interface

a correspondence between the
pattern of 0's and 1's stored in a
memory location and what appears
on the screen

No correspondence between the
pattern of 0's and 1's and what
appears on the screen. The content
of each memory location is treated as
a code that determines what will be
displayed.

Table 1. First select your control mechanism and then the

character type. Most common micros use memory mapped screens

nowadays but more and more are turning to pixel graphics in the
search for higher resolution displays.

Psrsonal Software Winter '83




ELEGANT PROGRAMMING — 7

access. Because of the high cost
of port controlled graphics you
would think that you would
never come across such a thing
with a micro. In practice
however what tends to happen
is that a machine will have a
video section built into the same
box that has its own memory etc
and communicates with the
‘main computer’ through a fast
port or a small area of common
memory.

All this classification of
graphics systems is a little
difficult to absorb at first so
perhaps Table 1 might help.
Real micros often use schemes
that are not wholly described by
any of the above categories.
However it is normally possible
to say that a micro's graphics is
more like one than the other.

A SOFT VIEW

The above discussion is only of
interest to programmers in so
far as the hardware atfects the
graphics software provided.
Because port controlled devices
vary so much it is really only
possible to describe the software
techniques normally used with
memory mapped graphics.

The easiest sort of graphics
for a beginner to use are block
graphics. The reason for this is
that block graphics are handled
in exactly the same way that
alphanumeric characters are. If
you know how to print the letter
‘A’ at a particular position on
the screen then you can also
print a special graphics
character at the same place on
the screen.

YA o
From a programmer’s point of
view block graphics look like an
extended character set that can
be PRINTED on the screen

Thus no new graphics
commands are required to
produce block graphics
displays. All you need is the
ability to select the correct
graphics characters and
position them on the screen to
make up the 'shape’ that you
require. For example you may
draw a box on the screen by

finding the correct set of lines
and corners among the
character set and printing them
in the right place. Drawing with
graphics characters is rather
like the old pastime of using a
mechanical typewriter to make
pictures!

Finding the correct
characters to make up outlines
of objects etc can be quite
difficult until you are familiar
with the character set provided.
Indeed if a particular character
that you require is missing then
you will find that you cannot
draw everything you want to.
Offset against this lack of
complete freedom to draw
anywhere on the screen is the
existence of solid graphics
characters such as the four card
symbols (heart, diamond, spade
and club). The range of such
graphics characters varies
according to the particular
machine you are using but it
can be very wide and include
such oddities as tank and
spaceship shapes, guns, people,
animals etc. The ability to print
an entire space ship in one go
at a specified screen location is
very useful if you are writing
games programs but not so
appealing if you are trying to
plot a graph!

Pixel graphics on the other
hand are ideal for drawing
graphs and other complicated
outlines. As each point on the
screen is associated with a
particular bit in memory it is
possible to alter any area of the
screen independently of the
rest. This gives rise to
commands such as:

PLOT %X,¥

which (in many versions of
BASIC) will make a point
appear on the screen at a
position specified by x and y.
Using this command it is
possible to draw any shape you
require — straight line, circles
etc. However, to make life even
easier many versions of BASIC
include some extra commands
to draw a line or circle directly.
The main problem with pixel
graphics is that if you want to
plot a solid shape such as a
space ship or one of the card
suit symbols it can take a large

number of commands. At worst

you will need one PLOT type
command for every point in the ;
shape and this is often as many

as 64 or even 100!

e

LA Y
Pixel graphics are good for
drawing large outlines. Block
graphics are good for small
solid shapes.

As with all things in computers
the subject of block and pixel
graphics is not clear cut. For
example the ZX81 uses block
graphics but has a PLOT
command. The BBC Micro and
the ZX Spectrum both use pixel
graphics but, because they have
software provided for user-
defined graphics they can be
treated like block graphics
machines. Using software it is
possible to have the best of both
worlds — except for one

case. .. Some machines use the
block character method to
generate screens full of text but
then use memory mapped pixel
method for graphics. On such
machines it is difficult to mix
text and graphics without a
great deal of extra software
effort. (For example, in text
mode the Apple uses block
characters but in hi-res
graphics mode uses pixel
graphics).

THE SCREEN MAP

Although the memory mapped
machines provide commands
such as PLOT to enable the
manipulation of individual bits
in memory and hence
individual points on the screen
it is often the case that a more
direct approach works better. It
is possible to alter the contents
of any memory location using
the BASIC command:

POKE address,data

which stores the value 'data’ in
the memory location at
‘address’. This means that it is
possible to alter the contents of
memory in the screen area
directly and bypass the supplied
graphics commands.

88

Personal Software Winter '83




[

If you know that the screen
occupies memory from ‘START
to 'FINISH' then you might like
to try the following two
prcxgrarns:

1@ FOR I=@ TO 255
28 POKE START,I
3@ NEXT I

and:

1@ FOR [=START TO FINISH
28  PUKE I,46
38 NERT I

The first of the programs stores
all the possible bit patterns into
the first memory location of the
screen area. This will give you
two pieces of information —
what place on the screen the
first memory location
corresponds to and what each
bit pattern produces. Very often
the first memory location
corresponds to one of the four
corners of the screen but this is
not always the case. If your
machine uses block graphics
then each bit pattern will
produce a whole new character
on the screen. 1f your machine
uses pixels, then you will only
see eight points at most change.
The second program POKEs a
marker character into each
memory location. [f you watch
the order that they appear you
can determine how the memory
locations correspond to the
screen positions. For many
machines it is possible to give a
very simple formula for the way
the memory location
corresponds to screen positions
and this is known as a screen
map. [t is important to notice
that this is not always possible
because the correspondence
can be very complicated.

If you know the screen map
for your machine then it is
possible to manipulate it
directly. The main reason for
wanting to do this is speed and
so POKEs (and PEEKs) make up
the greater part of many moving
or dynamic graphics programs.

DYNAMIC GRAPHICS

Moving graphics are the main
constituent of almost all
computer games. This is not to
say that they haven't any 'real’
applications it just emphasises
how much fun dynamic

UREEEE o

graphics can be. Although it is
often obvious how to draw
simple shapes on the screen it is
often something of a puzzle to
know how to make them move
and even more of a puzzle to
know how to produce all the
dazzling effects seen in
computer games — collisions,
explosions, bouncing balls etc.
While it is important to realise
that many of the most stunning
etfects produced by games
machines are the product of
special hardware it is easy to
produce very good moving
graphics even from BASIC.

The principle behind
moving graphics is not difficult
to understand. A cine film (or a
normal television picture) gives
the impression of movement by
showing a sequence ot
motionless pictures. The
sequence of pictures is in fact a
jerky and jumpy approximation
to the truly smooth movement
that it represents but the eye is
fooled inte smoothing the jumps
out. This perception of a
sequence of still images as a
smoothly moving object is
possibly the only visual illusion
that is used by technology.
Making things move on a
computer screen uses the same
principle. The only problem is
how to produce the sequence of
images required. If you want to
make something move across
the screen then all you have to
do is to plot it then remove it
(unplot it) and then plot it again
but at a slightly different
position. By repeating this
plot/unplot/move action the
object can be made to ‘slide’
about the screen.

For example, to make
something move horizontally

try:

g K=1

20 ¥=middle

3@  PRINT TAB(X,Y);"A"

49 PRINT TAB(X,Y);"([sPC]"
50 X=X+1

68 GOTO 3@

For simplicity we are assuming
that PRINT TAB(X,Y) will
position the cursor at the Xth
column and the Yth row. Of
course this has to be replaced
by whatever graphics command
your version of BASIC has.
Also 'middle’ should be

GRAPHICS
S e T e T B P A B e A R R R e R e

replaced by a value that starts
the 'A’ off in a reasonable
position to be seen.

It you do run the above
program on yvour machine you
will see a letter "A’ shoot across
the screen but you might not be
very pleased at how smoothly it
moves. On most machines it will
in fact appear to twinkle as it
moves. The reason for this is
two-fold. Firstly, the letter 'A’
moves in ‘jumps’ that are rather
too big to completely fool the
eye into seeing smooth motion.
And secondly there is an
imbalance between the time that
the 'A’ is displayed and the time
that it is not. Ideally the time
that the 'A’ is on the screen
should be long compared to the
time that it is off. Unfortunately
the above program doesn't
really leave the 'A’ on the
screen for long enough before
removing it by printing a blank
at the same place. To see the
effect of increasing the time that
the 'A’ is on the screen try
adding:

35 FOR I=1 TO N
36 NEXT I

with ditferent values of N to
produce different delays
between printing the 'A" and
removing it.

This plotting and then
unplotting is the way all
dynamic graphics are
produced. The only trouble is
that between the plotting and
unplotting vou have to do all
the calculations concerning the
movement of the object (and
any other objects being moved
by the program). In BASIC this
can take so long that dynamic
graphics look more like slow
motion. There is no solution to
this problem apart from moving
to a faster language and this
often means machine code.

VELOCITY

Making something move across
the screen in a straight line as

in the last example is all very

well but it's hardly inspiring.

The next step is to allow the
moving object to move in more
complicated ways. Although

this is just a matter of

calculating the positions that the P

83

Personal Software Winter '83

89



ELEGANT PROGRAMMING — 7

object should take up it is more
useful to think of this in another
way.

If the time interval between
plotting and unplotting an
object is constant {(and it nearly
always is) then the distance that
the object moves can, in some
senses, be thought of as being
related to a 'velocity'. The
higher the velocity the greater
the distance moved each time.
Putting these ideas into practice
involves delining two 'velocities'
a horizontal velocity and a
vertical velocity. If these are
stored in two variables H and V
then the process of calculating
the new position of the object is
simply:

XK=X+H
¥Y=Y+V

In other words in each time
period the horizontal position
changes by an amount equal to
the horizontal velocity and the
vertical distance changes by an
amount equal to the vertical
velocity. As an example
consider the following program
using the same conventions as
the last example:

v
20 H
30 &
4G ¥
50 PRINT TAB(X,Y);"A"

60 PRINT TAB(X,¥);"(spc]"
70 A=X+H

B0 Y=Y+V

9g  GOTO 50

L
1
L
1
E

R

This makes the letter" A" move
diagonally across the screen.

The full advantage of
treating the movement of
objects in terms of velocities is
easy to see once you consider
the problem of ‘bouncing’ a
‘ball’ arouna the screen. If the
‘ball’ meets a vertical 'wall all
vou have to do is to reverse the
horizontal velocity. 1f the 'ball’
meets a horizontal 'wall’ then
the vertical velocity has to be
reversed. In a cross between
English and BASIC this
becomes:

85 [F 'at horizontal wall' THEN
V==V
86 IF 'at vertical wall' THEN H=-H

It you can translate the
conditions in each of the IF
statements into proper BASIC

GRAPHICS

for your machine then these two
lines can be added to the
previous example to give a
program that 'bounces’ the
letter 'A" around the screen!
The same method can be used
to 'bounce’ objects off bats etc.

ACCELERATION

The idea of using velocities to
control the motion of objects is
very usetul but results in things
travelling only in straight lines.
To introduce curvature to the
paths that objects take it is
necessary to add the idea of
acceleration. If at each step we
not only modity the position of
the object but also the velocities
then it will travel along curved
paths. For example, if we
introduce a vertical acceleration
we can produce a falling object:

An example of what can be achieved with advanced graphics.

16 H
20 v
3 A
49 A
58 ¥
68  PRINT TAB(X,¥Y);"a"
T8 PRINYT TAB(X,¥Y);"(sPC]"
B0 X=X+H
98 ¥Y=Y+V
109 V=V+a
119 GOTO 6@

As the object (the letter 'A’)
moves across the screen the
vertical velocity increases
because of line 100. This steady
increase in velocity causes the
‘A’ to fall in a parabola. By
using horizontal and vertical
velocities and accelerations it is
possible to produce a wide
variety of motions.

CONCLUSION

Dynamic graphics is one of the
most enjoyable areas of pro-
gramming and with very little
extra knowledge a wide range
of effects can be achieved.
Once the basic method of
making things move is
understood nearly everything
else can be handled in terms of
velocity and acceleration. To
make a number of objects move
at the same time all you have to
do is keep track of the position,
velocity and acceleration of
each one of them. In theory this
sounds quite straightforward but
in practice, of course, it may be
guite a confusing task —
especially if you ignore the
hints contained in earlier parts
of this series!

90

Personal Software Winter '83




[l

Mike James

ELEGANT
PROGRAMMING -8

the twin topic of sorting and

searching sounds as though it
is a dull, dry and uninteresting
subject because, apart from
being something every
programmer should know a
little about, it is also a subject
that contains enough surprising
and ingenious programming
methods to keep any
programmer amused! Perhaps
the trouble with sorting and
searching is that unless you
have tried to do either you will
underestimate some of the tricky
little problems that crop up.
This is not to say that humans
don't have very much to do with
sorting and searching in
everyday life. For example, the
results of examinations have to
be sorted into order, every time
you look up a telephone
number or a word in a
dictionary you are using a
search algorithm — even if you
don't know which one! By
examining the ways that humans
carry out sorting and searching
you can begin to write
programs that do the same
things but to make the best use
of the special talents and
limitations of a computer then
you have to think a little harder
about what it is you are trying
to do.

THINGS TO SORT

The reasons why lists of things
are more useful in some kind of
order are numerous. In
particular, things are easier to
find in a sorted list and herein
lies the connection between
sorting and searching! It is also
true that humans are more at
home with lists of information in
order and tend to worry about a
filing system that is chaotic even
if there is a way of finding
anything that you might want.
The range of things that
constitute lists to be sorted is
wide. However, from the
computing point of view this

It is something of a shame that

range can be reduced to
considering sorting a list
consisting of two pieces of
information. The first is the item
that you are basing the order of
the list on, it could be a
number, a letter or even a
name. This is often referred to
as the 'sort key' or just the ‘key’.
The second is a number that
indicates where the information
that constitutes an element of
the list is stored. For example,
you may want to sort a list of
names and addresses into
alphabetical order. The
ordering of the list is only on
the basis of the name part of the
name and address record and
hence this is the sort key. As
you might imagine sorting such
a list involves moving a lot of
information around. Instead of
having to move an entire record
consisting of a name and
perhaps a very long address
each time it is better to leave
the records at fixed locations
and move 'pointers’ to their
locations instead. This idea may
seem overcomplicated,
especially for BASIC, but in
fact it can be implemented very
easily. If you assume that the
name and address, or any other
information to be sorted, is
stored as elements of an array
(or even a number of arrays)
then you can set up another
array that holds a list of pcinters
to the elements of the first
array. So if the names and
addresses are stored in N$ and
the pointers in N the location of
the first name and address
record is in N(1) and N®(N(1)) is
the record itself. In the same
way NBHN(2)) is the second
record, NB(N(3)) is the third
and so on. Sorting the list of
names and addresses can
obviously be done by moving
only the elements of the array N
and leaving all the elements of
N$ exactly where they were.
The saving in time gained by
using the second array N to
hold the order of N$ far

SORTING AND SEARCHING
| A L A i, R

Sorting and searching
lists can be a difficult
matter.

outweighs the cost of the extra
memory needed for N.

HOW WELL DOES IT
SORT?

If you have a program that sorts
a list into order then obviously
it is important that it does its job
fast. There are some sorting
algorithms that work well
enough with small amounts of
data but the time that they take
increases rapidly if you increase
the amount of data to be sorted.
It is important to know how well
a sorting method werks but how
do you measure this? The time
that most sorting methods takes
depends on the actual set of
data you give it to sort as well
as how much of it there is. For
example, if the list happens
already to be in order then
nearly all sorting methods will
notice this and stop after doing
very little work. A similar speed
increase is the case in less
exireme examples, in other
words the more the list is
already in order the faster a
sorting method works.

COMPARING THE
SORTS

An obvious measure of how
good a sorting method is, is
how fast on average it will sort a
list of a particular size. There
will be lists that are sorted faster
and there will be lists that take
longer. In fact there will be lists
that take a lot longer than the
average time — for example, a
list that is ordered in entirely
the reverse order to that
desired, such lists are often
called 'pathalogical’. When
comparing sorting methods
there are two things to be taken
into account — the average
time to sort a list and the
longest time to sort a list.

For instance, if you find a
sorting method that is fast on
average but incredibly slow on
a pathalogical list then make

Personal Software Winter '83

9l




ELEGANT PROGRAMMING — 8

sure all your lists are well
behaved or be prepared for a
long wait every now and again!
Obviously the time that an ideal
sorting method takes should
increase as slowly as possible as
the length of the list increases,
should be fast on average and
net much worse for a
pathalogical list. Now that we
know what we want it has to be
admitted that most sorting
methods are far from ideal!

SOME SIMPLE
SORTING METHODS

If you were given a pile of
marked exam papers and were
asked to put them in order you
might proceed as follows:

1) scan through all the
papers and find the one with
the highest mark;

2) place this paper at the
front of the pile.

This paper is now 'sorted’
and takes no part in any
further sorting;

3) repeat (1) and (2) with
the ‘unsorted’ remainder of
the pile, putting the highest
one in front of the
remainder, until all the
papers are sorted.

This is known as a 'selection
sort’ because it is the repeated
application of selecting the
highest mark from the
remaining papers that is used to
sort the pile. In BASIC this is:

10 LET N=10
20 DIM LN}

30 GOSUB 1000
40 GOSUB 2000
50 GOSUEB 3000
&0 STOP

1000 FOR I=1 TO N
1010 LET L{II=RND
1020 NEXT I

1030 RETURN

2000 FOR I=1 TO N-1

2010 LET M=1

2020 FOR J=I+1 TO N

2030 IF LIMILLWT) THEN LET M=T
2040 NEXT T

2050 LET T=L(I}

2060 LET L(I=L(M)

2070 LET L{M)=T

2080 NEXT 1

2070 RETURN

3000 FOR I=1 TO N
3010 PRINT L)
3020 NEXT I

3030 RETURN

Subroutine 1000 constructs a list
of random numbers to be sorted
and subroutine 3000 prints the

list. Both of these subroutines
will be used in the following
examples without being given
again. Subroutine 2000 is the
actual sort part of the program.
It works in much the same way
as the 'human’ method except it
uses a single array rather than a
‘pile’ of papers. Lines 2010-2040
find the largest value in the
array starting from L(I} and
ending with L(10). Lines
2050-2070 carry out a 'swap'
between L(I) and the largest
element. Finding the largest
value and swapping it is
repeated until the array is
sorted by the FOR loop starting
at line 2000,

The selection sort is not a
fast method. Just by looking at
the way the two FOR loops are
nested you should be able to
see that if L has N elements the
complete sort will take roughly
N *N/2 comparisons and 3 *N
swaps. This figure, however, is
not atfected at all by any order
already present in the list so the
selection sort is eqgually bad for
all cases!

Another sorting method
based on the way a human
might do it is the 'insertion’
sort. If you were given & hand
of cards to arrange in order you
might proceed something like:

a) Place the first two cards in
their correct order;

b) Then place the third card
correctly within the first two;

c¢) Then place the tourth card
in its correct place within
the first three and continue
like this until all the cards
have been sorted.

This idea is easy to convert into
BASIC by using two arrays. The
first holds the items to be sorted
and the second is used to place
the items one at a time into
order.

10 LET N=10
20 DIM L{IN)
30 DIM AN

40 GOSUE 1000
S0 GOSUE 2000
40 GOSUB 3000
70 ETOP

2000 LET All)=L(1)

2010 FOR I=2 TO N

2020 LET J=1

2030 IF LIK=A(J) THEN GOTO 2090
2040 FOR K=I-1 TO T 5TEP -1

2050 LET AK+1)=AK)

2060 NEXT K

2070 LET AW =L(I)

2080 GOTO 2130

2090 LET J=J+1

2100 IF J<=I-1 THEN GOTO 2030
2120 LET AWT+1)=L(I)

2130 MEXT I

2140 RETURN

and change line 3010 to:

3010 FRINT L{ILAI

The sort is once again carried
out by subroutine 2000. Line
2000 takes the first item in the
list . and places it in the array
that the sorted list will be stored
in (ie A). The FOR loop starting
at 2010 is responsible for
inserting each of the items from
L into A. Lines 2020-2120 are
responsible for actually carrying
out the swap. The new item is
compared with the items
already sorted in the array A by
line 2030. When the correct
position for the new item is
found then lines 2040-2060
make space for it by moving all
the elements that are smaller
than it up the array by one
place. Then the new item is
inserted by line 2070. If the new
item is smaller than any already
in the array A it is just
appended to the end by line
2120 without having to make
any space.

This procedure locks as
though it will be slower than a
selection sort because of all the
moving of already sorted items
to make room for new items.
However, things are not what
they seem. The number of
compariscns needed to sort N
items is only N *N/4 which is
better than selection sort. The
number of moves of items is also
N *N/4 which is better than the
3N swaps of selection sort
except when N is tiny.

OTHER SORTS

The next sorting method, the
‘bubble sort’, is perhaps a little
too well known. This is really
the first method that is not
based on the way a human
would sort things but tries to
make use of the speed with
which a computer can do
simple things. The basic bubble
sort algorithm is easy to
understand. All you have to do
is make a 'scan’ through the
array comparing items that are
‘next door’ to each other. If they
are in the correct order then

92

Personal Software Winter '83




[N

e

nothing is done. If they are in
the wrong order then they are
swapped. This scan is repeated
until the list is fully sorted and
there are no swaps made on a
scan. The BASIC for this is:

10 LET N=10

20 DIM L(N}

30 GOSUB 1000 L
40 GOSUB 2000

50 GOSUE 3000

60 STOP

2000 LET F=0

2010 GOSUEB 2500

2020 IF F=0 THEN RETURN
2030 GOTO 2000

2300 FOR I=1 TO N-1

2510 IF LAPXLII+1) THEN GOTO 2560
2520 LET T=L{I}

2530 LET L(I)=L(I+1}

2540 LET L{I+1)=T

2550 LET F=1

2540 NEXT I

2570 RETURN

The structure of this program is
very simple to understand.
Subroutine 2000 first sets a flag
F to zero and calls subroutine
2500 which performs a scan and
sets the flag F to 1 if a swap
occurs. Line 2020 repeats the
scan until the F is zero
indicating that the array has
been completely sorted.
Subroutine 2500 performs the
scan using a FOR loop and
compares L(I) with L(I+ 1). The
swap is carried out by lines
2520-2540 and the flag is set in
B8

[t is a fact that the bubble
sort is so easy to understand
and quick to program because
it is far from a good method of
sorting. You need about N *N/2
comparisons and 3 *N *N/4
swaps to sort a list of N items
and this is worse than an
insertion sort! The interesting
thing about the bubble sort is
that you can find lists that it
works very quickly on — for
example, a list that has only a
few well separated pairs of items
in the wrong order will be
sorted in one scan — but there
are also lists that it does very
badly on — for example, a list
in reverse order. In conclusion,
the bubble sort is slow and very
sensitive to the initial order of
the list.

There is an improvement to
the simple bubble sort that
makes it very good indeed. The
main trouble with the bubble
sort comes from the fact that
items move by only one place at

a time. If an item is at the
bottom of the list and it should
be at the top then it will take N
scans to move it to its correct
place. If we extend the bubble
method to comparing and
swapping items that are further
apart than one then we might
improve the speed with which
items reach their final resting
place. If the distance between
items compared and possibly
swapped is D we call the
resulting sort a D-sort. In other
words, the bubble sort can also
be called a 1-sort. The only
complication is that a list can be
sorted as far as a 4-sort, say, is
concerned but still not sorted as
far as a l-sort is concerned. In
practice we employ a sequence
of sorts with decreasing distance
between the items compared
until a l-sort finally gives the
fully sorted array. This method
is often called a Shell sort after
the person who first invented it.
A Shell sort in BASIC is not
much more difficult than a
bubble sort:

10 LET N=10
20 DIM L)

30 GOSUE 1000
40 GOSUE 2000
50 GOSUE 3000
&0 STOP

2000 LET D=8

2010 IF D<1 THEN RETURN
2020 LET F=0

2030 GOSUB 2500

2040 IF F=1 THEN GOTOQ 2020
2050 LET D=D/2

2060 GOTO 2010

2500 FOR I=1 TO N-D

2510 IF L(I>L{I+D) THEN GOTO 2540
2520 LET T=LQ}

2530 LET L{)=L{I+D)

2540 LET LUI+D)=T

2350 LET F=1

2560 NEXT I

2570 RETURN

The way that this program
works can be understood by
comparing it with the bubble
sort given earlier. The distance
between items compared is
stored in D and starts out at 8.
After each scan at a particular
D returns without making any
swaps, the value of D is halved
and a new series of scans is
initiated. This continues until a
1-sort returns without making
any swaps. Thus the sequence
of sorts is 8-sort, 4-sort, 2-sort,
1-sort,

It is difficult to say how good
the Shell sort is on average as it
depends on the initial value
given to D but the main point is

SORTING AND SEARCHING
N e R A S A R B o G e o A B N EA RS, B 0|

that it is a good sorting method
to use unless you are going to
be sorting very large lists of
data.

This examination of sorting
methods could continue without
end. There are better methods
of sorting data than the Shell
sort but these would need an
article each to explain. The
Shell sort is one of the simplest
efficient sorting methods. There
18 never a good reason for using
a bubble sort. If you need to
sort very large lists of data then
you will need a methed that is
even better than the Shell sort.
Some names to look to up in
reference books include tree
sort, heap sort and quick sort.

RUNNING OUT OF
MEMORY

Each of the sorting methods
described above only work if all
the data can be stored in
memory at once. What do you
do if you have a very large disc
file to sort? The answer is
surprisingly simple and leads to
a sorting method all on its own.

Let's suppose that you have
a list of 100 records to sort and
only enough memory to hold 50
of them at a time. All you have
to do is to split the list into two
parts of 30 records each and
sort them independently of one
another in memory. To make a
single fully sorted list of 100
records all you have to do is to
merge the two files in the
following way:

1) read item!l from ftilel and
item2 from file2;

2) write the largest of item1
and item?2 to output file;

3) read a new item from
correct file to replace item
written out;

4) repeat (2) and (3) until both
files are empty.

As an example, consider
merging the two lists 9,5,3,1
and 8,7,6,2. The first two items
are 9 and 8, and as 9 is greater
than 8, 9 is written out. As the
item from list one was written
out, the next pair of items is 5
and 8 and, as 8 is greater than
5, 8 is written out and the next
item is read from list two. If you
carry on you will eventually get
a fully sorted list of eight items. W

Personal Software Winter '83

93



ELEGANT PROGRAMMING — 8

~ In general, to sort a list too
big to be held in memory
simply split it up into a number
of smaller files that will fit into
memory and then sort these. To
obtain the final sorted list all
you have to do is perform a
merge on all the smaller sorted
files, reading one item from
each, writing out the largest
and replacing it by a new item.

You can use merging as a
sorting method by dividing up
the list of items info files
consisting of one item! These
one element lists are obviously
sorted and can be combined
together in pairs using
merging. The resulting two
element files can then be
merged in pairs to yield sorted
files of four items and so on.

Merging is important for a
number of reasons — it is usetul
to know how to combine two or
more sorted files, it can be used
as a sorting method in its own
right and it allows lists of data
too big to be sorted in memory
to be sorted in sections.

SEARCHING

The time has come to consider
our other topic this month —
searching. In the same way that
the data item that a list is
ordered on is called the 'sort
key', the data item that is used
to detect a match during a
search is called a 'search key'.
For example, if you have a list
of names and addresses and you
.are searching for someone with
a particular name then the .
name is the search key.

[ the list that you are
-searching isn't sorted then there
is really no alternative to
starting at the top and
comparing the search key with
every item. If the list has N
elements then on -average this
process will take N/2
comparisons to come up with an
answer. However, if the list is
ordered then there is'a much
better method of searching it
called binary search. If we "
.assume that the list is in
ascending order, with the
largest value at the bottom of
the list, then binary search
works like this:

1) starting at the middle of the
list,

if the middle item is bigger
than the search key then the
item we are looking for must
be in the upper half of the
list;
if the middle item is smaller
then the item we are looking
for is in the lower half of the
list.

2) repeat (1) on the half of the

list that the data item lies in

until it is found.

For example, if the list is
1,3,5,7,8,9,12 and we are
looking for 3, the search begins
at the middle of the list ie the
fourth item. This is 7 which is
bigger than 3. This tells us that
what we are looking for is in the
first half of the list. Continuing
the search at the middle of the
first halt we examine the second
item or 3 which is of course
what we are looking for. A
binary search takes on average
only logN comparisons which is
considerably faster than N for
the direct search.

MAKING A HASH OF
IT?

If you have a sorted list to
search then you cannot do
much better than use a binary
search. The gquestion is what do
you do with a list that is being
built up and searched
continuously. You could spend
a long time sorting it before
every search. Anyway for very
large lists sorting can take a
very long time. The answer to
these problems is that if you can
afford more storage than strictly
needed for the list you can use
a technigue known as 'hash
coding’. {Notice that this is
another example of the general
principle of trading memory for
s}pljeed.J Hash coding works like
this:

1) when an item is added to
the list its search key is used
to calculate the place in the
list where it should be
stored. The equation used to
calculate this is known as
the ‘hash function’.

2) when you need to find an
item the hash tunction is
again applied to the sort key
and this produces the

location where the record
can be found without any
searching for it at all!

For example, consider a list of
names and addresses that have
to be searched for a particular
name. A possible hash function
is to convert each of the letters
of the name to its ASCII code
and add them up to produce a
single number. if we assume
that there are 10 letters in a
name the result of this hash
function will lie in the range O
to 2560. This could be used as
the index tc any array that was
used to store the information.
So when a new name and
address arrives we apply the
hash function to the name to get
a number that is used as an
index to the element of the
array that the name and address
will be stored in. To find the
address corresponding to a
name we once again apply the
hash function to produce a
number that is the index of the
element where the name and
address is stored.

This use of a hash function
sounds rather like magic. After
all it allows you to store and
retrieve data without any
searching! The difficulty with
this method is selecting a good
hash function. In practice, any
hash function will return the
same suggested location for a
number of values of the search
key. In the previous example,
where the hash function
consisted of converting the
letters to ASCII and adding
them together, it should be
obvious that the name 'SMITH'
and the (unlikely but possible)
name ‘MITHS' will both give the
same result. If this happens
where should the records be
stored? The usual sclution to
this ‘collision’ problem, as it is
known, is to store the first
record in the location given by
the hash function but store all
subsequent entries in the first
free location following its ‘
position as allocated by the
hash function. To find records
when there is the possibility of
collision we have to modify the
hash technique to include a
search. The hash function is
applied to the key. If this gives
the location of the required

!
L}

Personal Software Winter '83




SORTING AND SEARCHING

e R o B s e 0 o L i e e e s e e R e T R

record then fine, if not you have example, with a good hash detail here. There are plenty of

A1h

8}

to examine the subseguent
locations in the list until you
find what you are looking for.

As a result of having to
handle possible collisions you
need to insure that there is
some spare space in the array to
accommodate the 'displaced’
records. This is the reason that
you have to use an array that is
strictly larger than the number
of records that you want to
store. The more spare space in
the array the faster the search
will be. It is the collision
problem that makes hash coding
not quite as fast as it might be,
but with a good choice of hash
function (ie one that produces
as tew collisions as possible) it
can be remarkably good. It can
often take only one or two
comparisons to find the record
you are looking for even in very
large lists of data as long as the
array that is used to hold them
is reasonably empty. In fact,
even the condition that the
array be reasonably empty is
not too troublesome. For

TRS80 ModelsI+III
and VIDEO G

Into one
of these

ACCEL3 — the practical BASIC compiler
for home, education, or business.

Are you troubled by gradual graphics, languid loops,
tedious table searches, or capricious keyboard response?
ACCELS3 isthe cure. Highly compatible with interpreted
BASIC — correct programs compile without modi-
fication.

On Tape or Disk £49.95

=S

function and a table 95% full
the search only goes up to 4 or
5 search key comparisons!

The subject of hash coding
and choosing a hash function is
too big to go into in any more

reference books that cover the
subject in great detail however!
[f you have followed the basic
idea you should be able to see
why it is worth looking hash
coding up.

Sorting things out is not always easy!

BRANE SOFTWARE

SCROLLER (16/48K) Enhance your programs with enlarged
sideways scrolling messages.Height magnification up to 8 times
width maanification up to 32 times.Full choice of colours,
size and position of window ,ete.......... £7.95 incl p&p

ADVERTISER(48K) Thought of buying a message scrolling
display for eye catching 24 hour advertising? This program Is
more versatile and much cheaperl.Complete set of up to 40
different displays of almost any length._....... £17.95 incl p&p.
CUT YOUR HEATING BILLS (48K) Your spectrum can save
you more than it cost to buy!No technlcal knowledge required
£7.95 Incl p&p.A system that takes the work out of estimating
the savings made by insulation/double alazina.

All programs menu driven,fully error trapped and guaranteed
Trade enquiries welcome:

Brane Software Myrtle Grove,Brane Sancreed Penzance,
TR20 8RE

Tel: 073672562

007 SPY KOPYKAT

Simply load a program into your Spectrum and press ‘G’ for instant
tape copy. Works on Basic, Screen, Machine-Code (bytes) and
Headerless Datafiles. Thisis a genuine copier and does NOT use
any of your user memory.

Includes a free program to let you stop and look at virtually any
Basic/Bytes programs. And can be used to copy from tapes to

microdrive.
£3.95
G. J. BOBKER
29 CHADDERTON DRIVE
UNSWORTH, BURY,
LANCS BL9 8NL

PO Box 39, Eastleigh, Hants, S05 5WQ




Mike James

ELEGANT
PROGRANMMING-9

he subject of this final

article is the rather grand

sounding programming
technique called, 'recursion’.
You may feel that the last part
of a series on programming is
an odd place to be introducing
vet another programming
method! After all, stepwise
refinement and structured
programming were covered
earlier in the series as the only
way to write good programs —
so what else can there be? The
answer is that recursion is
almost a wholly separate
approach to programming.
Simple programming problems
are most easily solved using
combinations of branch (ie [F
statements) and loops. Problems
that are best solved using
recursion are usually not
encountered until much later on
the road to becoming an expert
programmer and, by this stage,
it is often too late to see an
alternative way of tackling a
problem. This might account in
part at least for the trouble that
many people have with
understanding and using
recursion. On the other hand it
might just be that recursion is a
method of thinking that you
either find natural or you don't.
Whatever the reason, recursion
has a way of making fanatical
friends and devoted enemies. A
more balanced view is that
recursion is just another weapon
to be added to the
programmers’ arsenal and used
when appropriate. So, if you
have never met recursion or if
you have been convinced that it
is a difficult technique reserved
for academics then read on.

ITERATION V
RECURSION

The best way to explain recur-
sion is by example. Perhaps the

most used and simplest example

of recursion is the calculation of
the factorial function. It is a
good example not only because

it is simple but because it shows
clearly the relationship between
the programming methods we
already know — looping etc —
and recursion. The factorial
function n! is the product of all
the integers from 1 up to and
including n. In other words:

nl=1%2%3%4%5 . *(n—1)*n

If you were set the task of
writing a BASIC program to
calculate the factorial function
then you would probably write
something like:

10 INFUT N

0 A=1
BDFORI=1 TON
40 A=AxT

S0 NEXTI

40 PRINT 4

The main part of the program,
ie the part that does all the work
is the FOR loop between lines
30 to 50. The usual name for
this sort of solution is 'iteration’.
Any program that arrives at its
solution by going round a loop
is known as an iterative pro-
gram. At this peint it may be
difficult to see how there could
possibly be an alternative to
iteration — looping is so fun-
damental to programming.
However there is another equi-
valent definition of the factorial
function that leads directly to a
ditferent sort of program that
calculates it. If you want to work
out n! and you happen to
already know what (n—1)! is
then you can take a short cut by
using:

nl=n=*(n—1)I

For example 41 =4 «3!. If you
don't happen to know the value
of (n—1)! then you can use the
same idea once more to find
(n—1)! That is
(n—1!=(n-1) %x(n—2)! You
should be able to see that you
can keep on using this relation-
ship until you get to a factorial
that you do know the value of

For our grand finale in
this series we take a
look at a completely
different method of
tackling problems in
programming.

and then by working your way
back up the chain you can
return to the value of the fac-
torial that you want. A value of
the factorial function that is par-
ticularly easy to remember (or
work out) is 1! which is of
course equal to 1. So, for exam-
ple, to calculate 4! using this
method we would first reduce
the problem to finding 3! by
41=4 %3!. Then we would
reduce the problem to finding
2! by 31=3 %2 and finally to 1!,
which we know by 21=2«1l. To
get the required answer we now
have to work our way back 'up’
the chain of calculations ie
201=2%11=2, 31=3%2=6, and
finally 4! =4 x6=24. This,
rather strange method
calculates the factorical function
without any hint of an iterative
loop — it is the recursive
method of calculating the fac-
torial function. The ideas of
'stepping down' through a
calculation until you reach a
point where you can replace
unknown parameters by actual
values and then 'stepping up’
through the calculation filling in
the previously missing values is
characteristic of all recursion.
Another feature of recursion is
the way that the recursive
definition of the factorial func-
tion involves itself. That is:

nl=n x(n— 1)!

can be read as a definition of n!
in terms of n and (n— 1)! In fact
it is this self referencing that
makes the step down/step up
behaviour of recursion possible.

Now that we have an alter-
native method of calculating the
factorial function the next step
is to produce a BASIC program
that uses recursion. However
this is not guite so easy as it
sounds.

RECURSION AND
BASIC i

There are computer languages

96

Personal Software Winter ‘83




A BT T

that are defined and
implemented with special
features to allow and even
encourage programmers to
write recursive programs. The
trouble is that BASIC isn't one
of them! This isn't unreasonable
when you think of BASIC's
humble origins as a first
teaching language. A few
versions of BASIC — C BASIC
and BBC BASIC for example —
contain special facilities for
recursion but, in general,
BASIC leaves the programmer
to sort out recursion alone.
Things are not guite so bad,
however, because it is fairly
easy to write clean and neat
recursive programs in BASIC
using a simple idea. Before
introducing this it is worth
locking at the way that a
standard recursive program
would appear in a version of
BASIC that facilitates recursion
— BBC BASIC.

What we need to do is take
the recursive definition of the
factorial function and convert it
as directly as possible into
BASIC:

10 DEF FNF(N)

20 IF N1 THEN =N*FNF(N-1)

30 =1

Although the above program
may look a little strange vyou
should be able to identify the
overall form of a recursive
subroutine. The first line (10)
defines what follows as a func-
tion called FNF. The second
line (20) is the recursive delini-
tion of NI It says [F N< >1
THEN the result of the function
is N times the result of
FNF(N—1). You should be able
to see that this is where the step
down/step up calculation oc-
curs. When FNF is used, for ex-
ample in the statement PRINT

FNF(4), line 20 causes FNF to
be called as FNF(N— 1),
FNF(N— 2) and so on until
FNF(1) is reached when line 30
returns the value 1 and the
chain of calculations is taken
back up towards the first use of
FNF. This idea can only work
and really be understood if
each time FNF is used a com-
pletely new version of the func-
tion, in particular all its
variables, are created anew. For
example in the execution of
FNF(4) line 20 causes a com-
pletely new version of FNF to
come into existence to work out
FNF(3). This in turn causes
another version of FNF to come
into existence to work out
FNF(2) which finally creates a
version to give the value of
FNF(1). Not only must a new
version of FNF come into ex-
istence each time it is used,
each new version must only
replace the previous one until it
returns a result. In other words
to allow the calculation to work
its way back up the chain it is
necessary for each of the ver-
sions of FNF created on the way
down the chain to carry on ex-
isting both to accept the results
of the later versions of the func-
tion and to return a value to any
earlier versions of the function.
So to continue the above exam-
ple, when FNF(1) returns the
value 1 as its answer, it passes it
to the partially completed ver-
sion calculating FNF(2). This
allows this version to complete
its line 20 and pass the result 2
to the next version and so on to
the first use of FNF which final-
ly returns the value FNF(N)} to
the PRINT statement that it was
used in. The way that FNF
works out any factorial is not
difficult to understand but it

RECURSION

_

may be difficult to follow so Fig.
] isincluded as a summary of
the FNF(4) calculation.

This description of the FNF
function is all very well for
anyone with BBC BASIC but
what about the rest of us. Well
the answer is that there is a
simple method of implementing
recursive subroutines in almost
any version of BASIC. The
method relies on the version of
BASIC having a good pair of
GOSUB and RETURN
statements. In particular it is
important that you can GOSUB
to a subroutine from within a
subroutine and still have the
RETURN statement take you
back to the correct place. In
other words it is important that
subroutine calls can be nested’
to a reasonable depth. The main
problem in using BASIC
subroutines recursively is that
each time the subroutine is used
a whole new set of variables |
should come into existence and
when the subroutine finishes it
should be possible to return to a
previous version of the
subroutine restoring the old
values. The simplest, but
incorrect, BASIC recursive
implementation of the factorial
function is:

10 INPUT N

20 GOSUR 1000
30 PRINT F

40 END

1000 IF N=| THEN F=1!RETUEN
1010 N=N-1

1020 GOSUB 1000

1030 F=(M+1)+F

1040 RETURN

Subroutine 1000 attempts to use
recursion to calculate NI by
calling itself at line 1020 to work
out an answer for (N— 1)! and
then using this in line 1030 to
caleulate N!. Unfortunately, this

FNF{4)

i Y

+I FNF(3)

Fig. 1. The calculation of FNF(4).

| FMNF(2}

{

| FNF(1) I

=1

M =12

Personal Software Winter '83

97



ELEGANT PROGRAMMING — 9

doesn’t work because the old
values of N and F are destroyed
each time the subroutine is
called. The answer to this is to
use an array for each variable
in the subroutine and a count of
how many times the subroutine
has been called. This count is
used as an index to the arrays
sc that effectively a completely
new set of variables is produced
each time the subroutine is
called. For example:

10 DIM N{1O}
20 DIM F(10)
20 INPUT Ni(1)
Ap I=0 -

50 GOSURB 1000
50 FRINT Fi1)
70 END

1000 I=T+1

1010 IF N{)=1 THEN F(D=1i[=I-1IRETURN
1020 N(I+1)=NI)-1

1030 GOSUE 1000

1040 F(=NIT*F(I+1)

1050 I=I-1

1040 RETURN

The two simple variables N and
I are now replaced by arrays
N(10) and F(10). The variable I
counts the number of times that
the subroutine is called. Within
the subroutine the current
values of the variables are in
N(I) and F(I) respectively but
the result from the previous
version of the subroutine is
always in F(I+ 1) and the value
of N is passed in N(I+ 1). This is
how the versions of the
subroutine communicate with
each other.

This use of arrays to create
new versions of the variables
each time the subroutine is used
is interesting because it imitates
the way that languages such as
Pascal implement recursion.
You may recognise the way the
arrays are used with the index [
as nothing more'than a simple
stack.

RECURSIVE
SOLUTIONS

The recursive calculation of the
factorial function is a good
example because it is easy to
see how the definition leads to
the program. Recursive
programs do often arise directly
from the implementation of a
recursive definition but it is also
the case that many problems
that seem to have nothing to do
with recursion at first sight can
be solved by recursion. For
example the well-known 'Towers

of Hanoi’ problem contains no
obvious hint of recursion but it
is most easily solved by
recursion. The Towers of Hanoi
problem consists of three pegs
numbered O, 1, and 2 and at
the start of the problem there is
a pyramid of N discs, smallest at
the top on peg 0. The object of
the puzzle is to transfer all the
discs one at a time to another
peg but with the restriction that
a larger disc must never be
placed on top of a smaller disc.
If you have never come across
the problem before, you may
not appreciate just how tricky it
is. Try it for yourself using four
or five coins and you'll soon
understand the difficulties. A
recursive solution consists of
four stages:

1) If N=1 then move the disc
from peg O to peg 1 and stop

2)If N 1 then move the top
N—1 discs to peg 2

3) Then move the remaining
bottom disc to peg |

4) Move the N— 1 discs now on
peg 2to peg 1

Steps 2 and 4 are clearly
recursive in that they both
involve the original problem but
with N— 1 discs instead of N.
Uncovering this sort of solution
is something that gets easier
with practice but the main idea
is to reduce the problem you
are faced with to a solution of a
slightly simpler one and then
repeat this reduction until the
problem is solved.

SUMMING UP

Recursion is a subject that has
received much academic
attention. Rather than just being
an alternative to iteration it may
be that recursion is in some way
more powerful. In other words
there may exist problems that
cannot be solved using iteration
but can using recursion. More
to the point, it is possible that
there are practical problems
that are significantly easier to
solve using recursion. For
example, most compilers
analyse computer languages
using recursive methods. Many
of the problems in artificial

RECURSION

intelligence seem to be easier to
understand and solve using
recursive methods. Whatever
the truth, recursion is finding its
way into computer languages
intended for advanced future
applications.

On the subject of program-
ming languages the choice of
BASIC as the language for ex-
amples in this series may seem a
little strange — it you want to il-
lustrate advanced or good pro-
gramming methods and ideas
then surely an advanced ;
language would be the best
choice. Apart from the obvious
advantage of using the most
popular and common program-
ming language (ie BASIC) it
also serves to emphasise the fact
that the technigues are ideas in-
dependent of any particular
language. BASIC is by no
means the last word in program-
ming languages but then
neither is the much praised
Pascal. It is true that any
language that provides extra
facilities for writing well struc-
tured programs with advanced
data types and structures is to
be admired but it is always up
to the programmer to take
advantage of these facilities. |
have seen as many badly writ-
ten programs in Pascal as in
BASIC! Programming
languages will develop and of-
fer more advanced features as
time goes on but it will take a
lot to move BASIC from its cur-
rent position as the number one
language. What is likely to hap-
pen is that BASIC will develop
to include extra features until it
becomes nothing like the
BASIC that we use today.

This aspect of evolution
rather than revolution in pro-
gramming languages is very .
like the way natural languages
develop and why should it be
otherwise? As long as the more
advanced versions of BASIC in-
clude the original as a subset
there should be no problems.
Until the day that computers
program themselves we must
continue to tind ways of improv-
ing the clarity and accuracy of
the programs that we write and
this will entail the further
development and refinement of
high level computer languages,

BASIC included.

98

Personal Software Winter '83




YEP FOLKS —IT'S HERE  AvAusLEnow

Dragon
Com. 64

ALITORNIA

HOWDE DO PARDNERS

This here’s Prospector Jake, | sure am havin' one

helluva time tryin’ to peg ma claim with those damned

Injuns a hootin” an a hollerin’ all over this territory. Ma job

gets harder as | move from one Gold Field to another. |

know, that is me an’ ma stubborn hornery ol’ Mule here

know of 24 rich an’ | mean rich seams of pure Gold. All it needs to make
this here ol’ critter happy is that you help me peg every doggone last
one of them claims. |

Can YOU help Jake become rich, help him peg his claim, dodge the
arrows, avoid the tomahawks, and plant the Dynamite in just the right
place?...YOU CAN!!!

YIPPEE . . . Git yer Picks an’ Shovels and join the CALIFORNIA
GOLD RUSH . . . NOW

Amazing Arcade Action . . . Stunning Sound and Graphics
Available NOW for Commodore 64, Spectrum 48, and Dragon

8 .95 includingPaP
SPECIAL OFFER SPECIAL OFFER SPECIAL OFFER

Order CALIFORNIA GOLD RUSH before November 11 FREE
and get a 10-game Cassette of terrific games . . .

COMING SOON |

LEAPIN' LANCELOT: Medieval Machine Magic to enthral you
GALACTIC SURVIVAL PAK: Every Astro-Traveller must have this!

TOTAL SUM INCLUDED £
] Please make cheques and POs
. payable to ANIK MICROSYSTEMS
We always need Dynamic Dealers 30 KINGSCROFT COURT

and Imaginative Writers BELLBGE  NORTHAMFTON




100 FREE PROGRAMS

FROM SILICA SHOP — WITH EVERY PURCHASE OF AN

ATARI g35 2

ATARI PRICES REDUCED!

We at Silica Shop are pleased to announce some
fantastic reductions in the prices of the Atari 400/800
personal computers. We believe that the Atari at its
new price will become the U.K.'s most popular per-
sonal computer and have therefare set up the Silica
Atari Users Club. This club already has a library of
over 500 programs and with your purchase of a 400
or 800 computer we will give you the first 100 free of
charge. There are also over 350 professionally writ-
ten games and utility programs, some are listed
below. Complete the reply coupon and we'll send
you full details. Alternatively give us a ring on 01-301
1111 or 01-309 1111,

AN o O

——— 5 Ml ATARIG0 £qBg
ATARI 800 £94Q

400/800 SOFTWARE & PERIPHERALS

Don't buy a T.V. game! Buy an Atari 400 personal computer and a game cartridge and that's all you'll need. Later on you can buy the Basic
Programming cartridge {£35) and try your hand at programming using the easy to learn BASIC language. Or if you are interested in business
applications, you can buy the Atari 800 + Disk Drive + Printer together with a selection of business packages.

Silica Shop have put together a full catalogue and price list giving details of all the peripherals as well as the extensive range of software that is now
available for the Atari 400/800. The Atari is now one of the best supported personal computers. Send NOW for Silica Shop’s catalogue and price list
as well as details on our users glub.

THE FOLLOWING IS JUST A SMALL SELECTION FROM THE RANGE OF ITEMS AVAILABLE:

ACCESSORIES Mountain Shoot BUSINESS OYNACOMP Maths-Tac-Toe Scram J o Sleary Adventure Jawireaker PR NG

Cables Rearguard Caiculator Alpha Fighter Metric & Prab Salvg  States & Capitals o i Solitaire Mission Asteroid AIDS from Atari

Cassattes Star Flite Database Chompel M Touch Typing Chacker King Space Chase Mouskartack Assemblar Editor

Diskettes Sunday* Golf Decision Maker Crystais Music Terms/Notatn Chinese Puzzie Space Trek Threshald Dsembler [APX)

Joysticks Graph-it Forest Fire Musical Computer EMI SOF TWARE Codecracker Sultans Palace Ulysses/Golden FI Microsoft Basic

Le Stick - Joystick = AUTOMATED Invaicing Intruder Alert My First Alphabet British Heritage Comedy Diskette Tact Trek Wizard & Princess Pascal {APX]

Mise Supplies SIMULATIONS Librarian Manarch Number Blast Cribbage/Dominces Dice Poker Terry Pilot {Consumar}

Paddies Crush Crumble Cmp  Mort & Loan Anal Moonprobe Polycale Darts Dog Daze Wizards Gold PERIPHERALS Filot {Educator}
Datestones of Ryn  Nominal Ladger Maving Maze Presidents OFf U_S, European Scene Jig Domination Wizards Fewenge Centronies Printers  Programming Kit

ADVENTURE INT  Dragons Eye Payroll Nominoes Jigsaw Quiz Master Hickory Dickory Dawnhill ' Disk Drive

Scott Adams Adv  Invasion Orion Persoral Finl Mgmt  Rings of The Emp  Starware Humpty Dumpty Eastern Front ENTERTAINMENT Epsom Printers SANTA CRUZ

No 1T Adventureind Rescue ar Rigel Purchase Ledger Space Tilt Stereo 3D Graphies  Jumbo Jet Lander Galahad & Holy Grl from ATARL Program Recorder Basics of Animation

No 2 Pirate Adv Ricocher Sales Ledger Space Trap Three R Math Sys Snooker & Billiards  Graphics/Sound Asteroids HE232 Interface Hobs Business

Nod Mision Img Star Warrior Staustics 1 Stud Poker Videa Math Flash Submarine Commdr  Jax-0 Baskatball Thermal Printer Display Lists

Mo 4 Voodoo Cast Temple of Apshai  Stack Control Triple Blockade Wordmaker Super Cubes & Tilt  Jukebox Blackjack 16K Memary RAM  Graphics Machine

No 5 The Count Upper Reaches Aps  Telelink 1 Taurnament Poaol Lockahead Centipeds I2K Memory RAM  Kids 1 & 2

No B Swange Ody Visicale EDUCATION EDUCATION Memaory Match Chess Horizental Scrolling

No 7 Mystery Fun  BOOQKS Weekly Planner from APX from ATARI ENTERTAINMENT Midas Touch Entertainment Kit  PERSOMNAL INT Master Mamary Map

Na 8 Pyramid of D Basic Ref Manual Word Processor Algicale Canv French from APX Minotaur Missite Command from APX Mini Word Processor

Mo 8 Ghost Town  Compute Ateri DOS Atlas of Canada Conv German Alien Egg Outlaw/Howitzer Pac Man Adv Music Systern Page Flipping

Mo 10 Sav Istand 1 Compute Bk Atari CRYSTALWARE Cubbyholes Canv ltalian Anthill Preschool Games Space Invaders Banner Generatar Player Migsile Gr

Mo 11 Sav Island 2 Compute Magazine  Beneath The Pyram  Elamentary Biology Conv Spanish Attank Pro Bowling Star Raiders Blackjack Tutor Player Piano

No 12 Golden Voy  De Re Atari Fantasyland 2041 Frogmaster Energy Czar Avalanche Pushover Super Breakout Going To The Degs  Sounds

Angle Warms DOS Utilities List Galactic Quest Hickory Dickory European C & Caps  Babe . Rabbotz Video Easel Keyboard Crrgan WVertical Scrolling

Deflections DOS2 Manual House Of Usher Inst Compig Dem Hangman Blackjack Casing Reversi 1l Maorse Code Tutor

Galactic Empire Mise Atari Books Sands Of Mars Lemonade Invit To Prog 1/2/3  Block Buster Salmen Run MS Persanal Fitness Prg  SILICA CLUB

Galactic Trader Op System Listing Waterloco Letterman Kingdom Black "Em 747 Landing Simul or Player Piano Dwvar 500 programs

Lunar Lander Wiley Manual World War 111 Mapware Music Compaser Bumper Paol Seven Card Stud " Sketchpad i data

OR FREE BROCHURES -TEL

FREE LITERATURE

\
| am interested in purchasing an Atari 400/800 computer and would ]II".“""] "| v m“ Ill |‘|
k) ' Nl I
1

like to receive copies of your brochure and test reports as well as
your price list covering all of the available Hargware and Software. '-.m“ 'l

\"IIIFIIIIII "Ml '1IIIIIII||I "

& W 818 nitvirhrowngly
. mpahian

‘--uuml'“l ulll 'luhln

-. auu.,l;", [ |ﬂ" m

e I j " SILICA SHOP LIMITED
|| "H Dept 351 1-4 The Mews, Hatherley Road, Sidcup,
ol ol Kent DA14 4DX Telephone 01-301 1111 or 01-309 1111




