PRESENTED
FREE WITH

QL
USER

-~ QWNER'S
- MANUAL

No.3

!

QL BARGAINS

% ALL PRICES INCLUDE VAT AND NEXT DAY DELIVERY BY SECURICOR *
* OR FIRST CLASS POST *
CALL 0267 231246 FOR PERSONAL ASSISTANCE

FULLY TESTED QL VERSION 3 SOFTWARE £199

PRINTER PRICES INCLUDE MIRACLE SYSTEM INTERFACE
MANNESMANN TALLY MTBO+
SEIKDSHA SP10D00A (Friction Tractor and NLQ)

TAKAN KPB10oomrmiisissnsnmsmsnmsiivasiasssisssmrasianes a
TR BP0 ..o ioioniosas ossbins avihrsssinsassunmsnsiosbirors fravass s et
OUEN DATA DAISYWHEEL
Miracle Systems Parallel Interface
GOTBI CADIBcrviminerorssnsssssoisaraisassssnsansmsreremsasenss bsmasasios simemsrsshes HEHEEES

2000 Sheets Fanfold Paper (Supplied with primter) ... £16

% W w EIDERSOFT ICE ROM — JUST £48 + * *

& Microdrive Cammidges ... imasasiss s smieresssss £8.00
10 Cartridges with Transform Bo) E23.00
10 DS/DD 5.25" DISKScccovrenne. e s AL £23.00
R N B I R s e s i b bt £39.00
RIBBONS

T T N Ry e L S S S e,) £5.50
BEEBUEOF BN ... oicosiivsisiosirimamsssisssinprnssnansarentons RN B4 | LSS £6.00
Quen DBtAc.ccovemmimvasrsrsnronsssorenss e e T e s £6.00

* +* BUDGET RAM & DISK UPGRADES * *

CUMANA DISK INTERFACE ONLY £79

512K EXPANDERRAMONLY £119

CUMANA DUAL 32" DRIVES + CUMANA INTERFACE ONLY £269
FULL RAM + DISK DRIVE UPGRADE ONLY £379

* BRIGHT STAR MODEMS ONLY £199 *

INCLUDES AUTO ANSWER/DIAL
PCML DISK INTERFACE WITH 260K RAM & ROM £249
PCML DISK INTERFACE WITH CUMANA DUAL DRIVE £439

LANGUAGES BUSINESS

METACOMCO ASSEMBLER £29 TR SYSTEMS PAYROLL £83
METACOMCO BCPLccovnrnoe €49 DECISION MAKER

METACOMCO LISPc..nnns . E48 PROJECT PLANNER

METACOMCO PASCAL E72 ENTREPENELRcoocniiniinnns
METACOMCO ‘G’ ..o £82 (L HOME FINANCE (BUZZ) £22
DIGITAL BASIC COMPILER ESH TYPING TUTORocoomimmmmriessssnsss £20
DIGITAL FORTH + REVERSI £26 EIDERSOFT ARCHIVER £17
DIGITAL SUPER MONITOR £13 EIDERSOFT QSPELL (CART) £20
TALENT CARTRIDGE DOCTOR £13 EIDERSOFT QSPELL (DISK) E23
LEISURE

702 | —— .. E13 MICRODEAL HOPPERcoconien: £12
TALENT WESTccconnmrmssmmssssrsassn £13 MICRODEAL CUTHBERT/SPACE .. £12
TALENT GRAPHIOLcecovveoenss £29 MICRODEAL CRAZY PAINTER £mn
EIDERSOFT ZAPPERcoonnuniens £ MICRODEAL FLIGHT SIMULATOR £16
QOL SPRITE GENERATORccoccun £20 MICRODEAL LANDS OF HAVOC .. E16
0L SUPERBACKGAMMON E12 OL CAVERNcoccoisimmmsinnian . E12
PSION CHESSccossmiimansisenss E17 MATCH POINT LGy b £13
HYPODRIVEococonnmnrsnisnsisns £13

MONITORS (CABLES INCLUDED)

Microvitec Cub T451/D03 COMOURc.covemsssmsmsimsssiesssisssremsssssissssissssssans £254
Microvitec Cub 1451/DOT3 with Swivel SIANccccoorercissecsiniaiinn £E274
Swivel SN 108 MICTOVHBGcccoorececmsusrisrossasssssssmminssssasanisssssssssssasissses £25
Philips V7001 18MHz Green (RECOMMENDED FOR THE QL)cocvninnirenne £92
Swivel Stand for Philips Monitor ..o T RS £23
3250 WATT MAINS FILTER £36

* Provides four protected mains sockets with plug

* Avoid crashes and damage to the OL's components
+* 30db suppression 1MHz to 30MHz

* 130 joules spike suppression

MODAPTOR £39
% Link your QL to any modem with an R5232C socket
* Prestel and Bulletin Board software included

QUICKSHOT B JOYSTICK WITH ADAPTOR £14
oL JOYSTICK ADAPTOR £5

STRONG COMPUTER SYSTEMS

BRYN COTTAGE, PENIEL, CARMARTHEN, DYFED SA32 7DJ.
TELEPHONE: 0267 231246

EDITOR
PaL

ASSISTANT EDITOR
Paolo B

1ello

ART EDITOR

Mik

PRINCIPAL AUTHORS

ADVERTISING
Phil Baker

PUBLISHER
H 2l | ‘L'"'.-" O0OC i

QL User,

Priory Court,

30-32 Farringdon Lane,
LONDON EC1R 3AU.

Telephone 01-251 6222

ited by EMAP
Publicatio

COPYRIGHT QL USER - 1985

Archive is probably the most
difficult of the four Psion
packages to really come to grips
with, or at least it appears so,
especially if you try to understand
everything in the User Guide all at
once. On the other hand it is a
powerful package and probably
more than any of the others,
realises the potential of using a
micro to replace a manual
procedure. The purpose of this
article is to give you some
additional help and ideas, firstly
an how to get started, and then
on how to translate your
particular application into an
Archive database — whether its
for high-powered scientific
research or just keeping track of
your record and tape collection.
If you've already made a start
with Archive the next section will
just be revision before getting
down to applications.

Archive is a tool for organising
information — storing it, retrieving
it, sorting it, searching through it
and generally managing it. The
analogy to a card-index system
is agood one since information is

| stored on records (like the cards

in a manual system) and the
records are collected together in
a file (like the card-index box), On
each record there are a number
of fields (like the spaces on each
card) which are used to contain
the information relevant to the
particular item {or person)
referred to by that record. Fields
have a type which indicates
whether the field is for textual or
nurmeric information. The great
advantage of using Archive
instead of amanual card-index is
that the laborious sorting and

! searching jobs are carmied out

automatically. When you add a
new record to the file, or delete or
amend an existing one, the file is
automatically re-sorted.
Searching for particular items or
groups of items, accumulating
totals from individual fields on all
or some of the records and (if you

have a printer) printing out sorted
lists, reports or labels, can all be
readily achieved with the Archive
| database system. Archive also
allows you to have several
database files open at once, so
for more complicated
applications it is ideal for linking
together related information.

FIRST STEPS

Naturally, before you can use a
tool effectively you need to know
what it does and the basics of
how to use it. This doesn't imply
that you need to pore over every
detail of the manual — in fact this
is probably counter-productive.
It's far better to experiment with a
few simple examples first.

An obvious contender is the
telephone/address list since it is
quite straight-forward and
probably all of us have one, even
ifit's only scribbled in the back of
our diaries (maybe itisin a
card-index box!), Load Archive
and try typing the following:

Create “Phone” <ENTER>

Surname$ <ENTER>
Firstname$ <ENTER=>
Address$ <ENTER=>
Telephone$ <ENTER>
endcreate <ENTER>

You have just created your first
database file — it really is as
simple as that! The effect of the
above command is to create a
file named “Phone_dbf” (the
‘_dbr” part of the filename is the
default file extension for database
files) and each record in the file
will have 4 text fields for storing
the name, address and 'phone
number of the people on the list.
To insert some names and
addresses in the file just type:
insert which should cause a
blank record to be displayed for
you to type in the details. When
you have entered a number of
records press <F4> to leave
insert mode. You could now try a
number of the commands like
order which sorts the file into

The QL's Index Link

ascending or descending
alphabetical order on any field
(eg, Surname$), cls which clears
the screen, display which
displays the current record,
search, find and locate which
are different ways of looking for a
particular record, or alter which
is used to change the record on
display. There are many more
commands on which you will find
full details in the User Guide

or, if you press <<F1>, on
Archive's own help pages. It's
waorth trying as many of the
commands out as possible so
that you get the feel of what you
can do, and if you do this before
you type in too much data, you
won't feel too bad if you make an
error and delete some data
accidentally! (Do it after 2 hours
typing and it's much more painful
— 50 always remeamber to back
up all your data at least once on
another cartridge.) When you
have finished using a file, to make
sure it is all present and comrect
on the microdrive cartridge, you
must type close, or quit (which
also returns you to SuperBASIC)
or new (which also clears any
procedures or special screen
formats from the computer's
memory). To examine the file
again use the command look or,
if you want to change the file at
all, open.

When you are reasonably
confident about using
commands the next step is to try
to incorporate some in a few
simple procedures. Procedures
are ways of storing often
repeated sets of commands, or
of carrying out some processing
on the data in the database.

For example, if you type all
your address list into the
machine it's not very convenient
to have to nip up to the computer,
load Archive and the database
and then locate the required
name, every time you want to
ring someone up. It's much
easier if you have a paperlist too

QL User Owner's Manual/3

OWNER'S MANUAL

The advantage the database
gives you for storing the address
listis that it is easy to change and
keep in alphabetical order, and it
may be useful for things like
typing address labels
automatically. So to get the best
of both worlds we need to write a
procedure to print out the
address list whenever an
up-to-date copy is required. To
do this first enter the command
edit, to use Archive's screen
editor, and type in the following
procedure. The language used is
actually a dialect of BASIC
specifically developed for the
database package and
incorporating all the commands
which can be used directly from
the keyboard. Here's the
procedure:

to read. Rernember, anything
you can write with a GOTO you
can write in a structured form
using if / then / else / endif or
while / endwhile. [f you need to
jump forwards in the program an
if staternent could replace the
jump, if you need to jump
backwards a while could be
used. Other additional features
ofthe language include the trace
command which shows you the
statements as they are being
executed — very useful for
debugging.

Having noted some of the
differences with BASIC, writing
procedures for Archive is
nevertheless in most respects
very similar to writing in
SuperBasic, and it's not the
intention of this article to spend

proc AdList

rem *** Prints the address list on the

rem *** screenortoa

printer

input “Send output to printer (y/n)? “;Ans$

spooloff

if Ans$< >"y" and Ans$< >“Y"
cls :rem *** Output sent to screen

spoolon screen
endif

first :rem "** Start at the beginning of the file

while not eof{)

Iprint “Name: +Firstname$+" “+Surname$
Iprint “Address: “+Address$
Iprint “Telephone: “+Telephone$

lprint

next :rem *** Go to the next record

endwhile
spooloff
endproc

The procedure prints out a list of
all the addresses in the database
inthe order in which they are held
in the file. If you used the order
command this will be
alphabetical order, otherwise it's
likely to be in an order related to
how you typed it in. Having typed
in the procedure, press <ESC>
twice to exit the editor and use
save to store the procedure on
microdrive, as the procedure will
be lost from memory when you
quit or type new. To try it out
type Adlist.

The procedure demonstrates
a few features of Archive's
language like the conditional
statement (if) and the loop
statement (while) which use a
strictly structured form — no
GOTO's allowed! It may take a
little getting used to if you've only
used BASIC before, but while it's
sometimes a little inconvenient it
should result in clearer programs
4/QL User Owner's Manual

too much time on this aspect. As
practice in writing procedures try
writing one to help inputting the
data. For example after asking
for each field it could change the
surmame to upper-case,
firstname to initial upper-case
followed by lower-case, and
check the phone number
contains only numbers. Use the
append command to enter each
record into the database.

APPLIED SCIENCE

What about other more
complicated applications? The
really good thing about Archive is
that you can tailor it to your own
interest and use it to store and
organise data how you want

it. There is no limit to what you
could apply it to: stock control,
mailing lists and lending libraries
are some obvious suggestions,
but what about butterfly
collecting, gardening, school

reports and form lists (for
teachers), facts for exam revision
{for pupils), quiz games (and

| other trivial pursuits), catalogues

| of products, photograph
collections, analysis of

| experimental results or even
storing information about your
wine cellar!

The first part of thejob is to

really examine what you want to
do and how you think Archive is

going to help. It's all too easy to

jurmnp in with both feet, spend a
few hours bashing the keyboard
to set up a database, and
probably quite a few more hours
typing in the data, only to find that
it doesn’t do the job you want it to
do. Even with thought you may
not get it right first time, but you
can always add enhancements if
you've got the basic structure
right. Alittle time spent examining
the problem at the beginning
really pays dividends.

Archive allows you to use
multiple data files simultaneously,
which is a feature you may want
to use as it is very useful for
referring to a different set of
inforration from a data record.
For example, a school form list
might well contain the addresses
of the pupils, but it would be
inconvenient to also store the
reports in the same file, and
time-consuming to type
addresses into the report file.
Twao files with a simple cross-
reference between them is
therefore required.

If you do reference other files it
is important that you pick up the
right record. Surmames are rarely
unique, and even with initials or
first names can often be
duplicated, so it is better to have
another field for a reference
number, Such afield is known as
the primary key to the file, and
one value of the primary should
key give us only one record.

As well as considering what
data you want to store and
whether it can conveniently be
stored as one or more files, you
must consiger how the database
is going to be used —how
information gets in and how it
gets out. Ideally data going in
should be checked to make sure
it is censistent with what is
already in the database, and data
being output may well be
required in the form of a report
{for which a procedure will
probably be needed) or a special

screen format (which can be
designed using the sedit
command). How much time you
spend writing input procedures
and so on will really depend on
how important it is that mistakes
are found during input, and
passibly on who inputs the data.

PHILASOPHY

Consider another example —
collecting stamps. Depending on
the size of your collection you
might want to store data on each
of your stamps, or just those in a
particular album, or maybe one
data record per page or per
album. Depending on how you
want to use the data and what
sort of reports you want the
computer to give you when all
the data has been entered, you
might want to store the purchase
price of stamps, their estimated
value, catalogue cost, condition,
date of issue, and s0. You might
even want to store details of

. stamps that you'd like to own

one day! You will need to take
into account the total number of
records you want to create, as if

' you have an unexpanded QL and

sort your files on one field, the
maximum would be about 1000
records. If you collect stamps
and wish to use Archive to
catalogue your collection you
may choose to store slightly
different data from that which |
that chosen, but in any case here
is an attempt at setting up data
files for this application.

Looking at the data to be
stored you will see that it falls into
two categories: data about
particular stamps in the
collection, and data about
particular types of stamps (of
which there may be a number of
examples in the collection). This
suggests that two data files wil
be needed. The following two
procedures define suitable
database files:

proc NewTypes;Filename$

proc NewTypesjFilensaed
rea 444 Croates & new file for storing
ren #a¢ data about types of whasps
create Filmased logical *T*
Type_Reé_No

proc NewCollection; Filename$

proc WewCollectionjFilenased

rea #i# Creates a nes file for stasp cellection
craate Filenaned logical *5*

Stasp_Ref Mo

Stanp_Type

Page_No

Pesition_No

Hint

Purchase _Bt#

Cont

Sale Value

Conswntaf

micreate

Having run these procedures Other useful procedures

with suitable file names as would be one to print the
parameters we can start entering catalogue of the whole collection
data about stamps. Howevera and one to print a summary

data entry procedure might be report of the total value of the
useful which could search for the collection. Here are my
appropriate stamp type name suggestions for these

and if the type had not yet been procedures, firstly to output the
entered allow both files to be value of the collection:

updated together.

proc FindValue

proc FindValue
rea #tk Tg show total value of albus
spoalon scremn
cls tCenPrint)*Total Cost and Value®,B0

CenPrint) "======emmmmemmeeeaat 301 lprint
let Total _Valsh: let Total Cost=(
.i] 'll

let Total Val=Total Val+S.Sale_Value

lat Total_CostsTatal_CosteS.Cost

endall
CeaPrint;"Cost of collection = ""+deciTotal Cost,2,8),60
CenPrintj“Estisated sale value of collection = **+dec(Total_Val,2,8),80
spoaloff o print ¢ print 1¥esMoj*Okay?"
endproc

proc Catalogue
proc Catalogue
rea #4# Prints catalogue of collection to screen or printer
print 1YesMaj*Da you want the catalogue sent to printer?”
spooloff 1 if mot yes: spoclon screen 1 endif
let yes=0
shile not yes
YasMoj *Print catalogue in Country/Date order?*
if yes
I.:: *1*y order Country$ja,lvsue_Datedjan first
use 5% order Stasp_TypejarHeading)l
while not eof (*T")
use "5"1 locate T.Type_Ref No
while 5.5tanp_TypesT.Type_Ref_No and not eof (*S")
PrinStasp: next "§"1 endwhile
st “T*t endwhile
lprint rept(*=",79)
elue
YasMoj*Print catalogue in Page/Position order of albua?’
if yes
l:l *5*y order Page_Noja,Position_Noja
use "T*1 order Type_Ref_Noja
Headingj2: first 8"
while not eof(*5°)

use "T"¢ locate 5.5tasp_Type
PrinStaspr naxt "8%5 endwhile
lprint rept(®-*,7%)
endi
endif
print 1Yeshoj"Okay?"
endwiile
Reorder: spooloff
mdproc

proc Heading;N

proc Heading;¥
ren #40 Dubpat heading for cataloges

let Ord#="Country/lssus-date"

it =1 let Ord$="Page/Position®: endif

cls 1CenPrint)"STANP CATALOGUE for albua: "+Album_Mased 7%
Iprint 1CenPrinty"printed in *+0rd$+" order® 791 lprint
lprint 1 lprint rept(®_*,79):BlankLine

lprint *iPage Pos.! “STANP NARE |

Cost | ValwelCat.Vali®
lprint *i H ! i i
| | i
BlankLine:BlankLine
endproc

Country | lusus Dats |

proc PrinStamp

proc PrinStasp
rea #8¢ Dutputs detaile of one stasp (current record)
Iprint *1*jdec(S.Page_No,0,4)jdeciS.Position_No,0,4);"
1*jtCenPrint;T.Stanp_Nanet,17 3
lprint *1*y1CenPrint;T.Country$, 132 lprint *1%;
CenPrintyT. Insue_Dates, 121 lprint *1%
CenPrintydec(5.Cost, 2,60 4" |"+dec(S.5ale_Valoe,2,8),14
Iprint *1*;
it S.NintiConPrintjdec(T.Nint_Value,2,8),7
#lse 1ConPrint)dec(T.Used_Value,2,b),7: endif
if S.Comments#()"" or T.Commentes()*"
lprint *1*1 lprint *! | "
Cenprint}S.Coamentss®® / "+7.Comnents# 491 endié
lprint *I*1BlankLline
endproc

Motice that the “Catalogue” line in the table, and the details of
procedure calls other procedures _individual stamps.
to output the heading, a blank

proc AltStamp

“proc AltStasp
rea t4¢ Alter existing stasp record
Which
Yeshoj *Do you wish to change the stasp type?*
if yes: cls 16etTyper let 5.5tamp_Type=T.Typu_Ref_MNo: endif
use "5°: alter ¢ return
wndprac .
proc BlankLine
rea t#% Blank line in catalogue
lprint " H I I I
] H L
endproc
proc Bye
res tod Closes all files that may be open
while 11 close ¢ endwhile
endproc

QL User Owner's Manual/5

2 i EE—————.

.W_ { | 1Imil .

proc GetType
rea #48 Finds appropriate stasp type lor enters it)

print 1 print *What is the type of stasp to be ontered?*
use "T"1 let yes=0

shile nat yes
print "Reply with stasp Type Ref No [if known)®
print * or part of Stasp_Nase (not nuserical)®
print * or press ENTER} to enter new stasp type.*

print 1 input *Stasp typm: “jAnst
if Ansd=""y[npTyper else
ot Ref_No=val (Ans$)
it Ref Mo()01 locate Ref _Mor display 1 wlse
find Ansdy display
while not yes
if found()y sprint 1 print tab 129" "1YesNoy"0K (y/n}? *
if not yes: continue 3 endif
else t print *NOT FOUMD #e3 “ju let yes=lr endif
endwhile
mdif
endif
sprint 1¥esho;ls thin stasp type the correct one?*s cls
endwhile
endproc

proc InpStamp

res #4¢ Input new stasp record

cls 1 print "INPUT®

wie "5"1 last sren t42 Set up Ref, No.

lut 5.5tasp Rei_No=§.Stamp_ref_Motl

GetTyper 1ot §.Stamp_Type=T.Type_Ref Mo

Jot §.Mint=0: let 5.Page_No=0: lut §.Purchase Dt#="*
et §.Costsdi let 5.5ale_Value=01 let §.Commented="'
let S.Position_No=0

use "5°s append 1 alter 1 return

ndproc

proc InpType

rea H4 Input a new stasp type

YesMo; "Are you sure & new stasp type is neaded?"
if not yes: return 1 endif

let DK=lt use *T": last

lat T.Type_Ref_WosT.Type_Ref_Notl

let Stasp_Mase$="*1 let CountryS="Breat britain®
let Tssus_Datwd="YVYY/MN/DD"1 Lot Hint Value=d
Lt Used_Valuss0r 1ot Comsentsss™*

append 1 alter 1 raturn

dproc

proc Menu

rea #4% Display and mxecute options

Reor der

while 1
cls 1 print 1 print *Choose optiom:®
print 1 print tab 10)°(1) Insert new stasp®
print tab 109*(A) Alter stamp”
print tab 10;°1C) Output catalogue”
print tab 10j°(¥) Estisate value of collection”
print 1 print tab 10)* (1) Exit (and close files)®
Lot Af=inkey()s Lot Adsgethey()
iF upper (AS1="1"tInpStanps endif
iF upper (AF)="A"1AlEStanpr endif
if upper (A§1=*C*:Cataloquer endif
i# wpper (ABI="V*1FindValuer endif
if upper (AS)="1"y error bye: stop 1 endif
enduhile

ndproc

&/QL User Owner's Manual

proc Start
rea #0a Start-up procedure
sode 1,81 cls
YesMoj 'Doss the Stasp Catalogue file exist (stasp types)?*
input *Name for Stasp Catalogue films “jMé
if yesiVesho; *Need to sodify?"
if yes: open NS logical "T*1 else look NS logical *T* mndif
elae 1hewTypesjNis endif
YesHoj “Does the Stasp Albus file exist?
input "Nase for Stasp Albus Filen *jAlbus_Nased
if yeuiVesNo) "Need to aodify?*
if yes: open Albua_Wased logical "5*
else ¢t look Albus_Mase$ logical "5%1 endif
#lse 1MewCol lectionAlbun_Nasets endif
Benu
endprot
proc Which
rea #8¢ [dentifies the stanp for change
Lot yes=01 use "5"1 digplay
while not yes
input "Stasp reference nusber? "jRef Mo
locate Ref_Nar sprint
print *
Yeshoj "Correct stamp? *
endubile
sndproc

proc YesNo;P$

proc YesMojPs
rea 4% Bats ¥ or N froa keyboard and sets “yms®
while 1
print P81 Lot De=lower igetkeyl)}
lat yos={@$a"y")
i instr(®ny",@8)1 print * "+2f
raturn 1 endif
print 1 endwhile
wndproc

Allthe procedures also make use outputting a centred line of text,

of the following more general reordering the files, and obtaining
purpose procedures for a yes or no reply to a prompt.
proc CenPrint;S$,Ln

proc CenPrint)54,La
rea #i8 Cantres or truncates string in given length
if len(S81)slns lprint S41 to Ladj1 return & endif
let Teint((Ln-1en(54)}/2)
lprint rept(® =, T S8jrept(® " La-T-len(58))}
endproc

proc Reorder

proc Reorder
rea #6¢ Puts the files back in Ref. No. order
use "5%1 order Stasp_Ref _Moja
use "T"1 order Type_Ref _Noja
endproc

The procedures make use of the opened the same logical names

logical names of the files “S"and should be specified in the open
“T" given when the files were or look command.

created. Whenever the files are

| e

SPECIAL
PACKAGE

Il Double density
I Support up to 4 Drives
I RAM Disk facility

[Centronic printer interface built in

[Compatible with Microdrive

FOR THE

31

DELTA DISK
INTERFACE

UNIQUE 3 IN 1 FEATURES
M Double Density Disk Interface
B Centronic Printer Interface

BMemory Expansion
Delta 64 — 64 K extra RAM
Delta 128 — 128 K extra RAM

Il Compatible with most QL Software
[l Professional quality and reliability
Il Upgradable to -

DELTA 64 - 64 K RAM
DELTA 128 - 128 K RAM

Technology Research Limited
Unit 18, Central Trading Estate, Staines, Middlesex TW18 4XE Tel: 0784 63547 Telex: 896691 TLXIR G

PLEASE SEND ME. Deita Basic | Oty Dalta 64 oty Delta 128 | Oty PAP
Interface only ;:129.-50 . £175.00 i £199.50 I iy £4.00
interface & 5% " Single drive 40 track D.S.| £210.00 £245.00 £269.00 " £8.00
Interface & 312" Single drive 80 track D.5.| £250.00 £290.00 I:Hl:l_.ﬂl:l £8.00

i Iinterface & 3%:" Twin drive BO track D.S_. £350.00 £390.00 £410.00 I \‘.ﬂ_
*All prices include VAT and apply to UK only Total

Name
Address

__Postcode _

DIPPING IN

Assorted printer driver and DIP switch settings for the QL

PRINTER

Parity

Baud Rate

End of Line Code
End of Page Code
Preamble Code
Postamble Code
Bold On

Bold Off
Underline On
Underline Off
Subscript On
Subscript Off
Superscript On
Superscript Off
Translate 1

PRINTER

Parity

Baud Rate

End of Line Code
End of Fage Code
Preamble Code
Fostamble Code
Bold On

Bold Off
Underline On
Underline Off
Subscript On
Subscript Off
Suparscript On
Superscript Off
Translate 1

PRINTER

Parity

Baud Rate

End of Line Code
End of Page Code
Preamble Code
Postamble Code
Bold On

Bold Off
Unde-~line On
Underline Off
Subscript On
Subscript Off
Superscript On
Superscript Off
Translate 1
Translate 2

FRINTER

Parity

Baud Rate

End of Line Code
End of Page Code
Preamble Code
Postamble Code
Bold On

Bold Off
Underline On
Underline Off
Subscript On
Subscript Off
Superscript On
Suparscript Off
Transliate 1

B/QL User Owner's Manual

Shinwa CP8B0 (typel)

Hone
8600
CR,LF

FF

E3C, "@,0
none
ESC, "E
ESC, "F
ESC, "-
E8C, "=
ESC,; “S
ESC, T
ESC, "5
ESC,"T
it]

Brother EFZ2

none
300
CR,LF
FF

nons
none
none
none
none
none
nona
none
none
none
“E, 158

Brother EP44

none
1200
CR,LF
FF
none
none
nona
none
ESC, "
ESC,
ESC, ™
ESC, "
ESC,
ESC, "
"£,35
wilme g o

coocHm

Brother HR-5

Space
300
CR,LF
FF
ESC.CR, P
none
ESC, "E
ESC, "F
ESC, -
EsC, " -
ESC, 'S
ESC, "8,
ESC, "8

“£,35

PRINTER

Parity

Baud Rate

End of Line Code
End of Page Code
Preamble Code
Postamble Code
Bold On

Bold Off
Underline On
Underline Off
Subseript On
Subscript Off
Supersoript On
Superscript Off
Translate 1

PRINTER

Parity

Baud Rate

End of Line Code
End of Page Code
Preamble Code
Postamble Code
Bold On

Bold Off
Underline On
Underline Off
Subscript On
Subscoript Off
Superscript On
Superscoript Off
Translate 1

FRINTER

Parity

Baud Rate

End of Line Code
End of Page Code
Preamble Code
Fostamble Code
Bold On

Bold Off
Underline On
Underline Off
Subscript On
Subscript Off
Superscript On
Superscript Off
Translate 1
Translate 2

[Red On]

[Red Off]

PRINTER

Parity

Baud Ratas

End of Line Code
End of Page Code
Preamble Code
Postamble Code
Bold On

Bold Off
Underline On
Underline Off
Subscript On
Subscript Off
Translate 1

Qume LP20

none

86800
CR,LF

FF
ESC,CR, "P
none
ESC, "
ESC. "
ESC, "
ESC, ”
ESC, "’
ESC, "
ESC, "
ESC, "
“g, 38

coocL=TD

Smith Corona L-1000

none

1200

CR,LF

FF

ESC, "C,ESC, "9
none
DEF
DEF
ESC, "
ESC, "
none
nons
none
none

"£,35

ma

Brother HR15/25/35

None

8600
CR,LF

FF
ESC,CR, "P
none
ESC, "
ESC, *
ESC, "
ESC, "
ESC, ™
E8C, "
ESC, "
ESC, "
"£,35
35,92,8,81
ESC,; "A
ESC, "B

copgCcDmeE

SPG 8010

none
8600
CR,LF
FF

ESC, "R, 4
none
ESC, "d
ESC, "e
ESC, "f
EsSC, " f
ESC, "h
ESC, "h, 1
"E, "%

—

-

A

PRINTER

Parity

Baud Rate

End of Line Code
End of Page Code
Preamble Code
Postamble Code
Bold On

Bold Off
Underline On
Underline Off
Subscript On
Subseript Off
Superscript On
Superscript Off
Translate 1

PRINTER

Parity

Baud Rate

End of Line Code
End of Page Code
Preamble Code
FPostamble Code
Bold On

Bold Off
Underline On
Underline Off
Subscript On
Subsecript Off
Superscript On
Suparscript Off
Translate 1

FRINTER

Parity

Baud Rate

End of Line Code
End of Page Code
Preamble Code
Postamble Code
Bold On

bold Off
Underline On
Underline Off
Subscript On
Subsoript Off
Superscript On
Superscript Off
Translate 1

PRINTER

Parity

Baud Rate

End of Line Code
End of Page Code
Preamble Code
Postamble Code
Bold On

Bold Off
Underline On
Underline Off
Subscript On
Subscript Off
Supersecript On
Superscript Off
Translate 1

PRINTER

Parity

Baud Rate

End of Line Code
End of Page Code
Preamble Code
Postamble Code
Bold On

Bold Off

EsC, "5
ESC, "M, 1
ESC, "W, 0

“£.E8C, “1,"33,6,E8C, "I1.48

OK Writer

nona
1200
CR,LF
FF
24,E8C, 0
none
ESC, "H
ESC, "I
ESC,"C
ESC, “D
ESC, 28
ESC,0
ESC, 31
ESC,0
"€,35

Diablo

none
9600

CR, LF
FF

none
none

ESC, 33
ESC, 34
ESC, "X
ESC, “Y
E&C, "@,1
ESC, "Z
ESC, "G, 0
ESC, "Z
“g, 35

Brother M1000

SPACE
8600
CR.LF

FF

E&C, "R, 3
nons
ESC, "E
ESC. "F
BSC, "=..1
ESC, "-,0
ESC, "S,0
ESC, "T
ESC, “S, 1
ESC, T
“£,35

Juki 6100

CR,ESC,¥9,0,ESC, "9
none

ESC, "W

ESC, "&

Underline On
Underline Off
Subscript On
Subscript Off
Superscript On
Superscript Off
Translate 1

FRINTER

Parity

Baud Rate

End of Line Code
End of Page Code
Freamble Code
FPostamble Code
Bold On

Bold Off
Underline On
Underline Off
Subscript On
Subscript Off
Superscript On
Superscript Off
Translate 1

[WLQ On]

PRINTER

Parity

Baud Rate

End of Line Code
End of Page Code
FPreamble Code
Postamble Code
Bold On

Bold Off
Underline On
Underline Off
Subscript On
Subscript Off
Superscript On
Superscript Off
Translate 1

PRINTER

Parity

Baud Rate

End of Line Code
End of Page Code
Preamble Code
Postamble Code
Bold On

Bold Off
Underline On
Underline Off
Subscript On
Subscript Off
Superscript On
Superscript Off
Translate 1

[NL@ On]

[NL@ Off]

FPRINTER

Parity

Baud Rate

End of Line Code
End of Pagé Code
Preamble Code
Postamble Code
Bold On

Bold Off
Underline On
Underline Off
Subseript On
Subscript Off
Superscript On
Superscript Off
Translate 1

EsC, "E
ESC, “R

Esc, 30,6, "U,ESC, 30,
ESC, 30,8, "D, ESC, 30,
EscC, 30,6, "D, ESC, 30,
ESC, 30,86, "U, ESC, 30,

“£,35

B
B
8
8

Kaga Taxan & Canon PW1080A

EVEN
9600
CR,LF

FF

ESC, "R, 3
none
ESC,
EsC,”
ESC,”
ESC, *
ESC, "
EsC, "
ESC, "
ESC,
“£,35
ESC, "(

- =
=1

o

W

Flm"lfﬂl 1 ==

Quen Data DWP 1120

SPACE
300
CR,LF
FF
ESC, 286, "1
none
ESC, "W
ESC, "&
ESC, " _
ESC, "R
E3SC, "D
ESC, "0
ESC, "0
ESC, "D
"£,38

Epson LX-80

none
9600
CR,LF
FF

ESC, "@
ESC, "R, 0
ESC, "E
ESC, "F
ESC, "-,1
ESC, "-,0
ESC, "S, 1
ESC, "T
ESC, "S8,0
ESC, "T
"£, 35
ESC, "x, 1
ESC, "x,0

Daisystep 2000

none
1200
CR, LF
FF
none
none
ESC, ™
Esc, -
ESC,
ESC, "
EscC,

ESC,

EscC, "
ESC,
“g, 35

e o

cooacm

QL User Owner’'s Manual/9

WNEE l Al B

Dip Switch Settingds

Daisystep 2000

Printer Manufacturer’s
Interface

Al On Bl = SW1 Leaft

A2 On B2 On SW2 Left

A3 On B¥ On SW3 Right

Ad On B4 On
AS Cn BS On
AB On BE On
AT On B7 On
AB On B8 On

Juki 6100
Printer Manufacturer’s

Interface
Al off SW1 On AT off
A2 off SWZ On AB On
A3 On SW3 off A9 off
Ad Off SW4 Off AlO Off

A On SW5s Off
ABE On SHE On

Biteman II
Printer
Left Right Upper Right
L-1 On E-1 On UR-1 On
L-2 On R-2 On UR-2 On
L-3 On rR-3 Off UR-3 On
L-4 On R-4 Off UR-4 Off
L=-5 Off R-5 On UR-5 Off
L-68 Off R-8 On UR-8 Off
L-T7 Off R-T7 Off UR-7 Off
L-8 Off R-8 Off UR-8 Off
UR-9 Off
UR-10 On
Epson LX-80
Printer

1-8 Off 2-4 Off
1-7 Off 2-3 Off

1-6 On 2-2 On
1-5 Off 2-1 Off

1-4 Off
1-3 Off
1-2 0Off
i-1 Off
Brother HR-5
Printer
1-1 ore 2-1 On
1-2 On 2-2 On
1-3 off 2-3 off
1-4 On 2-4 orf
1-5 off 2-5 ofe
1-6 On 2-8 off
1-7 off
1-8 orf
Brother M1009
Printer
Version K Later Varsion K Later
Versions Varsions
1-1 off 1-1 On 2-1 On 2-1 On
1-2 On 1-2 On 2-2 Cm 2-2 On
1-3 On 1-3 On 2-3 off 2-3 Off
1-4 On 1-4 On 2-4 off 2-4 On
1-5 On 1-5 On 2-5 On 2-5 off
1-8 On 1-6 off 2-6 ort 2-8 Off
1-7 off 1-7 ort 2-=7 On 2-7 Off
1-8 off 1-8 off 2-8 On 2-8 On
Eaga Taxan & Canon PW1080
Printer Manufacturer’'s
Interface
1-1 On 2-1 Off 3-1 orf
1-2 On 2-2 Off 3-2 oOff
1-3 0Off 2-3 Omn 3-3 off
1-4 Off 2-4 oOff 3-4 Off
1-5 Off 2-5 Off
1-6 On 2-8 Off
1-7 On 2-7 Off
1-8 Ooff 2-8 Off

Qflash presents
RAM disk for the QL

The ultimate in speed, reliability, features, and compatibility

Seven timas faster than other RAM disks
QL screen image (32768 bytes) loads in 0.15 seconds!

|/O-intensive programs run up to 100 times faster

* No bugs reported since initial release in August 1985

Full dynamic memory allocation — RO FORMAT command necassary. No
memary reserved for file data unless really used for your files

+ Upto 8 RAM devices can be used with up 10 255 files per device

* Works on standard (128K) QL and with all QL goftwara, and takes full
advantage of expansion Mamory up to the BA0K maximum

* Justas easy to use as microdrives of floppies, but much faster

* Incredible low price £27.00 or DM 97.00 {all included)

Send Eurocheque to @fLash, Post box 102121, D-2 Hamburg 1,
W-Germany or call (Hamburg) 6512742 or 7650461

A QUIZZICAL AND PUZZLING
CHRISTMAS?
FUN FOR ALL THE FAMILY WITH

aL Guiz. A single user and competitive 2-4 player quiz, over 1000
questions, with powerful editor option to alter rules, add questions,
make YOUr OWN QUIZovevmemersmsmenssssnnsnsssnsses sl s £20.00

Gumshoe Logic. Logic puzzle program setin a detective agency, 5
levels of difficulty, randomised CASESc.cccrrnsnsinissnens £12.00

Cheques, POs fo:
Megacycal Software
PO Box 6, Birkenhead, Merseyside, L43 6XH

INVESTORS!
e DORTFOLIO
xwarker manacen” SOF TWARE

wal spet l.'ii.:ii.-‘ll.'.’l.ﬁ:--.:l
ARE YOU SURE YOU’RE INSURED?

e “INSURANCE MANAGER™, Fa

PORTFOLIO SOFTWARE -
THINKING SOFTWARE FOR PRACTICAL USERS

Orders/cheques to PORTFOLIO SOFTWARE, PO BOX 15, LONDON SW11
Mo, of copses

: “STOCKMARKET MANAGER" @ £34.95 incl O
“STOCKMARKET MANAGER" Information Sheet O]

[Encioss inngs SAE)
*INSURANCE MANAGER” @ £24.95 incl, |
“INSURANCE MANAGER" Information Sheet Cl
[Encioss large BAE}

Overseas mail add £2.50 Europe; £5.00 alsewhera

P

Introduces

Q-Disc WINCHESTERS

10, 20 or 40 Megabyte
Winchester disc systems
with optional
3.5in. floppy disc drives

PRICE LIST (excluding VAT)

10Mb system only .. . £1100
10Mb with one Floppy . £1250
10Mb with two Floppies £1400

20Mb system only . . . £1500
- « G : 20Mb with one Floppy . £1650
o i g - 2001b with two Floppies £1800

40Mb system only . . . £2700
40Mb with one Floppy . £2850
40Mb with two Floppies £3000

CST are pleased to announce yet another first for the Sinclair QL.

A range of 10, 20 and 40Mb Winchester systems with optionally one or two 3.5 inch 720K
Floppy disc drives and high speed tape streaming output, in one enclosure.

These systems are designed for the professional office environment and care has been
taken to avoid unsightly cable connections.

With the exception of the 10Mb unit without floppy, the QL power supply is built in and
there are 3 mains outlets at the back for monitor, printer, graph plotter etc...

Winchesters can store huge amounts of valuable information; for example a 10Mb unit can
store as much as approximatly 100 microdrives. Good back up is essential when relying on
one storage facility. Hence CST has developed a simple yet sophisticated system to provide
easy backup of data on floppy disc, high speed streaming tape or microdrive.

The CST Winchester systems were developed with close co-operation from Sinclair Research
Ltd and are fully compatible with the QL, QDO0S, Psion application programs and all planned
Sinclair peripherals and software.

For applications requiring more than one interface, the CST (+4 Expansion system can be
used (as illustrated above), to connect up to four interfaces to the QL.

If you have any questions as to which system would be most suitable for your application,
please do not hesitate to contact us.

Orders To

24 Green Street
Stevenage
Hertfordshire SG1 3DS

Telephone (0438) 352150 Cambridge Systems Technology

[Z11¥] The Commands

Last month we developed a
number of general library
routines for use within our
programs. In so doing we looked
at how to enter information on
the computer (gen_in), how to
display it (orompt) and how to
store and retrieve it using DATA
staterments or files on microdrive
cartridges. Here using similar
technigues we examine how the
QL understands things, makes
decisions about them and
manipulates them.

NUMBER
CRUNCHER

Everything on a computer is dealt
with numerically. Where we are
dealing with numbers as
opposed to characters this
poses few problems. Simply
regard the QL as a glorified
calculator with virtually unlimited
memary. Arthmetic operations
need not be entered step by step
but may appear all together ona
single line:

PRINT 3+2+5+7

When entering complex
formulae on the QL there are two
points to note. First, the order of
evaluation is determined by the
priarity of the arithmetic operator

{see Table 1).
> SYMBOL DESCRIPTION
= - Raisetothe
O power
E 2 Muitiplication
/ Division
DIV Integer Division
MOD Integer
Remainder
{ie modulus)

Addition
- Subtraction

Table 1: Arithmetic Operators
Second, whilst the QL is
capable of handling numbers
over a range from -10"616 to
+10"616 it is accurate to only
SEVEN SIGNIFICANT FIGURES.
Anything in excess will be
rounded up and expressed as a
seven figure number followed by
its exponent. For example:
PRINT 1234567
gives 1.234567E6

CHARACTER CODE

When it comes to how the QL
treats characters, things are a
little harder to understand. What
may appear to us as a letter,
punctuation mark and even
mathematical symbol is to the QL
a uniguely coded number with a
value between 32 and 127. This
value is set according to a
standard international code
known as ASCII (see Concepts
Section in User Guide). To
ascertain that this is the case
enter:
PRINT CODE(*A")
this will display the value 63.
PRINT CHR$(65)
this will display "A".

CHR$ converts the code back

into the character,
One interesting feature of the

ASCIl code is that a difference of
32 separates each upper case
letter from its lower case
equivalent. This means that if you
want to convert any character
from upper to lower or vice-versa
you need only apply the following

30000 REMark ¥i# Case convertor kidd
30010 DEFine PROCedure case_conv(str$)

30020 LOCal ¢

30030 temp$=strs
30040 FOR test =
30050 § = CODE(stré{test))

1 TO LEN (str$)

30050 IF)64 AND £¢91 THEN temp$(test)=CHR$(f+32)
30070 IF §96 AND §¢123 THEN temp$(test)=CHR#{f-32)

30080 END FOR test
30090 END DEFine

12/QL User Owner's Manual

tormulae respectively:
lower$=CHRS$(CODE
(any_capital$)+32)
upper$=CHR$(CODE
(any_lower$)-32

often this is written as:

lower$ = CHR${CODE
(any_capital$)+CODE
(“A™-CODE("a"))

upper$ = CHR$(CODE
{any_letter$)+CODE
(“A")-CODE("a"))

Using this formula we can add a
further procedure to our library
(Listing 1) which when passed a
string will change the case of
each character within it, so that,
a lower case character becomes
an upper case one and vice
versa. As usual the amended
string will be returned in the
variable temp§.

STRING STORAGE

To recap briefty then, when we
assign a collection of characters
to a string variable, each is coded
and then stored in sequence.
The amount of memory that a
string occupies depends on its
size and is not fixed as it is with a
numeric or integer variable. In
fact, the only limitation upon a
string's length is the amount of
free memory available (where
each character occupies one
byte of memory).

Once characters have been
grouped together in a string they
may be manipulated in all sorts of
ways. For example, where:
a$="blackredgreenwhite"”
b$="bluemagentacyan
yellow”
we can join strings together
(concatenate) using the &
operator.
all_colour$=a$ & b$
{ie all_colour§= “blackredgreen
whitebluemagentacyanyellow”)
or else wa can extract a portion
of a string. If a group of
characters are required we must
specify the positions of the first
and last characters within the
string.
coli$=a$(1 TO5)
(col1$="black)
col2§=a${6 TO 9)
{Col2$="red")

col3$=a%$(1 TO 5)&" and
“&b%$(1TO 4)
{col3$="black and blue")
If we wish to extract a single
character we need only give its
position in the string.
char1$=a$(17)
(char1$="t")
char2$=b%$(20)
(char2$="w")
Just as we can extract portions
from a string we can also replace
portions within it
a${9 TO 13)="ochre”
{will replace “green” with
“ochre” a$="blackredochre
white")
However, when altering an
existing string using this method
itis important to bear in mind that
you cannot increase the amount
of memory allocated to it. In ather
words you cannot change its
size. For example an attempt to
replace “white” in string a$ with
“tangerine” (ie, a$(14 to |
23)="tangerine") would result in
only the first five letters “tange”
being moved in. The reason for
this is that a string's size is set
only when characters are
assigned to the WHOLE of it.
Replacement of some of its parts
will not increase the memaory
allocation. So, if we want to add
“tangerine we would use the
following method:
a$=a$(1 TO 13)&“tangerine”
The length of a string can be
found using the function
LEN(string].
PRINT LEN("Sinclair QL")
will display a value of 10
str_len% = LEN(b$)
will restore length of the string
b in str_len%
For most complex string
manipulations LEN plays a vital
role. For example, SuperBasic
unlike many other dialects does
not have a RIGHTS function, This
permits you to slice strings up
from right to left. However, using
LEN such a function may be
constructed with:
slice$=a$(LEN(a$)+1- ’
characters_to_slice TO
LEN(a$))
The command INSTR, short for
“IN STRing", allows us to search
through a string to see whether
another string is contained within
it. It retums a value of zero if no
match is found otherwise the
position of the first character in
the match will be retumed.

L ——

N Y _.?_ e

M1 = “cyan” INSTRbS$...
freturns 12 ie «*
“bluemagentacyanyellow")

M2 = col2$ INSTR all_colour$
(returns 19)

M3 = “blue” INSTR a$

fno match — returns 0)

Often it is necessary to set up
stnings containing a large
number of identical characters.
Assigning each character in tumn
is both repetitive and prone to
error, particularly where spaces
are concermed. However,
provided no more than two
characters are to be repeated
the function FILLE may be used.
You simply specify the
character(s) to fill with and the
length of the string to be filled.
blank$=FILL$(* ",50)
{creates a string with 50 spaces)
asterisk$=FILLS$({"*",5)
(asterisk§=""""""")
mix$=FILL${* -7)

(mix§=* - - 7

A possible application using
FILL$ would be to centre a string
on paper. Assuming you are
using an 80 column printer this
would be:

temp$=FILLS(“ ",(80/2-LEN
(a$)/2))&a$:PRINT temp$

of course, a more sfficient
alternative would be fo use AT

AT (80/2-LEN(a$)/2):PRINT a$.

Coercion (mentioned briefly in
Part |) provides a bridge between
different data types. It permits
numbers to be converted into
strings and strings to be
converted into numeric values
provided, in the latter case, that
there is no type mismatch.
Additionally, you can convert
floating point numbers into
integers and vice versa. The
following examples illustrate
what may be achieved.

1. Integer to fioating point

10 x% =237:y% =5

20 result = x% /y%

2. Floating point to integer
10 fi_point = 678.54

20 integer% = fl_point

It is worth noting that numbers
are rounded and not truncated
as with the INT function,

3. Numeric to string

10 number=-113.675

20 string$=number

30 PRINT string${5 TO 8)
4. String to floating point or
integer

10 sale$="23.50":

cost$="12.45"
profit = sale$ — cost$

20
30 NP% = (100*profit)/sale$

If a string holds non-numeric
characters then conversion will
not be possible. For instance
value = "£123.45" will generate
an error as the pound sign is
non-numeric and consequenthy
unacceptable,

Aside from INPUT routines,
this type of coercion is most
commonly encountered where
time or calendar date are
incorporated into programs.

CLOCK AND
CALENDAR

The QL's internal clock (and
calendar) works only when the

machineis on. As a consequence
the date and time must be set at

the beginning of every session,
This is done using the function
SDATE. It takes the farm:
SDATE year,month,day,hour,
minute,second

All values are numeric. However

for reasons mentioned in the last

section, if these values are to be
INPUT they need to be entered
as strings, checked and then
coerced into their numeric
equivalents. The library routine

given in Listing 2 shows how this

may be done (note that it makes
use of the procedures given in
Part 2 of this manual).

Once the current date and
time have been entered, the QL
will keep track of them until it is
switched off. To get time and
date to display we use the
function DATES$. This retums a
string laid out as follows
“Wwyy mmm dd hh:mm:ss”

In this case coercion would be
required to process each bit of
information. For example:
10 birthyear%=1957
20 now$= DATES
30 years_old% = now$
(1 TO 4) = birthyear%
An altemative to using coercion
is to use the function DATE. This
measures time in seconds and
provides an economical way of
storing information on file. DATE
may be converted into a
readable format using DATES.
The following program illustrates
how this works:
10 SDATE 1986,1,1,0,0,0
20 PRINT “The date and
Time is"!DATES: now =
DATE

OWNER'S MANUAL |

30 PRINT DATE!"seconds
have elapsed since”
IDATES(0)!

As shown above DATE is
measured in the number of

seconds that have elapsed since

“1961 Jan 1 00:00:00"
Incidentally, the furthest into the
future you can go is 2/2/2097.

The command ADATE allows
the QL's clock to be fine tuned.
Adjustments are entered in
seconds.

ADATE 60

(forwards 60 secs)

ADATE —43200

{back 12 hours)

Another useful clock function is
DAYS$. This will retumn the day

from the internal clock
{Mon, Tue etc).

PRINT DAY$

(will display current day)
PRINT DAYS(0)

(displays ‘Sun’ being 1/1/1961)
This ties up our examination of
SuperBasic. In the three
instaliments of this manual we
have tried to cover the areas
which have hardly been touched
upon by Sinclair's User Guide
The object has been to shine
some light on the unknown
rather than restate the obvious,
We end with a word of
encouragement to those new to
programming. Remember over
90% of all programs ever written
have bugs in them!

30000 REMark ###¥ Date Entry #esess
30010 DEFine PROCedure date_entry(ch,x,y)
30020 LOCal loop,dte,yy$,aa$,dds

30030 ma$=""yyy$=""1dds=""

dte = tesp$(loop) INSTR *1234567890"

30040 REPeat d_inner

30050 dte=0

30060 prospt “Enter Day",1,5,40
30070 gen_in dd#$,2,ch,x,y:dd$=teap$
30080 prospt “Month*,1,5,40

30090 gen_in an$,2,ch,x+3,y:aa$=teaps
30100 prospt “Enter year in full®,1,5,40
30110 gen_in yy$,4,ch,x+b,yryy$=teaps
30120 teap$=yySknaskdds$

30130 FOR loop=1 TO LEN(temp$)

Jo140

30150 IF NOT dte THEN EXIT loop
J0160 END FOR loop

30170 IF dte

Jo180 IF dd$>0 AND dd$(32

30190 IF sa$)0 AND ma$(13

30200 IF yy$>1984 AND yy$<1999
30210 EXIT d_inner

30220 END IF

30230 . END IF

30240 END IF

30250 END IF

30260 END REPeat d_inner

30270 SDATE yy$,ma$,dd$,0,0,0

30280 AT #ch,y,x:CLS #ch,A:teap$=DATES
30290

prompt teap$(l TO 12)LDAY$,1,5,40
30300 END DEFine date_entry

QL User Owner's Manual/13

WITH ALL PRINTERS: QL USERS PRINTERS GUIDE -
g0 We supply a free booklet with all printers which explains how to obtain all the features available on your printer.

ORDERED TODAY -
DELIVERED TOMORROW _—
e
NWLI_.}NOI"I"‘DFH

B DOT MATRIX
SHINWA CP ABD
EPSON FX80 F/T+
EPSON FX100 F/T+

EPSON X80 SPECIAL OFFER
CANON 1080A SPECIAL OFFER
JUKI 5510 (colour option)
CANON 1156 17° CARRIAGE

= DAISY WHEEL
QUENDATA 1120
EPSON DX100 SPECIAL OFFER

B COLOUR PRINTERS
EPSON JX-80 SPECIAL OFFER

® PRINTER INTERFACES
MIRACLE SYSTEMS

® COMPUTERS
SINCLAIR QL ONLY

14/0L User Owner's Manual

EX VAT
£165-00
£314-00
£425-00

=B DOT MATRIX PLUS NEAR LETTER QUALITY

£195-00
£23500
£249-00
£335-00

£22500
£356-00

£450-00

£26-05

£173-05

LXB0 F/T £77500 £891-25

INC VAT
£189-75
£361-10
£488-75

£224-25
£270-25
£286-35
£385-25

£258-75
£409-40

£517-50

£29.95

£199-00

® DISC DRIVES
MICRO PERIPHERALS

INTERFACE
3',” DUAL DRIVES

JUK| 2200

® MONITORS
PHILIPS 7502 GREEN
MICROVITEC CUB 1451/653

® MODEMS
FREE TELECOM GOLD/PRESTEL)

ogém PACKS
TEC CUBSA3, PRINTER & ALL LEADS AND INTERFACES

WITH CANCN 1080 £812-00 £933-80

£900-00 £103500 OTH:R PRINTERS ON REQUEST

THE WORLDS BEST PRICES ON @i/|
COMPLETE PACK Pack includes: SINCLAIR QL, MICROVI
WITH E
SPECIAL OFFER WiTH CANON 1186

Prices include power supply and interface.
1L* SINGLE DRIVE SYSTEM (.75 MBYTE) £244-00 £277.15

3!
31/ DUAL DRIVE SYSTEM (1.5 MBYTE) = £365-00 £419-75
PCML DISK INTERFACE + 256K RAM & TOOLKIT

B TYPEWRITER PRINTER COMBINED

TANDATA (complete system including

EX VAT INC VAT

£276-00
£199-00 £228-85

£24500 £281-75

£7500 £86-25
£220-00 £253-00

£173-00 £198-95

RING FOR BEST PRICES

OWNER'S MANUAL

MACHINE CODING

ART

The QL holds many
secrets, which can only
be unlocked in
response to commands
presented at the very
lowest levels near the
QDOS retreat . . .

The machine code programmer
talks to QDOS generally in one
of two ways. The first is by
executing a particular 68000
TRAP instruction. The traps
used by QDOS are #0, #1, #2,
#3, and #4.

Trap #0 is very basic and
simply causes the processor to
enter supervisor mode. This is
often useful when we are inside
jobs, which normally run in user
mode, as it allows us to alter the
interrupt state and move the
system stack.

Trap #1 provides a group of
functions known as the 'man-
ager' routines. These look after
the major parts of the system
such as jobs, memory alloca-
tion and system lists. Each trap
#1 routine is entered with the
function number in register DO,
and possible parameters in
registers D1 to D3 and AD to
A3 If the routine returns and
results, these will be found in
the same group of registers,
and errors are reported gener-
ally by setting register DO to a
negative error code value.

JOBS AND TREES

If we take a look at the routine
which scans a job tree,
MT.JINF, for example, we find
that it is entered by putting 2 in
to DO before the TRAP #1
instruction is executed. Other
values it requires are the 'job
IDs’ of the job being scanned
(in register D7) and the job at
the top of the tree (in D2). When
this routine returns, D1 holds
the job 1D of the next job in the
tree, and registers D2, D3 and
A0 have been set to hold values
relevant to the job which was
scanned.

The register usage, para-
meters required, results re-
turned and possible error con-
ditions are given in the QL
Technical Guide, along with a
very brief description of each
routine's purpose. Trap #2 and
trap #3 follow much the same
lines as frap #1, except that
each has a slightly different
purpose,

Trap #2 is used for /O
Allocation, which means the
opening and closing of chan-
nels. This trap also incorpo-
rates file deletion and medium
formatting. The trap #2 routine
to open a channel, I0.0PEN, is
called by putting 1 in to DO
before executing the TRAP #2
instruction. It needs a fair
amount of information before it
can open the channel, D7 is
used to hold the job ID of the
job which will ‘own’ this chan-
nel, D3 holds a ‘key' which
determines how a channel
should be opened (ie, read
only, update and so on) and
register AQ points to the name
of the file or device to be
opened. If the open is success-
ful, then DO holds 0 and register
A0 holds the ‘channel ID' of the
newly-created channel.

Trap #3 deals with all the
general-purpose /O routines,
allowing us to read and write
single bytes or strings. Console
IO also has a special 'edit a
lineg' routine which allows a
previously-typed line to be
edited by the user at the key-
board. Apart from these
routines, frap #3 provides ac-
cess to the enormous number
of screen driver routines such
as window panning and scroll-
ing, ink, paper and strip colour
changes, border alterations,
circle and line drawing and
recolouring. The final few trap
#3 routines provide access to
specialist file-handling oper-
ations which allow things like
reading and setting the header
on a file, moving the read/write
pointer to any given posltion in
a file (and, therefore, providing
random access) and saving or
loading complete files. Trap #3
is probably the most used
QDOS routine.

Trap #4 is like trap #0 in that

it has one purpose only in life:
to tell the next trap #2 or trap
#3 routine that the addresses
being passed to it will be rela-
tive to register A6 rather than
absolute. It does this by setting
a byte in the job's header,

VARIED VECTORS

The - other way of accessing
various QDOS routines is via a
‘vector’. A vector is a pointer to
somewhere else, which may
seem a bit strange, but its
advantages are obvious. If the
system is being updated often
then it is very likely that the
address of each routine in the
systemn will alter from time to
time. As information needs to
be published about where
these routines are, and as other
routines need to call them, the
fact that they alter often is
rather inconvenient, But, if the
addresses of each routine are
placed in special pre-defined
locations in memory which
never change from version to
version, it is extremely easy to
access each routine. These
special locations are the vec-
tors, and the addresses inside
the vectors are entirely
irrelevant to us. We call the
vectored routine by grabbing
the address from the vector
and then calling it as a sub-
routine or jumping to it. The
easiest way of doing this is as
follows:

MOVE.W _the_vector, A2

JSR (A2)

There is no reason why A2 in
particular should be used, but it
is generally speaking the most
obvious choice. We move only
a word in to the address regis-
ter from the vector because
each vectored routine is In
ROM, which always starts at
address $00000000 on a QL.
Things are specially arranged
to ensure that each of the
routines starts at an address
less than $00008000, which
allows word-long addresses to
be used via the 'absolute short’
addressing mode.

The vectored routines which
exist provide many facilities.
Some of them almost duplicate
trap-invoked routines but have
simpler parameters or can be

used in certain situations only;
other provide entirely new facili-
ties which are useful to have
around. Many of the vectored
routines are used mainly by the
SuperBasic interpreter, as they
refer to the SuperBasic vari-
ables such as the name table
and name list. Other routines
are useful in all sorts of appli-
cations: the routines which con-
vert numbers into dates and
days of the week, for example,
or those which convert num-
bers into strings and vice versa.
There are routines even to cre-
ate and maintain linked lists,
perform floating point arithme-
tic operations and compare two
strings. It seems that a good
deal of applications software
could be written entirely using
QDOS vectored utility routines!

CHANNELS AND IDs

In order to be able to refer to a
given channel or job uniquely,
the operating system needs to
have a number for that channel
or job. As both jobs and chan-
nels may be created and des-
troyed asynchronously, a num-
ber which increases on a per-
job or per-channel basis is
insufficient by itself. QDOS
uses the same system for both
jobs and channels, and the
numbers used are referred to
as the job or channel IDs. Each
ID is held in a long word, which
means four consecutive bytes
(thirty-two bits), and comprises
two parts. The lowest two bytes
(sixteen bits) form an in-
cremental number between
zero and a given upper limit
which reters to the channel or
job’'s position in its requisite
table. The channels opened in
a row, for example, may have
positions two, three and four in
the channel table. If channel
two is then closed and a further
channel opened, the new chan-
nel will be given position two in
the table as it is the first empty
slot. This position is often refer-
red to as the job or channel
number, but has nothing to do
with the '#' channel numbers
used by the SuperBasic inter-
preter.

As this intimates, it is very
easy for a channel to be closed

QL User Owner's Manual/15

and another to be opened in its
place before a job talking to
that channel knows about the
closure. If the job is reading
from or writing to the channel it
obviously will get very con-
fused. To avoid such things, the
high word (sixteen bits) of the
channel or job ID holds a cyclic
'‘tag’ which is allocated by the
operating system. So, to take
our case of three channels
being opened in quick succes-
sion, they may still be given
numbers two, three and four,
and the tags might be four, five
and six.

Now, when channel two (with
tag 4) is closed and the new
one opened, the new channel
two will have a tag of seven.
The operating systerm can see
straightaway that the new chan-
nel is different from the first, so
when a job attempts to com-

16/QL User Owner's Manual

OWNER'S MANUAL

municate with the old channel
two it will be told that this
channel is not open. As these
principles apply to jobs as
much as to channels, the job ID
mechanism is the same as the
channel ID mechanism.

LABELS AND TABLES
To find the position in memory
of a job, given its job ID, we
need to know only a few things,
If we assume that register A&
points to the base of the system
variables, the code below will
return in AQ the base address
of the jobs whose ID is held in
register D1. This base address
is the address of the start of the
code immediately after the job
header.

JB_.TAG EQU §$10
SV_JBBAS EQU $68
JB_LEND EQU $68

SV_JBTOP EQU $6C

MOVE.W D1,D4

EXTL D4

LSL.L #2,D4

ADD.L SV_JBBAS(A6),D4
CMP.L SV_JBTOP(AB),D4
BCC.S BAD_JOB
MOVEA.L D4,AD

MOVE.L (A0),D4

BMI.S BAD_JOB
MOVEA.L D4,A0

SWAP D1

CMP.W JB_TAGI(AD0),D1
BNE.S BAD_JOB

LEAL JB_END(AQ),AQ
*A0 holds job's base address

The label BAD_JOB is jumped
to if the job ID passed in
register D1 is invalid in any
way. Apart from finding a job in
memory, this routine also pro-
vides a convenient way of tell-
ing if a given job exists or not.
As much the same technigues
apply to channels, similar code
may be used to discover if

given channels are open, or
where their channel definition
blocks are. Obviously, the sys-
tem variables used will need 1o
be changed.

Immediately betore the
LEA.L JB_END(AQ).AD instruc-
tion, register AQ holds the
address of the job's job header.
This header contains a great
deal of useful infarmation which
may be extracted and in certain
cases directly altered. The in-
formation held here includes
such things as the job's length,
its owner, its priority and its
suspension status, a pointer to
its trap re-direction vectors and
a copy of all the 68000 registers
except the supervisor stack
pointer. These register entries
are particularly useful as they
allow us to put things on a job’s
stack before it is activated, or to
set up the registers.

Did you miss Volumes | & Il
of the QL Owner's Manual?

Then ring 01-251 6222 and
ask for QL User

Backnumbers

