July/August 1981 Volume 1, Number 4 $2.50 (USA)

£1.20 (UK)

The magazine for Sinclair ZX80/1 users

S w
. Interfacin
e APay

David Ahl, Founder and
Publisher of Creative Computing

You might think the term “creative com-
puting” is a contradiction. How can some-
thing as precise and logical as electronic
computing possibly be creative? We think
it can be. Consider the way computers are
being used to create special effects in
movies—image generation, coloring and
caomputer-driven cameras and props. Oran
electronic “sketchpad” for your home
computer that adds animation, coloring
and shading at your direction. How about a
computer simulation of an invasion of killer
bees with you trying to find a way of keep-
ing them under control?

Beyond Qur Dreams

Computers are not creative per se. But
the way in which they are used can be
highly creative and imaginative. Five years
ago when Creative Computing magazine
first billed itself as “The number 1 maga-
zing of computer applications and soft-
ware.” we had no idea how far that idea
would take us. Today, these applications
are becoming so broad, so all-
encompassing that the computer field will
soon include virtually everything!

In light of this generality, we take “appli-
cation ' to mean whatever can be done with
computers, ought to be done with comput-
ers or might be done with computers. That
is the meat of Creative Computing

Alvin Toffler, author of Future Shock and
The Third Wave says, | read Creative Com-
puting not only for information about how
to make the most of my own equipment but
to keep an eye on how the whaole field is
emerging.

Creative Computing, the company as
well as the magazine, is uniquely light-
hearted but also seriously interested in all
aspects of computing. Ours is the maga-
zine of software, graphics, games and sim-
ulations for beginners and relaxing profes-
sionals. We try to present the new and im-
portant ideas of the field in a way that a 14-
year old or a Cobol programmer can under-
stand them. Things like text editing. social

.

creative
Gcompating

A REMARKABLE MAGAZINE

“The beat covered by Creative Computing
is one of the most important, explosive and
fast-changing.”— Alvin Toffler

simulations, control of household devices,
animation and graphics, and communica-
tions networks.

Understandable Yet Challenging

Asthe premier magazine for beginners, it
is our solemn responsibility to make what
we publish comprehensible to the new-
comer. That does not mean easy our
readers like to be challenged. It means
providing the reader who has no prepar-
ation with every possible means to seize
the subject matter and make it his own.

However, we don't want the experts in
our audience to be bored. So we try to
publish articles of interest to beginners and
experts at the same time. Ideally, we would
like every piece to have instructional or
informative content—and some depth—
even when communicated humorously or
playfully. Thus, our favorite kind of piece is
acessible to the beginner, theoretically
non-trivial, interesting on more than one
level, and perhaps even humarous.

David Gerrold of Star Trek fame says,
“Creative Computing with its unpreten-
tious, down-to-garth lucidity encourages
the computer user to have fun. Creative
Computing makes it possible for me to
learn basic programming skills and use the
computer better than any other source

Hard-hitting Evaluations

Al Creative Computing we obtain new
computer systems, peripherals, and soft-
ware as soon as they are announced. We
put them through their paces in our Soft-
ware Development Center and also in the
environment for which they are intended —
home, business, laboratory, or schoal.

Our evaluations are unbiased and accur-
ate. Wecompared word processing printers
and found two losers among highly pro-
moted makes. Conversely, we found one
computer had far more than its advertised
capability. Of 16 educational packages,
only seven offered solid learning value

When we say unbiased reviews we mean

it. More than once, our honesty has cost us
an advertiser—temporarily. But we feel
that our first obligation is to our readers and
that editorial excellence and integrity are
our highest goals.

Karl Zinn at the University of Michigan
feels we are meeting these goals when he
writes. “Creative Computing consistently
provides value in articles, product reviews
and systems comparisons . . . ina magazine
that is fun to read.”

Order Today

To order your subscription to Creative
Computing send payment to the appropri-
ate address below. Customers in the
continental U.3. may call toll-free to
charge a subscription to Visa, MasterCard
or American Express.

Canada and

Term USA Foreign Surface Foreign Air
1year $20 $209or £12.50 5$500r £21
2 years $37 $550r £24.00 $97 or £41
3years $53 $BOor £3450 S$14%o0r £ 61

We guarantee your satisfaction or we
will refund your entire subscription price.

Join over B0,000 subscribers like Ann
Lewin, Director of the Capital Children's
Museum who says, "I am very much im-
pressed with Creative Computing. It is
helping to demystify the computer. Its arti-
cles are heipful, humorous and humane.
The world needs Creative Computing.”

creative
compating

PO Box 789-M
Morristown, NJ 07960
Toll-iree 800-631-8112
(In NJ 201-540-0445)

27 Andrew Close, Stoke Golding
Nuneaton CV13 6EL. England

NS

The magazine for Sinclair ZX80/1 users

— I g [

July/August 1981

Volume 1, Number 4

oObwmMN

20
28
46
11
24

26

22
23
31
34

DEPARTMENTS
Glitchoidz Report.
BYNCMNOEconiiv v s Grosjean
LetBrs. e
Poarcoplons : ..coonimmmms s bamuss o Ornstein
SYNCSUM
Puzzles and Problems. Townsend
O OURBON. oot s iyt s Truman
I T i e cmrr e et e bomie s s e e s
STRINGS AND ARRAYS
The TL$ Function. Miller
TL% for "READ"ing
Multidimensional Arrays on the ZX80. O'Connell
Dealing with DIM statements
TRS and LET AS=AS+BS onthe ZX80.Doakes
String handling without TRS
MATH AND MATH GRAPHICS
SettingUpBarCharts. Passler
Visual statistics
Bisection Iteration Square Root Program., ., Goins
Find your roots
The ZXB0 Makesthe Grade Auer
Adding and analyzing statistics
Muitiplication ThreeinaRow.................. Brown

Test your skill

36
44

12
38

45
46
47
48

GAMES AND PROGRAMS

L Nishet
Find the clues
Mini-Billboard. Duke
Make your own sign
MACHINE LANGUAGE
Machine Code Keyboard ScanningPuerzaer
Decoding the keyboard
ScreenScrolling.Logan
Third in a series on machine language
INTERFACING
Techniquesofthe ZX80................. Onsy
Qutputting to asynchronous peripherals
A Parallel Interface. Salt
A construction project
REVIEWS AND RESOURCES
Keyboard Beeper................... Utasi
Hardware Review
BICROM. ..ot s e e e Lubar
Hardware Review
And the Walls Came Tumbling Down . ..Grosjean

Software Review

Resources.

COVER: Young beginners at Creative C omputing’s summer Computer
Camp learning Basic operations on the ZX80 keyboard. Photo
courtesy Morristown Daily Record,

I"uhl:-slmnhlunr in-Chief

Stalff

Advertiser

David H. Ahl

“ditorial Director
Managing Editor
Associate Editor
Secretary
Production Manager
Typesetters

Financial Coordinator
Bookkeeper
Customer Service
Order Processing
Circulation
MEMBERS

MilA

July/August 1981

George Blank
Paul Grosjean
David Lubar
Elizabeth Magin
Laura MacKenzie
Jean Ann Vokoun
Maureen Welsh
William L. Baumann
Patricin Kennelly
Ralph Loveys
Ruth Coles
Frances Miskovich
Dorothy Staples
Carol Vit

Are youin SYNC

Be a Compurer Literare
Colossal Computer Cartoon Book 45
Creative Computing Subscriptions

Find ZX80 owners

Katie and the Computer

Lamo-Lem

L.J.H. Enterprises
Macronics

Maples

New England Software
Peripherals Plus
Soflisvne

SYNC

Index to Advertisers

Creative Computing T-Shirts

Zeta Soltware

Volume 1, Number 4

Pu_L‘n'
13 SYNC is publishied bi-monthly for $10.00 per year
14 by Creative Computing, 39 E. Hanover Ave,, Mor-

ris Plains, N1 07950, Second class postage paid at

Cover 2 Morris Plains, New Jersey 07950, and additional

i entry offices,
2]
q Postmaster: Send address changes 10 SYNC, P.O.
73 Box TH9-M, Morristown, NJ (07950,
21
33 Subscriptions in USA: 6 issues $10: 12§ issues 515:
13 I8 issues 524. UK and foreign airmail subscrip
33 tions: bissues £10: 12 issues£18; 18 issues £25, Call
23 (8O0 631-8112 toll-free (in N1, 201- 540-0445) 1o
Cower 4 begin your subscription.
Cower 3
21 Copyright 1981 by Creative Computing. All rights

reserved, Reproduction prohibited in any form.

Glitchoidz

Report

The GLITCHOIDZ REPORT will pass
on to our readers errors, problems, and
other Glitchoid activities which have been
discovered. We welcome your contribu-
tions to this column,

GOTO Lines

Some readers have asked about a line
such as GOTO 450 when the program
does not have a line 450. In the ZX80 this
does not stop the program or confuse the
computer. The ZX80 will search for the
line and, failing to find it, go on to the
next line in the program after 450. In
effect, it jumps over the GOTO command
line in such cases,

Castle Doors (1:30)
Correct:
48 IF D=2 THEN LET A=RNDi{30)
62 IF D=5 THEN LET A$=“ZOMBIE"

Draw a Picture (1:33)

Some readers have reported difficulties
with this program, but it will run as printed.
Pay especial attention to the last paragraph,
When the program is entered and RUN,
you are to respond to the prompt by
entering the coordinates of the square
you want to fill with a graphics symbol,
You are then to respond to the prompt
ENTER CHAR CODE with the number
of the symbol you want as shown in column
J. Erasing may be done by entering 0 to
erase the previous character or by entering
the coordinates again and then the new
character,

How to Produce a Display File
(2:13, col. 1)

A full screen suggestion:
40 FORI=1TO 21

Correct:
60 FORI=1TO 30
70 PRINT * ™ (1 sp.)
{2:15, col. 1)

Continue adding dummy lines until line
10 is scrolled off the screen. Then delete
the dummy lines by entering the line
number and NEWLINE before entering
the loader program.

(2:15, col. 2)
401F A <1 0R A > 300 THEN GOTO 30

Truth in Programming (2:19, col. 1)
20 IF X THEN LET T=T+1

2

-]

i e
A R

s -

Game of Life (2:29)

Change: 450 NEXT |

Add: 460 FOR 1=9 TO 55

The graphics given in the program do
not produce the * in the square. Hopefully
the * makes it easier to see the squares
being referred to. For those who want to
use the * in the display, change the
character number 128 to 222 in lines 120
and 500.

Some readers have pointed out that
the game does not follow the rules in the
article. Reader Walter Bacon has proposed
program changes to bring it closer to the
rules (see Letters).

Artillery (2:27)

Readers with 1K have found that the
game fills the memory rather quickly. You
can increase the memory available for
play by trimming down the PRINT state-
ments to very brief prompis or try Reader
Joe Dell'Orfano’s program amendments
(see Letters).

Tic Tac Toe (2:32)
Add: 445 CLS

More Truth in Programming (3:7, col. 3)
Correct:
IFNOT(X<5AND Y<8)...

Black Hole (3:9)
Correct:
751F 5<10R §>9 THEN GOTO 70
See the Letters for suggestions for
trimming this to 1K.

Auto-Display-Changing (3:14)

Dr. Logan reports a bug that occurs
because of variations in TV sets: “Some
users may find it necessary to use other
values in line 64,

64 POKE A+24,3 or 5
in order to get better timing.”

Variable Conversions (3:26)
Correct:
113 IF X=-27 THEN GOTO 116

Forest Treasure (3:34)
Correct:

30 PRINT “g’; (shift A), or

30 PRINT CHRS(128)

490 delete %

8K Basic ROM and 16K-Byte RAM Pack
13:37
As a number of readers observed, the
actual ROM they received differs somewhat
from our article. Between the time we
received the materials and the actual
production of the 8K ROM a few changes
were made.
The following commands were
omitted:
DATA
DRAW m.n
NEW n
READ v
RESTORE
UNDRAW m,n

These commands were added:

L PRINT Prints a string on the printer.

L LIST Lists the program on the
printer.

COPY Prints the entire screen on
the printer. The printer is
capable of printing all the
characters including
graphics,

FAST On the ZX81 there are two
modes of operation,
SLOW On the ZX80 8K keyboard
these do not function.
(3:38)
16K RAM Pack: A separate power
supply is now being provided.,

The ZXB80 Keyhoard
(3:42)

The author is David Ornstein, 25 Shute
Path, Newton Centre, MA 02159.
(3:44)

Listing 1 is copyrighted by Sinclair
Research.

Graphics Surprises (3:22)

The author is James H. Parsons, 1921
Flintock Terrace West, Colorado Springs,
CO 80918,

SYMNC Magazine

SLMAC NOftEs

Paul Grosjean

ZX81—The Family Increases

A number of people have asked us
whether we are going to include the ZX81
in our coverage. As our changed cover
shows, the answer is a definite YES.

With the multiplication of the ZX80
family and the availability of new ROMs
and RAMSs, our readers want to know
what the machine requirements of our
programs are. If you are planning to send
us an article or program that you have
developed, be sure to state the minimum
machine requirements for your program
on a separate line below the title, When
we are referring to the general family or
discussing the family in areas where the
ROMs and RAMSs are not important, we
will say simply the “ZX80,” but where the
ROM and RAM are important we want
to include that information.

PERCEPTIONS

In this issue we are introducing the
column PERCEPTIONS by David Omstein
(p.6). David has already contributed to
S¥YNC through his work on the schematic
of the ZX80 in issue 1, “Video Modifica-
tions for the ZX80" in issue 2, and “The
ZX80 Keyboard™ in issue 3.

Though he is Technical Services
Manager for Sinclair Research Limited
(U.S.), we must hasten to point out that
the views expressed in his column will be
strictly his own and in no way will represent
Sinclair Research,

SYNCSUM

We are especially pleased with the first
contribution of PERCEPTIONS to SYNC
readers and authors in the concept and
programs for the SYNCSUM, This is a
method of checking whether you have
entered the program correctly. If you are
submitting an article, we ask you to include
the SYNCSUM at the end of any program
listing.

July/August 1981

Spaces in PRINT Statements

Since we do not have a symbol on the
ZX80 that marks clearly the empty spaces,
sometimes problems arise in entering
programs and getting them to work because
the correct number of spaces in the PRINT
statements is not always clear. When we
receive a program done on a typewriter
or 4 printer, we can usually figure out the
number by counting the letters in the line
above or below since each letter takes up
the same amount of space. However, this
is not always accurate because typo-
graphical errors can occur even in leaving
spaces. Another problem comes up when
we typesel programs. On the type setting
machine letters vary in the amount of
space they take up in the line and the
spaces also vary in order to make the
right hand margins even. So counting does
not work. We have tried to handle this
problem up to this point by indicating the
number of spaces in a side note. Beginning
with our next issue, we will be using a
symbol to indicate spaces where these
affect the running of the program,

If you are submitting a manuscript, we
are asking you to indicate all spaces in
the PRINT statements except the obvious
ones between words by using the symbol
#. We have chosen this because it is found
on almost all typewriters, and it is not
used on the ZX80 family of computers.
We will use a different symbol in §¥YNC
articles, but, even if we slip up, # will not
cause any programming errors since it
cannot be entered.

If in running a program you are sure
that you have entered it correctly but it
still does not work, check the number of
spaces in any PRINT statements. You
might experiment by changing these.

MicroAce 117777

Contrary to some reports, MicroAce
is not planning at the present time 1o
offer a MicroAce II. When the present
stock of kits is exhausted, the MicroAce
computer will no longer be available from
MicroAce. The company goal will be to
offer equipment to upgrade the machines
already sold. An 8K ROM and a flicker
free video board (which requires 8K ROM)
will be available by the time you receive
this issue of SYNC. The RAM capacity
will be expandable by two options: a 4K
RAM and a 16K RAM. These are planned
for the fall.

SYNC Subscribers Pass the 6000 Mark
At the end of June our subseription list
totaled 6135 subscribers with 1532 outside
the U.S. California leads the list with 13%
of the total, followed by New York with
7%, and then by llinois, Texas. and Massa-
chusetts with about 4% each. Outside the
U.S. the United Kingdom leads the list.

A P.S. from Alger Salt

Readers of Alger Salt’s “A Parallel
Interface for the ZX80/MicroAce™ should
note the following P.S. which arrived after
our layout was completed:

After reading the article “The ZX80
Keyboard” in the May/June issue of
SYNC 1 learned that the keyboard is an
input device that is addressed by any
even address. This accounts for the diffi-
culty I encountered when trying to read
from port A on the PIO. The problem
can be avoided by using address line A2
instead of A0 to select the A or B port.
That is. connect the A/B SEL line on the
P10 to a different address line than AQ.
Then use only odd addresses when
addressing the PIO, i.e.. addresses with

AD= 1.

T ———————————————————————eeeeeeeeeeeeeeeeeeeeee

IELLErsS

Gauntlet and USR(47)

Dear Editor:

My Gauntler program in your May/
June issue can be greatly improved by
using the technique described on page 6
of the same issue. On that page, Hasse
Taube says that USR(47) will return the
end of variables address. But the end of
variables is right next to the start of the
display file. That makes my machine
language routine unnecessary.

The machine language routine made
entering the program difficult and listing
the program dangerous. But if you change
line 900 to: 900 LET D=USR(47)+2, then
you can ignore the subroutine loader and
decimal listing and also delete line 1.

This is another example of how SYNC
helps get the most out of the ZX-80. My
thanks to Michael Kirkland, Hasse Taube
and, of course, to SYNC.

Ken Berggren
104 Ridgeway Ave.
Louisville, K'Y 40207

Widgeteconomics

Dear Editor:

. .. 1 greatly enjoy your magazine;
however, | have found a few problems. In
running the Widger program | have never
been able to even break even. It is a
challenge just to keep from going bankrupt.
Is the program listing just advertisement?

Another thing T would like to see in
your future articles is how to convert
either mechanically or through a machine
code subroutine the screen to active instead
of going blank during runs.

Richard McDaniel
PO Box 71
Glasgow, VA 24555

Ed. —A number of readers of Widget
have found it quite challenging. See Reader
Bacon’s letter below. It seems that (o
remain solvent and become a successful
capitalist, you musi make some minor
program changes.

The conversion you ask for would cost
maore than the original computer, according
to our sources. So it does not seem practical
at this point.

4

Dear Editor:

. .. Widget—NEAT PROGRAM! No
mistakes, but it is impossible {mathemati-
cally) to ever progress from those starting
conditions. You can only minimize your
losses to last as long as possible before
bankruptcy overtakes you. The game is a
good challenge if you start with rwo plants
(or other assets like inventory) . . .

Game of Life. You printed a program
from Thirty Programs for the Sinclair ZX80
IK. The book Addendum Page makes
corrections in lines 450 and 460 (See
Glitchoidz Report). However, even with
these corrections the program does not
Sfollow the logic rules although it does
run. To change the program so it follows
the rules make the following corrections:

320 IF ((I+1/7T) AND 7)=0 THEN GO
TO 350

30 IF ((I-1+(1-1)/7) AND 7)=0 THEN
GO TO 360

360 FOR J=6TOB8

400 IF (J*R=-8 OR I*R=6) AND ({I-1+
(I-1)/7) AND 7)=0 THEN GO TO
420

405 IF (J*R=8 OR I*R=-6) AND ((1-+1
/T) AND Ty=0 THEN GO TO 420

If you do this and the publisher’s changes
in 450 and 460, the program will follow
the rules in the article.

Walter W, Bacon
RR 7, Box 68
Hopewell Junction, NY 12533

Ed.—For those who cannot abide by
the decisions of the free market place
and face bankruptcy fearlessly, a bit of
Widgeteconomics can be performed by
finkering with the program to improve
the market position. According to my
program advisers, increase P in line 10
and/or change line 640 to read LET M=M-
20#P-15. You can also try a number lower
than 15.

Artillery and Black Hole

Dear Editor:

The Artillery game depletes my 1K
of RAM after about 5 or 6 turns. After
searching through the listing for a mistake
in my typing, | came up with the following
changes:

Omit: Line 140

Change line 320 to: 320 GO SUB 150
Add: 80 DIM Si21)

The program should now work without
any difficulties.

Also, the program Black Hole by Bill
Eckel will run in 1K of RAM if the following
changes are made:

Omit 5, 14, 16. 18, 30, 32, 34, 1025, 1130 &
1140

100 LET B=5+1-2%(5/2)+2%(5/6)
+4*%(5/8)-3%5/9)

110 GO SUB 980

120 LET B=5+232%S5/2)+(5/3)+3*
(S/4)-4*%(S/5)+ 5*(5/6)-5%(5/T)
+2%(8/8)-3*(5/9)

130 GO SUB 980

140 LET B=5+4-6%(5/2)+5%*5/3)-
(S/4)+5%5/5)-6*(5/6)+T*(5/7)
-2*(5/8)+2%(5/9)

150 GO SUB 980

160 LET B=0

170 IF §=5THEN LET B=8§

180 GO SUB 980

960 GO TO 25

1075 IF X(1+5)=0 THEN RETURN

Or, as David Lubar might want to write
it:

100 LET B=-2%{5=1)-(5=2)-2%(5=3)
-(5=4)-2%(5=5-3%5=06)-4*(5=T7)
-7%(5=8)-5*(5=9)

120 LET B=-4*5=1)-3%(5=2)-5*
(S=3)-TH5=4)-4%5=5)-9*(5=6)
-5%(S=T)-9* S=8)-6%(5=9)

140 LET B=5*5=1)-6*5=3)-6*
(S=51-8*5=T7)-8%5=9)

Replace lines 160 and 170 with:

160 LET B=-8*5=5)

Lines 100,130,150, and 180 remain as

in the first change.

As you can see, David Lubar’s article
about Boolean operations has been used
to a great extent in shortening Black
Hole.

Joe Dell'Orfanio
122 Weaver St.
Greenwich, CT (06830

SYNC Magazine

—————

Dear Editor:

Bill Eckel's Black Hole (SYNC 3:8) can
be compacted to fit in less than 1K of
memory. thus making it fit neatly into an
unexpanded ZX-80. The following con-
versions should work:

Changes: 20 LET X(5)= -1

44 IF X(I) THEN PRINT

46 IF NOT X(I) THEN
PRINT 0;

78 1IFNOT X(S) THEN GO
TO 70

980 1FNOT X(B) THEN GO
TO 986

983 1F X(B) THEN LET
X(B)=0

986 LET X(B)= -1

1010 IF X{I) THEN GO TO
1050

1050 IF X(5) THEN RETURN

1070 IF NOT Xil) THEN
RETURN

1100 IF NOT Xil) THEN
RETURN

1120 PRINT “YOU WIN"

I used the first conversion as it was my
own, and I hadn’t yet read Mr. Lubar’s
article. I have found no problems in the
playing of Black Hole after the conversion
was made. | have also found that any one
of the possible solutions is actually two
solutions... just reverse the order. Happy
Star-Shooting.

Mark Kleinman
4228-D FCN
McGuire AFB, NJ 08641

Basic Computer Games
on the ZX80

Dear Editor:

Please tell me if the programs in Basic
Computer Games and More Basic Com-
puter Games work on the Sinclair ZX80
and VIC-1001.

A. Samereu

4946 Dornal

Montreal, Quebec HIW-1W?2
Canada

Ed. — These programs will not work directly
on the ZX80 for two reasons. First, they
must be translated, that is, adapted to the
specific form of Basic that the Z X80 uses.
This is not difficult after you get some
experience in programming and after you
put SYNC articles to work for vou. Second,

July/August 1981

many programs even when translated will
reguire more than 1K RAM. So before
you enter a program, you can give it a
rough check for size by comparing it to a
1K program printed in SYNC. If you want
to be more precise, you can count the
bytes in the translated program. The line
entry requires 2 bytes; each keystroke in
the line content counts as one; the NEW-
LINE entry adds one more.

LED Fringe Benefit

Dear Editor:

I added the LEDs to monitor tape input
as described by Cecil Bridges in the initial
issue of SYNC. An additional advantage
of this modification that he did not mention
is that it eliminates the need to disconnect
the ear cable on the recorder in order to
position a tape for program loading (if
you have a tape recorder with a digital
counter}). Simply advance the tape to the
appropriate number on the counter, type
LOAD, start the recorder, and when the
red light goes out type NEWLINE.

William H. Caskey
1112 Pake Lane
Morris, MN 56267

Memory Mapping

Dear Editor:

The one thing I'd really like for your
editors to address is how we get information
into the ZXB0 from the outside world

using memory mapped input. I'm afraid,

to use the same approach for input that 1
used for output (i.e., writing to a nonexistent
ROM address) because when I PEEK(4097)
I get 64 decimal. This implies to me that
somebody is on the data bus (at least D5).
I'm afraid to put anything on the data bus
for fear of having two chips on the bus at
the same time and damaging someone,
Of course I don't have a circuit schematic
with the ZX80 so I can't really decide
whether or not the risk exists or whether
D35 just appears high because one tristate
doesn’t clamp all the way. Can you sell
me a schematic for the ZX807

William Byrne
2 Cypress Dr.
Wichita, KS 67206

Ed. — A suggestion from David Ornstein:
Put the memory map input port in any
address between 12 and 16K,

Schematics of the ZX80 are available
at no charge from Sinclair Research
Limited, 50 Staniford St.. Boston, MA
02114,

SYNC Coverage

Dear Editor:

- . . I hope that all the new products
coming out will not affect your policy of
sticking to the basic machine. Anyone
with new ROM can, | think, easily translate
old ROM programs, whilst the converse
is not always possible. | hope that you
could follow the ideas of Interface the
National ZX80 Users Club magazine over
here and produce mainly 1K programs
with an occasional 4K or more.

One thing I would like to see in SYNC
is more attention given to PEEK, POKE,
and USR. Most people can devise a
program just using Basic, but if you have
no knowledge of machine code or the Z-
80, such as Ken MacDonald's EXCEL-
LENT space intruders program advertised
p. 19 |issue [], are unintelligible—all I
know is that they work . . .

I hope the ZX80. . . catches on over in
the States as well as it has here; if the
example set by the TRS-80, PET and
APFLE is anything to go by then we're in
for a good deal of excellent American
software —especially from Creative Com-
puting!

Richard J. Barton
12 Mill Lane
Camblesforth,
Selby

North Yorks
YO8 8HW

UK.

Ed.— While the scope of SYNC must grow
to meet the needs of our readers as they
also grow in knowledge of the machine
and expand their equipment, we will not
leave behind the people with the basic
ZX80 nor those people who are new to
computing. Again, authors take note.
PEEK, POKE, and USR are among the
most frequently requested topics for
articles.

%'

Currently Technical Services Manager,

David Ornstein has been with Sinclair since the
opening of its U.S. office. He has been involved with
Sinclair’s technical hotline, technical writing, and
machine servicing. His primary interests are in

the areas of software and hardware R & D, and

sysfem integration.

His secondary interests are reading (Frank Herbert),

listening (Pink Flovd) and sharing

SYNCSUMs

One day, | was typing a system-check
program into our computer. | took four
and a halfl hours to enter the program. As
I was about to run it, an awful thought
occurred to me: What if 1 had made an
error in my typing? Since the program
had access to all parts of the system, a
typo could be fatal. I decided to check it
against the listing . . . once. Then 1 ran it
The end result—that [overwrote the sys-
tem disk—is irrelevant. But what is
important is this: If the program listing
had included the program’s SYNCSUM, 1
would have known better,

What is a SYNCSUM? A SYNCSUM is
what is known as a checksum, or, rather,
a modified version of a checksum. The
checksum is a method of checking to see
whether a program has been entered cor-
rectly by letting the computer add up all
the bytes in a program. To use this error-
checking method, you simply compare
the checksum of the original program
with the checksum of the program you
have entered, If the numbers are not the
same, you have made an error in entering
the program. If the numbers are the
same, the chances are about 90% that
you have entered the program correctly.

In the ZX80, a certain area of memaory
is used to hold the current program. This
area begins where the area for system
variables ends. For the 4K ROM., this
address is 16424 decimal (4028 hex); for
the 8K ROM, 16509 decimal (407D hex).
A system variable points to the first byte
after the program area. The 4K and 8K
ROMs format memory differently. In a
4K system, therefore, this variable is
VARS (which points to the first byte of
the VARiable Storage area), but in an 8K
system, it is D-FILE (which points to the
first byte in the Display FILE). These
variables are stored at locations 16392
(4K) and 16396 (8K), respectively.

6

RAErCEALIOns

David Ornstein

The assembly language program,
shown in listing 1, is used to generate the
current program’s SYNCSUM on a 4K
system. The corresponding program for
an 8K system is shown in listing 2. You
will notice that it is not adding all the
bytes, but XORing them together. This is
the modification of the standard check-
sum method referred to earlier. You will
end up with a number which is less than
256.

To use the SYNCSUM program on a
Basic program requires that the SYNC-
SUM program be resident (i.e.. in mem-
ory) all the time. This can be accom-
plished first, by reserving some memory

(RAM) such that Basic will not tamper
with it, and. second, by loading the
SYNCSUM routine into this area. List-
ings 3 and 5 are programs 1o reserve the
required amount of memory, 27 bytes,
They should be used on 8K and 4K sys-
tems respectively. Listings 4 and 6 are
programs to load the machine language
SYNCSUM generation program into this
previously reserved memory space.
These programs should be run at the
beginning of any session of computer use
when you may want to know a programs’s
SYNCSUM. From the time they are run
until the computer is turned off, obtain-
ing the SYNCSUM is simple: type

Lahel Hex Assembly Code Comments
4KSSUM: 212840 LD HL,16424 :HL=Start
ED5B0840 LD DE,(VARS) :DE=Stop
0600 LD B.0OO :B=00 (Result Accumulator)
LOOP: 7C LD AH :If HL=DE then XORNXT
BA CPD
2008 JR NZ . XORNXT
D LD AL
BB CPE
2004 JR NZ XORNXT
DONE: selse done
68 LD L.B Jlow byte returned is SYNCSUM
2600 LD H,00 high byte is (00
cy RET
XORNXT: :XOR the next byte into the
:Result Accumulator.
78 LD AB :Get current RA
AE XOR (HL) :XOR it in
47 LD B.A ;put back result into RA
23 INC HL :bump pointer
I8EE JR LOOP :g0 back for next byte
Listing 1.

SYNC Magazine

PRINT USR(x), where x = your memory
size (for example, 1024, 2048, 16384) - 27
+ 16384, followed by NEWLINE as always.
Thus x will equal 17381 for 1K, 18405 for
2K, and 32741 for 16K.

Enter (or LOAD) the RSV program
(listing 3 or 5) and then RUN and NEW-
LINE. The 4K program will prompt you
for “MEMORY SIZE?" Enter your memory
size (1024, 2048, 16384) and NEWLINE.
Next enter (or on 8K systems only, LOAD)
the LDR program (listing 4 or 6). On a 4K
system LOADing the LDR program after
using RSV will cancel the effects of running
the RSV program.

Press RUN and NEWLINE. Again the
4K program will prompt you for "MEM-
ORY SIZE?" Again enter it and NEWLINE.
The 4K *“MEMORY SIZE?" prompt will
return to the screen, but hit NEWLINE
and you will return to program mode.
The SYNCSUM routine is now resident.

On an 8K system, type NEW and NEW-
LINE. On 4K systems. as noted earlier,
using the NEW command will delete the
SYNCSUM routine from memory. There-
fore, to clear out the 4K LDR program,
you must delete each line individually.
To delete, e.g., line 10, type 10 and
NEWLINE. Repeat until the whole program
is gone,

You can now begin entering your pro-
gram. Once again, if you have an 8K
system, you can LOAD your program.
With 4K you must type in each line
individually, as LOADing will destroy the
SYNCSUM routine. You can now obtain
the SYNCSUM at any point along the
way via the PRINT USR (x) command
(see above for the size of x). When you
have finished and you are sure your
program is correct, call for the SYNCSUM
for the entire program. Write it down at

Label Hex Assembly Code Commenis
SKSSUM: 217040 LD HL.16509 :HL=Start
ED5B1240 LD DE,(D-FILE) ;DE=Stop
0600 LD B.0O :B=00 (Result Accumulator)
LOOP: 7C LD A H :If HL#DE then XORNXT
BA CPD
2008 JR NZ XORNXT
7D LD AL
BB CPE
2004 JR NZ, XORNXT
DONE: :else done
68 LD CB :low byte returned is SYNCSUM
0600 LD B.OO :high byte is (00
c9 RET
XORNXT: ;XOR the next byte into the
:Result Accumulator.
78 LD AB :Get current RA
AE XOR (HL) :XOR it in
47 LD B,A :put back result into RA
23 INC HL :bump pointer
18EE JR LOOP ;20 back for next byte
Listing 2.

end of your program for future reference.
Be sure to include it after the end of any
programs submitted to SYNC.

This method will also work just as well
with the ZX81 since it uses the 8K ROM.

I hope this idea is as helpful to ZX80
owners as it is to the rest of the computer
world.

Until next issue, same relativistic time
period, same non-euclidian universe. My

53 LET R=27

10 PRINT "MEMORY SIZE ?"

20 INPUT M

30 LET M=M-R+16384
35 POKE 16999,33

40 POKE 17000,M

50 POKE 17001,M/256
60 POKE 17002,195

10 LET R=27 [the number of bytes to reserve] 70 POKE 17003,107
20 LET RAMTOP=PEEK(16388)+PEEK(16389)#256-R 80 POKE 17004,2
30 POKE 16388,RAMTOP-256%INT (RAMTOP/256) 90 LET K=USR(16999)
40 POKE 16389, INT(RAMTOP/256)
50 NEW
Listing 5: 4K ROM RSV
Listing 3: 8K ROM RSV,
10 REM 212840ED5B084006007CBEA20087DBEB
2004682600C978BAE4T2318EE
15 LET R=27
10 REM Z17040ED5B124006007CBA20087DBE 20 PRINT "MEMORY SIZE ?"
2004680600C978AE4T2318EE 30 INPUT M
20 LET RT=PEEK(16388)4PEEK(16389)*256 40 LET RT=M-R+16384
30 FOR B=D TO 26 50 FOR B=0 TD 26
40 LET X=((PEEK(1650945+B*2)=28)*16+(PEEK 60 LET X=((PEEK(16424+3+B*2)-28)#*16+(PEEK

(16509+5+R%24+1)-28))
50 POKE RT+B,X
60 NEXT B

(16424+3+B*2+1)-28))

70 POKE RT+B,X

80 NEXT B

Listing 4: 8K ROM LDR

July/August 1981

Listing 6: 4K ROM LDR

e ee——

Machine Code Keyboard Scanning Program

Visions danced in my head! Visions of
a completely controlled Amateur Radio
station.

Imagine! A microprocessor-controlled
system that would translate a Morse Code
message and display it on the monitor,
translate a message into Morse Code and
transmit it at a pre-determined code speed,
control a rotor to allow a beam to follow
the Oscar satellites (satellites developed
by an international Amateur Radio group
for its exclusive use), and automatically
log all the stations that [had communica-
tion with. The possibilities are endless.

1 explained to my wife that a personal
computer could do more than play games.
{(How else was | to persuade her that a
computer was a necessary purchase?) |
listed all the useful functions. At first she
listened to my pipedreams in disbelief,
but as my plans grew more detailed and I
gave rational explanations of how my ideas
could be accomplished, she became inter-
ested, then impressed.

My immediate interest in a computer
was to develop a Morse Code transmit-
receive converter. Then, when more
memory became available, it would grow
into the self-contained control system |
had always envisioned.

My MicroAce 2K kit arrived, and it
took less than a week to assemble. Finally
I was ready to program a task. But wait, a
good functional check of the system was
in order. Why not program a few games?
Bombardment is fun, and Depth Charge
adds even more challenge. The new issue
of S¥YNC contains an enjoyable behind
the Castle Doors game, and I have got to
try the “Draw a Picture” program. Two
months later enough games had been
played on the system to functionally check
an IBM 370.

“Okay,"” My wife said. “You were right.
Personal computers are useful. I mean, if
you're ever stuck in a dungeon, at least
you'd know which door to choose.”

I chuckled at this but realized she had
a point. Computer games can be a trap,

Bernard Puerzer, 3209 So. Kinnickinnic Awve.,
Milwaukee. W1 53207,

8

My initial project was being ignored. It
was time [got busy.

I felt that the Morse Code transmitter
portion of my project would be the easiest
since I would need additional circuitry if
I wanted to receive Morse Code and
translate it. The computer, as it stands, is
not equipped to convert the output from
the receiver into a digital waveform. Due
to obvious memory constraints, the pro-
gram has to be done in machine code. My
plan was to read the keyboard input, find
the input by consulting a look-up table,
then convert it to a Morse Code type
digital output which would clock a relay
(on the transmitter). A software keyboard
buffer is needed to allow the operation to
‘type ahead’ of the transmitted output.
and a driver subroutine is needed to clock
the relay at the desired code speed. The
typed input should also be displayed on
the monitor. This can be accomplished
within the MicroAce 2K memory if the
code is written properly.

The first stumbling block came when |
tried to read the keyboard input, using
machine language code.

The Problem

To read the input in Basic. an input
statement is used, but the INPUT command
looks for either a number or a letter and
cannot be used to accept both randomly.
I could not use it for my application, and
other programs may have a similar problem.
To read a key on the keyboard using one
Basic routine would use up too much
memory, and I doubt that it is even possible.
Therefore, it is machine code all the way!

Even a person with no interest in Morse
Code could find the keyboard input routine
interesting since it has many other appli-
cations. If nothing else, it provides a better
understanding of the Sinclair/MicroAce
hardware.

The Solution

I began by studying the schematic to
understand how the keyboard is read by
the software. As it turns out, both the
Sinclair and MicroAce use the same
technigue. The keys are wired in a matrix

Bernard Puerzer

configuration, and the rows of the matrix
are connected to the Z-80 address lines
AB-A15, while the columns are connected
to the Z-80 through a latch that is energized
by the KEYBD signal (active whenever
an 1/0 instruction is executed). When a
key is depressed, the address line for the
row of the key and the data line for the
column of the key are connected. If the
address line is low at that instant, the data
line will be pulled low. Therefore, the Z-
80 will analyze the data lines after a known
address is issued with an [/O instruction
to determine if a specific key was
depressed.

If all the address lines A8-A15 were
low, the Z-80 could not tell which row
caused the data lines to change. So to
scan the keyboard, each 1/0 instruction
must have only one address line low at a
time to determine the exact key that was
depressed.

The Machine Code Monitor

Understanding the technique, I pro-
ceeded to write the machine code to
decode the keyboard. Although I tried to
keep the code as efficient as possible, it is
still almost 100 bytes of instructions. Typing
in this many POKEs did not seem much
of a challenge so 1 wrote the following
program in Basic:

5LET MARK=0
10 PRINT “ENTER STARTING
ADDRESS”

20 INPUT A

30 PRINT A:*(1sp.) "; PEEK (A)
40 INPUT B

60 IFB 255 THEN GO TO 130
70 POKE A B

80 PRINT A; “ (1 sp.) "; PEEK (A)
90 LET MARK=MARK +1
100 IF MARK 10 THEN GO TO 110
105 CLS
107 LET MARK =0
109 PRINT A; “ (1sp.) "; PEEK (A)
110 LET A = A+1
120 GO TO 30
130 STOP

Figure 1.

SYNC Magazine

This program allows easy loading of
sequential memory locations. When it
begins, it asks for the starting address,
entered in decimal. The program then
displays the address and its current memory
contents.

Enter the new contents in decimal,
followed by a return. The program displays
the new contents and then automatically
increments to the next location, displaying
the address and current contents. Continue
entering your machine code program.
When that is completed, enter a number
larger than 225 to stop the monitor
program.

I am sure you will find this method

I have not yet devised a clean way of
saving long machine code programs on a
cassette tape, but I did find a technique
that works. If you set up a few DIM
statements in the beginning of the monitor
program to dimension a few arrays with
variables not used in the program, the
system will ‘reserve’ memory locations for
these arrays. The machine code can now
be loaded, and, when the SAVE command
is executed, the Basic program, including
the arrays, will be saved. With some luck,
the machine code program will reside in
the ‘reserved’ space and be saved. When
the program is downloaded from tape and
re-run, be sure to use the GO TO and not
the RUN instruction to begin the program,
or the array space will be erased.

will loop between addresses 17405-17412
until a key is depressed. The INA (C)
instruction will place the contents of the
B Register onto the address lines AB-A15
and the contents of the C Register onto
address lines AO-A7. Therefore, by rotating
a zero through the B Register and keeping
the C Register set to zero, the keyboard
can be scanned. When the data lines
change, we know a key was depressed.
Now we must decode the findings.

When a key is depressed, the accumu-
lator and the B Register are analyzed to
determine which key was depressed. Figure
2 shows the A and B Register contents for
each key.

Accumulator Contents

much easier 1o use than entering a POKE ~ Keyboard Input Program 30 2% 27 23 15
instruction for every machine code instruc- The program, as written, resides in w254 | shift Z X C ¥
tion to be loaded. Since so much machine memory locations 17401-17497. If this is E aey | A S D F G
code is written in hexidecimal notations not convenient on your system, the pro- E 95 0 W E R T
in the ‘real world,’ a good modification to gram can be re-located easily enough by] " . 5
this monitor would be to allow the memory changing a few of the instructions that o 71 . 3 4 2
contents to be loaded by entering the reference memory. L 239 |0 9 B 7 &
number in hex notation. Since this would When the program is run, the code of :Z 223 | P 0 1 U Y
require entering the numbers (0-9) and the depressed key is placed in memory =y 191 | new L K] H
letters (A-F), a keyboard input program location 17400, Therefore, a PRINT CHRS = line
such as the one to be described would be (PEEK(17400)) command will display the " } =
required. Now that we have an easy way key depressed on the keyboard. Other 127 | space + M N B
to enter machine code on our Sinclair/ uses of this code can be devised.
MicroAce the rest is a piece of cake. As the program is being executed, it Fliire 3.
LAMO-LEM PRESENTS: |
FOUR COMPUTER GAMES FOR THE ZX80 AND MICROACE.
CRAPS ROULETTE
BET THE PASS LINE (WITH ODDS), HARDWAYS, THE FIELD, nquMBERS FLASH PAST UNTIL A WINNER COMES UP. BET
BIGE &8, ETC., (WITH RULES). USESLASVEGAS ODDS. THE NUMBERS, ODD/EVEN, RED/BLACK, O, 00, COLUMNS,
DOZENS, ETC...
BLACKJACK SLOT MACHINE
USES FOUR DECKS. SHUFFLES AUTOMATICALLY. PLAY pyLL THE NE), AND WATCH T
AGAINST THE DEALER. BLACKJACK WINS 1%-1. GRUB- cLick |NTSA:|?:§E{.NE:S%HT)ED PA‘I"OFI::S. erEHHEEIEE
STAKE KEY WHEN YOU GO BROKE! GRAPHICS.
ALL FOUR GAMES ON ONE CASSETTE, WITH MANUAL, MINIATURE LAYOUTS, CHIPS, AND FULL COLOR
KEYBOARD OVERLAYS. FOR ENTERTAINMENT ONLY. REQUIRES 4K BASIC AND 1K MEMORY OR MORE.
ALSO FROM LAMO-LEM: THE CHEST OF CLASSICS. FOUR CLASSIC
COMPUTER GAMES. LIFE, LUNAR LANDER, MINDMASTER, AND K-TREK 9 s
(WITH PHASORS, SCANNERS, VIEW SCREEN, & WARP DRIVE). ®
CASSETTE, MANUAL, CHARTS, OVERLAYS, & MORE. 4K ROM, 1K RAM, $9.95.
SEND FOR OUR CATALOG OF ZX80, MICROACE, APPLE, AND T 57, NO POSTAGE.
58, & 59 PRODUCTS, INCLUDING FREE ZXB0/M.ACE CODING SHEETS. NO HANDLING.
NO SALES TAX.
LAMO-LEM LABS "
\ CODE 204, BOX 2382, LA JOLLA, CA 92038 A
' . (7 T T T T | 3t Oy . Y W7
W) B (W@
| PACLLALLN WAL .
9

July/August 1981

The program now checks each bit of
the accumulator to determine which one
is low. Register C is incremented once for
each bit tested. Then each bit of Register
B is checked to determine the one that is
low. Register C is incremented by five for
each bit tested.

The contents of Register C are then
used as an offset for the look-up table
found at addresses 17458-17497. The look-
up table value is placed in location 17400
and the subroutine returns to the program
that called it.

It should be noted that this program

case.’ Code could be added to look for
the SHIFT key code. If detected, the
program could then add an offset to
Register C and jump back to look for
another key to be depressed. The look-up
table must then be expanded to include
all the SHIFT characters.

Conclusion

Although the code may be difficult to
follow at first, the program is really doing
a lot in 97 bytes of memory.

By the way, this program is fast! If you
use it as a subroutine in a Basic program,

the USR instructions, or the keyboard
input program will decode the NEWLINE
key that you depress after the RUN
instruction —unless, of course, you release
it in a matter of milliseconds. A good
trick is to include a FOR loop of about 10
just before the USR call instruction to
give you enough time to release the
NEWLINE key.

Now that I can read the keyboard, it is
just a small matter of time before hitting
the ham bands. But first, maybe I had
better functionally check the system by
running a few quick games of Acey

reads the total keyboard but only ‘lower- be sure enough Basic instructions precede Ducey. =
17449 45 55 low
17450 68 104 high
Keyboard Scanning Program 17451 1 335 LD A.(IX+d)
Address Decimal Octal Comments 17452 126 176 d
17453 X X don't care
17401 14 16 LDCO 17454 50 062 LD 17400, A
17402 0 0 17455 248 370 low order
17403 6 [LDB, 254 17457 201 in high order
17404 254 36
17405 203 J13 RLCB 17456 67 103 high order
17406 0 0 17457 201 RY§ RET
17407 237 355 INA, (c) 17458 1 table starts
17408 120 170 17459 63
17409 254 376 CP A, 17460 61
17410 31 17461 40
17411 40 50 IR Z, 17462 59
17412 248 370 (-8) 2's compliment 17463 38
17413 221 335 LD IX, Table addr -6(17452) 17464 56
17414 a3 41 17465 41
17415 44 54 17466 43
17416 68 104 17467 44
17417 95 137 LD E.A 17468 54
17418 0 0 NOP | For future 17469 &0
17419 0 0 NOP _| reference 17470 42
17420 14 16 LDC.1 17471 55
17421 1 | 17472 57
17422 22 26 LD DO 17473 29
17423 0 0 17474 30
17424 62 76 LDA, 00111011 17475 31
17425 59 73 17476 32
17426 198 306 ADD A 000010000 17476 32
17427 8 10 17477 33
17428 50 62 LD{17437),A 17478 28
17429 29 a5 low 17479 37
17430 68 104 high 17480 36
17431 103 147 LD H,A H is holder 17481 35
17432 122 172 LDA.D 17482 M
17433 129 201 ADD A, C 17483 53
17434 87 127 LDD. A 17484 52
17435 124 174 LDAH 17485 46
17436 203 313 BITE 17486 58
17437 X X Don't care 17487 62
17438 a2 040 JR NZ, cont. 17488 231
17439 242 362 -14 17489 49
17440 88 130 LDE,B 17490 48
17441 203 313 BITC,2 17491 47
17442 51 121 Test for a five 17492 45
17443 14 016 LDC.5 17493 0
17444 5 5 17494 155
17445 40 050 JRZ, back 17495 50
17446 233 351 -23 17496 51
17447 122 172 LDAD 17497 19
17448 S0 062 LD(17453).A End of Program.

10

SYNC Magazine

The TLS Function

Rolf L. Miller

Do not overlook the use of the TLS function when you are
creating programs. It is a very useful item. This function
allows the ZX80 user to process a string in much the same
way that other computers READ DATA statements.

To see how it works in this fashion, consider first the
CODE(string) function. It will “read” and give the code of the
first character in"a string. Thus, if AS="ABC", CODE(AS)
would result in 38, the code for A.

Now add the TLS function: LET AS=TLS(AS). The TLS
function strips the first character from the string— A in this
case—leaving “BC™ in AS. [f CODE(AS$) is now reintroduced,
it will “read™ B and give its code, 39,

Clearly, an entire string can be “read” in this way. So. for
example, say you have a stock portfolio of five stocks, namely:
100 shares of ABC, 200 of XYZ, 300 Q, 200 KLMN, and 100
ZX. The following program will print the number of shares in
100s, the stock symbol, ask for the last (current) price per 100
shares (stock prices are quoted per share so that 5 1/4 would
be input as 525}, and, then, after all five stocks have been
processed, print the total value of the portfolio.

Rolf L. Miller, 492 §. Anacapa, Ventura, CA 93001,

“..dr's a new game called ‘Artillery’! Pretty Realistic, Huk...?"

July/August 18981

10 LET V=0

20 LET P§=".1 ABC.2 XYZ.3 Q.2 KLMN.1 ZX."

JO IF CODE(P$)=27 THEN LET P=CODE(TLS(P$))-28

40 PRINT CHRS(CODE(P3));

50 LET PS=TLS(PS)

60 IF P$="" THEN GOTO 130

70 IF NOT CODE(P$)=27 THEN GOTO 40

80 PRINT, * INPUT LAST PER 100"

90 INPUT L —use 100 for test RUN
100 LET V=V +(L*P)
110 CLS
120 GOTO 30
130 CLS
140 PRINT “PORTFOLIO VALUE= ";V —test RUN should

give 900

In line 20 it is noted that the code for . is 27 and acts as a
flag to control the loop routine following.

In line 30, subtracting 28 from the code for 1, 2, 3, etc.
resultsin 1, 2, 3, ete. since the code for 1 is 29, for 2 is 30, etc.
and thus sets P at the proper value. Note here that the TLS
function is used to “look™ one character ahead in the string
without actually stripping the string.

To see the value of the TLS function here, try writing a
program without using TLS to accomplish the same results as
this program and look at the length and memory difference.

Another example of using TLS is seen in this version of
Mastermind. Further applications will be left to your imagina-
tion.

Mastermind

S REM COPYRIGHT 1981 BY ROLF L. MILLER

10 LEX X=15

20 LET A=9999+RND(227&8)

30 LET A%=STR% (A)

40 LET Bi%=f%

S0 IF X=0 THEN GDTO 190

&0 LET X=X-1

7O LET Z-0

BO FRINT "5 ND.BUESS "3

F0 INFUT G%

100 IF G$=A% THEN GOTO 220

1190 PRINT G#j

120 IF B$="" THEM GOTO 170

130 IF CODE(G%)=CODE(B%) THEM LET ZI=I+1
140 LET G#=TL% (G$)

150 LET BS=TL®{(BE)

160 BOTO 120
170 PRINT '
180 GOTO 40
190 PRINT
200 PRINT "YOU LOSE THE MO. WAS ":A%
210 STOP

"sI3" RIGHT (“3Xi™»n (

)
(]
L)

220 PRINT
230 FRINT A%
240 FPRINT

250 PRINT ,“YOU WIN®

Frogram Motes:

110 displays number guessed.
170 displays number of digits
in proper place of seguence

and number of turnes left
in).

11

A Subroutine for Serial Data Output

Trying to write machine code sub-
routines for my ZX80 presented some
problems. This article details the problems
with their solutions, and shows a simple
subroutine to output data serially by bit
to an asynchronous peripheral.

The first problem was to find a space in
RAM to write my subroutine, The obvious
space was the SPARE area shown in
appendix 11 of the ZX80 Manual (See
Figure 1). It is easy to find the start of the
spare area by PEEKing into locations 16400
and 16401 which point to the display file
end “DF-END™ (ZX80 Manual, appendix
I1I}). But the problem is that the SPARE
area is sandwiched between two dynamic
areas. The VARIABLES, WKG SPACE,
and DISPLAY FILE may expand pushing
DF-END closer to the top of stack and
overwriting my routine. The stack itself
may get bigger and overwrites the
routine.

A second problem came up when I
tried to save the program on cassette. My
machine code subroutine was not saved
simply because the SAVE statement causes
the ZXB0 to save on cassette from the
start of RAM up to E-LINE only (Figure
1).

A technique around these problems was
to include my subroutine in a REMark
statement and thus allocate a fixed area
of RAM for it. 1 was able to save it on
cassette, too.

S. Onsy

S. Onsy. P.O. Box 2952 SAFAT, Kuwait, State of
Kuwait, Arabian Gulf,

12

SYS VARS
RMBOT
PROGRAM
VARS
VARIABLES
E-LINE
WKG SPACE
D-FILE
DISPLAY FILE
DF-END
SPARE
SP
STACK

Figure 1. ZX80 Memory Map.

I used the following procedure to input
the subroutine:

1. Calculate the length, in bytes, of the
subroutine.

2. Enter a REM statement at line 1,
Line 1 is used to insure that the REM

statement will always be the first one in
the program and that it will have a fixed
address in RAM. Using numerics helped
counting the number of reserved bytes,
The REM statement appeared as follows:

0001 REM 0123456789012345678901 23456
7890 etc.

3. Enter the subroutine starting at address
16428,

Restrictions

While writing the subroutine I noticed
the following:

1. Never use the code/data of 76 hex
since it is an end of statement to the
ZX80. OP code 76 hex is not used anyway
since it is a HALT command to the Z-80
microprocessor.

2. Since codes 40 to 7F hex cause
problems with the ZX80 LIST command
if they are included in the REM statement,
1 avoided displaying the REM statement.
This was achieved by adding dummy
statements until it disappeared from the
screen and then deleting the dummy state-
menits.

Applications

The listed Z-80 subroutine was used to
output data asynchronously to a serial
printer at 300 baud. The output was taken
from IC-11 pin 11 (Figure 2). The signal is
at TTL level, and therefore the interface
circuitry in the printer was bypassed (Figure
3). The baud rate can be changed by
simply changing the bit time loop.

SYNC Magazine

Figure 2. Serial O/P from 1C11.

From ZX80 IC11-11

1/P data
—_|), o 20
(R§232 1488 (typical)

or CCITT

Figure 3. Typical I/F circuit.

The Basic program shown uses the above
subroutine to LIST itself on the printer
from the PROGRAM area in RAM. The
program is slow and not practical to use.
However, it demonstrates some techniques
for the ZXB0. 1 have included enough
REMarks to make the program self-
explanatory. Since the program uses a
flow similar to the ZX80 LIST command,
it will be practical and much faster if the
program is rewritten in the Z-80 code
making use of the ROM subroutines. In
the following discussion all addresses,
codes, and data are in hex. The registers
mentioned are the Z-80 internal registers.

The heart of the ZX80 LIST statement
is a call to 04F7 which edits statement
lines from the PROGRAM area in RAM
into the display file. Register HL' points
at the statement being edited while the
resulting statement is stored at the location
pointed at by DF-END. The 04F7 sub-
routine further calls two subroutines:

06BF: Translates statement numbers
from binary to decimal ex-
pressed in the ZX80.

Changes the commands and
operators (i.e.. codes > D3) to
their proper mnemonics.

0684

July/August 1981

The following flow chart shows how a
printer LIST routine that uses the ROM
subroutines may look:

ENTRY

Preset Z-80 registers.

Check BREAK key,

BREAK?

CALL 06BF: Get
statement number.

Next character falls
between 40 and 7F?

Character >CO

CALL 0584: Get

mnNemonics.

CALL 0559: Store
character.

Translate statement from
ZXB0 code to ASCII and
print,

End of Program area?

EXIT

NEW ENGLAND
SOFTWARE

7 GAMES FOR THE ZX80
AND MICROACE ON CASSETTE
MASTERMIND
DOUBLEMIND
SLOT MACHINE
CRAPS
TICTAC TOE
SUB RESCUE
WHITE HOT NUMBER

ALL RUN IN 1K RAM

New England Software
Box 691
Hyannis, MA. 02601

$1 1 H 00 ORDERS MAILED

First Class (U.5.A.)

£, 6.00 Airmail (Engiand)

YOUR BEST VALUE IN

QUALITY SOFTWARE l

Are you in
SYNC?

If not, you should be. We would like any
programs, translations of existing pro-
grams, games or tips which you have to
pass on to fellow Sinclair ZX-80 or Micro-
Ace owners. Articles are much more
lively if accompained by photos (black
and white), diagrams, and illustrations. If
you do not have an output printer, please
type program listings and carefully check
them against the listing on the screen.
Sample runs should be included with pro-
grams rather than just a description of
what the program does. Articles should be
typed, double space. Your name and
address, with phone number should be on
first page: all other pages should be num-
bered. All submissions should include re-
turn postage. Payment ranges from $15 to
$40 per printed page.

Please send all submissions to:

SYNC
39 E. Hanover Avenue
Morris Plains, New Jersey 07950

13

LABEL op OPERAND ADR CODE |
CHRCTR PUSH HL SAVE HL 402C E5
LD H.IY+11) GET ADDRESS OF 402D FD 66 11
LD L.(IY+10) DF-END AND 4030 FD 6E 10
INC HL INCREMENT 4033 23
INC HL TWICE 4034 23
BR (HL) GET NEXT BIT 4035 CBIE
POP (HL) RESTORE HL 4037 El
DINZ BITTEST IF NOT LAST BIT 4038 100C
GO TESTIT
STOPBIT [N ALIFE) OTHERWISE OUT 403A DBFE
JR BITTIME A STOP BIT AND 403C 1811
RETURN
ENTRY LD HL.402C INITIALIZE HL 403E 21 2C3F 24
SCF AND PREPARE FOR 4042 0609
CCF START BIT 4044 37
BITTEST PUSH HL SET RET ADDRESS 4045 35
IR NC.SPACE IF ZERO SPACE 4046 3004
. MARK IN AFE OTHERWISE MARK 4048 DBFE
Outpat Subroutine IR BITTIME 404A 1802
Th|s isa suh'ruulme to output one by'lc SPACE OUT (FF)A 404C D3 FF
serially by setting and resctting a latch in BITTIME LD D80 START OF ONE BIT 404E 1680
the ZX80. The data is preceded by a start LD E F6 TIME LOOP 4050 IE FD
and followed by a stop bit. The subroutine LOOP INC D 4052 14
expects the byte to be at (DF-END}+2. IR NZ.LOOP 40‘3; 20FD
All addresses, codes, and data are in INC E ' 40%5 Ic
. e JR NZ.LOOP 4056 20 FA
RET 4058 9
~

Canacomputer mow your lawn? Not yet.

But a flowchart can show vou how to
make money cutting five lawns a day. The
flowchart is easy. Mowing the lawns is still
hard work,

Dr. Sylvia Charp and Marion Ball wanted
a way to introduce basic computer concepts
to children in grades 5 to 9 of the Philadelphia
City Schools. So they identified some tasks
that kids understood like mowing lawns,
issuing paychecks and controlling traffic
lights. They showed how computers are used
in these tasks.

%

Flowcharts - A basic concept

They devised flowcharts. They located
scores of photos. And they found an artistic
high school student to illustrate these con-
cepts with lively full-color drawings.

They then wrote a light-hearted butinfor-
mative text to tie it all together. It talked
about kinds of computers, what goes on
inside the machine, the language of the
computerand how computers work for us.

They took the problem of averaging class
grades and showed how a simple yrogram
could be written to do this job.

Waell-qualified authors

Marion Ball has written other books on
computer literacy. Sylvia Charp is the director
of educational compuuting for Philadelphia
City Schools. They pooled their talents to
produce this book, Be A Computer Literate.,

This easy-to-read book explains how com-
puters are used in medicine, law enforce-
ment, art, business, transportation and ed-
ucation. It's interesting and understand-
able.

Computer
Lawnml())wer

Too much demand

The Bell System distributed 50,000 copies
to schools throughout the U.S. but they
couldn't meet the continuing demand. So
Creative Computing Press now distributes
the book. It's just $3.95 plus $1.00 shipping
and handling. Send name and address plus
payment or credit card number and expiration
date to Creative Computing Press, Morris
Plains, NJ 07950. Visa, MasterCard and
American Express orders may also be called
in toll-free to BOD-631-8112 (in NJ 201-540-
0445).

Order yours today. If, after reading it, you
do not feel that you are “computer literate,”
return it for a full refund plus your postage
to send it back.

creative
Gompatirg

Morris Plains, NJ 07950
Toll-free 800-631-8112
(In NJ 201-540-0445)

14

SYNC Magazine

Program Listing

0001 REM CLEBR) CLEARR (7742 OR (MOT REM <)SGIB RICK NOT RE
M < M?=2 CLEAR *4 CLEAR 04 IF BBY
S REM TRk 320 R AR AR E S A AR A KA AR R A AR A EF AR AR R Y
0010 REM % THIS PROGRAM LISTS OM AN ASCII SERIAL &
0015 REM 3 PRINTER THE PROGRA&M ARES OF THE ZXE0 RaM.
0020 REM £ THE REM STATEMENT 0001 CONTAINS A& ZBO ¥
0025 REM % CODE TO QUTPUT OME CHARACTER ASYMCHROMOUSLY#
0030 REM % AT 200 BAUD. THE ENTRY POINT IS AT ADDRESS #
QO35 REM 8 14444, THE ASCI1 CHARACTER SHOULD BE AT DF-%
0040 REM ¥ END+2. THE OQUTFUT TO THE SERIAL PRINMTER ¥
0045 REM % WILL EBE AT TTL LEVEL AT PIM 11 OF IC 11 *
QOS50 REM & INTEGRATED CIRCUIT OF THE ZX80. £
0055 REM * THE FROGRAM ALSO DEMONSTRATES THE USE OF *
0080 REM ¥ STRING VYARIABLES AS A TRANSLATION TABLE TO %
0045 REM % GET ASC1I CODES FROM ZXB80 CODES. 3
ad7d REM * THE PROGRAM USES & TABLE IM THE Ix80 ROM *
Q075 REM % USED BY THE LIST STATEMENT TO GET MNEMOMICS#
Q0BG REM ¥ FOR THE COrMMAND/OPERATOR CODES. *
OLA40 FEM SARSsst i ik ad s kAR A Ak R A
0150 REM X
0140 FEM #%%2% TRANSLATION TABLE fi%%%
0170 REM %
0180 LET X$="445444444483488UZCDHFEIXYRVET"
0190 REM
0200 REM A=ADDRESS OF CHARACTER TO BE PRIMTED. IMITIALISED TO
16424
G210 LET A=1&424
0220 REM LA=LAST ADDRESS TO BE PRINMTED. SET TO VARS.
0230 LET LA=FEEK (16392) +25&68FEEK (1&6393)
0240 REM #8%%3% SUBROUTINE ADDRESSES ®#&x%
0280 LET CRLF=1070
0260 LET SPACE=11590 0770 GO SUB SPACE
0270 LET PRINT=1240 0773 LET C=D
0280 LET XLATE=S7O 0780 LET Fi=1
0290 REM 0790 LET C=C+2Z7% (1/F1)
0200 REM t8%%% MAIN PROGRAM ®sfii 0795 IF C=32 THEN LET Fi=1
0310 REM IMITIALISE LIME COUNTER 0800 GO SUE FRINT
0320 LET LC=1 0810 IF F2=0 THEN GO TO &80
0330 REM NEW FABE 0B20 IF Fi=2 THEN GO TO 480
O340 FOR J=1 TO 5 0B30 GO SUE SFACE
0350 B0 SUB CRLF 0840 GO TO 480
0360 MEXT J 0850 REM
0370 REM STATEMENT MUMBER 0860 REM END OF STATEMENT
Q380 LET SN=FEEK (A) ¥ 2S&4+PEEK (A+1) Q870 REM
0390 B0 SUB SPGCE B0 B0 SUB CRLF
0400 FOR J=1 TO 4 OBF0 LET A=A+1
0a10 LET T=SN/ 1000 0300 IF LA>A THEN GO TO 920
0420 LET C=T+48 0510 STOP
0430 BD SUB PRINT 0920 IF LC>S51 THEN BO TO 320
0440 LET SN=(SN-TH1000) %10 0930 GO TO 380
0450 MEXT J 0740 REM
0440 LET A=A+l 0550 REM x%x%% ALATE SUBROUTINE KEEEE
Q470 REM STATEMENT 0960 REM
0480 LET A=A+l Q970 LET Ye=i%
G450 LET C=PEEK (A) 0%80 FOR J=0 TO C
0500 IF C=118 THEM GO TO BBO 0990 LET Y$=TL®{¥%$)
0S10 IF C>211 THEN BO TO &10 1000 MNEXT J
0520 IF C>27 THEN LET C=C+20 1010 LET C=CODE{(Y%)
05320 IF C3>S7 THEN LET C=C+7 1020 RETURNM
0540 IF C<28 THEN GO SUB XLATE 1030 REM
0350 B0 SUB PRINT 1040 REM xkskx CRLF SUBROUT INE EEE S B
0560 BO TO 480 1050 REM
0565 REM 1060 REM CC=CHARACTER COUNT
0S70 REM COMMANDS AND OPERATORS 1070 LET CC=0
0575 REM 1080 LET LC=LC+1
0SB0 REM Fi=FLAG TO INSERT SFPACE BEFORE 1090 LET C=13

AND AFTER MNEMONICS. 1100 GO SUB PRINT
0590 REM F2=FLAB TO DEFINE END OF MNEMONIC. 1110 LET Cm10
G600 REM B =ADDRESS OF CURRENT CHARACTER 1120 BOD SUB FPRINT

IM MNEMOMICS TABLE. 1130 REM DELAY FOR CARRIAGE TO SETTLE
04610 LET B=18& 1140 FOR K=1 TO 5
04620 LET Fl=0 1150 NEXT K
0630 LET F2=0 1160 RETURN
0440 FOR J=0 TO C-212 1170 REM
0650 LET B=B+1 1180 REM ®Eris SPACE SUBROUT INE tEERE
&80 IF PEEKIBI<I128 THEN GO TO &50 1190 LET C=32
0670 NEXT J 1200 REM
0680 LET B=EB+l 1210 REM ®kkxs FRINT SUBROUTINE EEEXE
0690 LET C=FEEK (B} 1220 REM
Q700 IF C<128 THEN GO TO 730 1220 REM C=AS5CI11 CODE FOR CHARACTER TO BE PRINTED
0710 LET F2=1 1240 LET CC=CC+1
0720 LET C=C-128 1250 FOKE PEEK{15400)+2S63PEEK{164011+2,0
070 IF C>27 THEN GO TO 7&0 1240 LET G=USR{1&444&)
0740 GO SUB XLATE 1270 1IF 73>CC THEN GO TO 1300
0750 LET Fi=2 1280 GO SUB CRLF
0760 IF F1>0 THEN GO TO 790 1290 GO TO SPACE
07865 LET D=C 1300 RETURN

July/August 1981

15

How Is It Done?

Introduction

This article shows how a routine can
be written and entered into a ZX80 that
enables the user to SCROLL the display.
In the 4K monitor there is no facility at
all for doing other than printing to the
last line of the display, and then, when
the display is full, the program will stop
unless a CLS (clear screen) command is
used,

The 8K monitor does have a SCROLL
command, but it is limited in use as it
only enables the user to scroll the whole
display one-line-up and to print to the
bottom line again.

The routine in this article will only work
under the 4K ROM.

Objectives

My first objective was to produce a
routine that would simply scroll the display
one-line-up, when called by a USR com-
mand and allow the user to continue
printing at the end of the display. However,
a second objective soon appeared and
that was to extend the routine so that
only a predetermined part of the screen
would be scrolled, thereby enabling the
user to have a “title” area at the top of
the display that would remain un-scrolled.
The routine would require from the user
that the number of lines to be left un-
scrolled be specified, using a POKE
command, before using the USR com-
mand.

D, Lan 8. Logan, 24 Nurses Lane, Skellingthorpe,
Lincoln LM6 OTT, England. This article is the
third in a series.

Screen Scrolling

Dr. I. S. Logan

The Theory

Before writing a routine that manipulates
the contents of the display file, we must
have a clear understanding of the structure
of the display file of the ZX80. Figure 1
shows the parts of the display file as they
would be produced by running the simple
program:

10 PRINT “FIRST LINE"

20 PRINT “SECOND LINE"
Press RUN and NEWLINE,

18 | DFILE
—» FIRST LINE 18 |
> SECONDLINE | 118 [

Fm—————— Jd | 21 end-of-line
| characters
I
Lt 18
DF-EA
Y
- 0/20 118 |=+=—— DF-END

Figure 1,

SYMNC Magazine

OLD Display File NEW Display File
-t— [}-FILE -<—— D-FILE
118 — 1 —
- FIRST LINE 118 b— — FIRST LINE 18 |—
= SECOND LINE 118 = SECOND LINE 118 p—
11 characters)
THIRD LINE g || S L» FOURTHLINE | 118 |—
—= FOURTH LINE 118 = FIFTH LINE 115 (=— DF-EA
(reduced
by 11}
DF-END
does not
DF-EA require
—» FIFTH LINE 118 fesr] DE-END updating!

Note that the lines are of varying length
and that they all end in a “118” (Hex. 76)
which is the end-of-line marker.

The pointer D-FILE always points to
the first character in the display file, which
is always an end-of-line character,

The pointer DF-EA points to the start
of the “lower part of the screen,” and DF-
END points to the twenty-fifth end-of-line
marker.

It is important to realize that the pointers
DF-EA and DF-END are only given their
final values when the execution of a
program finishes. Before this time the
pointers are being changed as each char-
acter is added to the display file. Therefore
before the “end of program™ routine is
executed the pointers DF-EA and DF-
END both paint to the last location in the
partially completed display file.

In a scroll routine it is necessary initially
to collect the current value of D-FILE
and then look through the display file
until the point is reached that is to become
the “new” contents of D-FILE, However,
if certain lines are not to be serolled, then
these lines must be passed over, and the
last end-of-line marker considered to be

D-FILE.

July/August 1981

Figure 2.

The length of the line to be erased is
then found, and the scrolling is achieved
by moving the whole of the remainder of
the display file down in memory so that it
overwrites the scrolled line. There then
remain two house-keeping tasks. The value
of DF-EA and the value of the system
variable 16421, the line counter, need to
be altered. DF-EA has to be reduced by
the ‘length’ of the erased line, and the line
counter has to be incremented (one added)
to take into accunt that there is now one
less line in the display file.

Figure 2 shows the action of the scrolling
routine that has left 2 lines and then scrolled
once, deleting line 3.

Loading the Routine

The following method can be used to
enter the routine into the ZX80, The
routine is kept in a REM statement held
off the screen so do not try to list it.

Enter the following lines:

10 REM 12345678901234567890123456
T8901234567890123456789012345678901
2345678901234567890

20 REM *** SCROLL ***

30 REM FIRST POKE 16427 WITH
THE NUMBER OF LINES TO BE LEFT
THEN USE LET K=USR(16430)

Now push line 10 off the screen by using
EDIT.
The actual steps are:

HOME

EDIT

RUBOUT,RUBOUT, ENTER 40 and
NEWLINE.

EDIT

RUBOUT, RUBOUT, ENTER 70 and
NEWLINE.

EDIT

RUBOUT, RUBOUT, ENTER 80 and
NEWLINE.

EDIT

NEWLINE

LIST 20

and delete lines 40, 50, 60, 70 and 80.

The actual machine code can now be
POKED into line 10 by using a simple
loader.

17

The Assembly Language Listing

402B ORG 402B
4028 00 LEAVE DEFE Mo. of lines wunaltered.
402C 00 OO NEW D-FILE DEFW Line end address store.
402E 24 OC 40 START LD HL, {D-FILE) Fick up D-FILE.
4031 ED SB OE 40 LD DE, (DF-EA) Pick up DF-EA.
4035 22 2C 40 LINE EMND LD (NEW D=-FILE),HL Address of scroll line.
4038 23 INC HL Enter next line.
4037 01 a0 00 LD EC,+0000 Initialize counter.
40ZC IE 79 MEXT LD A,+75 Farm end-of-line
403E 3IC INC A marker in A register.
40%F EBR EX DE,HL Change over registers.
4040 A7 AND A Clear carry flag.
4041 ED 52 SBC HL,DE Find if DF-EA has
4043 20 02 JR NC,NO ERROR been reached.
4045 CF O% ERROR RST O00B, "9" Will give "A" error.
4047 19 NO ERROR ADD HL,DE Reform HL.
4048 Eb EX DE,HL Exchange back registers.
4049 BE CFP (HL) Logk for end of line.
40448 28 04 JR Z,COUNT Yes., End of line found.
4040C 23 INC HL No. So go to next
404D OC INC C character, incrementing
404E 18 EF JR NEXT counter and address.
4050 EA 2B 40 COUNT LD A, (LEAVE) Collect the parameter.
4053 A7 AND A Is it zera?
4054 28 0& JR SCROLLING Yes. So scroll.
4056 3D DEC A MNo. So pass to next line.
4oEy 12 ZB 40 LD (LEAVE).,A Feplace the parameter.
4054 18 D9 JR LINE END Back to LINE END.
405C 79 SCROLLING LD A,C Save C in A register.
405D EB EX DE,HL Exchange registers.
R0SE AT AND A Clear carry flag.
405F ED S2 SBC HL,DE Find length of rest of
40461 44 LD EB,H the display file and
40462 4D LD C,L put it in BC.
40483 2A 2C 40 LD HL,{(NEW D-FILE} Collect the line end
40b6 ER EX DE,HL address and scroll the
4067 ED BO LDIR display file.
4049 26 QOE 40 LD HL, (DF-EA) Feduce the wvalue of
40&C 4F LD C,A DF-EA by the size of
4060 7 3CF the character count
40&4E ED 42 SBC HL,EBC of the scrolled line
4Q70 22 0OE 40 LD (DF-EA),HL that was saved in A.
4073 3A 25 40 LD A, (LINE COUNT? Increment the value
Q074 AC ING & of the system variable
4077 32 25 40 LD (LINE COUNT) , A 1642Z1- line count.
4078 C9 RET Return to Basic.
100 FOR 1=16427 to 16506 WIET T8
110 INPUT A U0 delete
120 POKE LA 120 LET T=T+PEEKI(l) and using RUN 90

! 140 PRINT T
130 NEXT I

The data for this routine is:
0,0,0,42,12,64,237,91,14.64,34,44.64,35,
1,0,0,62,117,60,235,167,237,82,32.2,
207.9.25,235.190,40,4,35,12,24,239,58,
43.64.167.40.6.61,50,43,64,24,217,121,
235.167,237,82.68.77,42.44,64.235,237.
176.42,14.64,79,55,237.66,34,14.64.58,
37.64.60,50,37.64.201

S0 enter lines 100 to 130 and RUN 100.
Enter the machine code carefully. The
checksum for the data is 6578, and this
can be checked by adding the lines:

18

—

Now delete all the lines from 90 onwards
and SAVE.

Using the Seroll Routine

The following demonstration program
shows in a simple way how the routine
can be used.

With the routine stored in line 10, held
off the screen, enter:

40 for I=1TO 23

50 PRINT “LINE ™:1

60 NEXT |

70 POKE 16427,2

80 LET K=USR(16430)
RUN

In line 70 always specify how many lines,
Line 80 calls the scroll routine.

The result of the above program should
be to produce a display in which “LINE
J” is missing, and the remainder of the
display has been scrolled up a line (hence
the gap between “LINE 23" and the error
report).

SYNC Magazine

ERROR A Report

The routine does declare an error when
an attempt is made to hold more lines
unserolled than actually exist in the display
file at that particular moment. This can
be seen in the demonstration program by
changing line 70 to read:

70 POKE 16427,24
This asks the routine to scroll all the lines
after the 24th. Clearly a confusing situation
s0 ERROR A is reported.

Road Game

An Example Use of Scrolling

The following game shows just one of
the many uses to which the scroll routine
can be put. In this game you will test your
skill at driving along a road. The seroll
routine is used to scroll the “road™ and
also to remove an “end message”; in this
case the message is “PRESS 5.6 or 8."
Note carefully how the parameter of how

182 as previousiy prepared and held off the screen.

280 REM STOP
3@ RANDOMISE
4@ PRINT
S8 PRINT
E@ LET C=0

70 GO TO 190

8@ LET S=5+RND(S5)-3

3@ IF S{4 THEN LET S=4

120 IF S5)3@ THEN LET S=30
118 FOR A=1 TO 5-Z

120 PRINT "H": M (shitt A
130 NEXT A

14@ PRINT " "s 4 sp.)

15@ FOR A=S+2 TD 32
16@ PRINT "B "
17@ NEXT A

18@ RETURN

190 FOR R=1 TO &
200 LET S=15

21@ GO SUB 110
220 NEXT R

230 FOR R=1 TO 3
24@ (0 SUB S0

» Yok ROAD GAME Aot

B (shift A)

Just a reminder.

many lines are to be left unscrolled is
specified on each occasion that the scroll
routine is called.

This game program is really only a first
try at using the scroll routine, so 1 would
therefore be very interested in seeing
programs from readers who use this routine
in writing their own programs. o

Different every run.

Title.
Space.

S=t odometer to zZero.
Go past subroutine.

Move road a
but Not off the
Print "one mila"

Hard wverge.

littl=
=3 & =
or off the right.

left or right,

of road.

Print four spaces for the road.

hard wverge,

One mile of road Pprinted.
Print four miles of road

but fixed.
Each milea.

rather than curved.

250 NEXT R

260 LET T=11@+PEEK(1E639E)+PEEK(
LEZ97)#256

270 LET R=T

280 POKE R, 20

29@ PRINT

0@ PRINT

1@ PRINT ,"PRESS 5.& OR B
2@ INPUT A

I50 POKE 1B8427.9
340 LET T=USR({1643@>
00 POKE 16427,.9
IE@ LET T=USRC1E643@)

370 IF A=8 THEN LET R=R-(RND(S)
Y2
IE@ IF A=5 THEN LET R=R+(RND(S)
y2)

390 POKE 1B8427,2
400 LET T=USRC1E430@)
41@ GO SUEB B0

428 IF NOT PEEKCR)=@ THEN GO TO
450

430 LET C=C+1

440 GO TO ze@

45@ POKE R. 148

4E@ PRINT

478 PRINT

48@ PRINT "+ YOU CRASHED AFTER

July/August 1981

]
¥
L
T
L
L
)
L]
]
L

- a W o

W e W o W m

MNow print three miles of road
that does use the random function
to move the road left Oor right.

7
;]
7
1
r
¥
¥
¥
¥
T
L
T
1]
3 The other
r
)
¥
7
T
T
T
]
1
T
2l
)
Ll

Initial

Copy it.
Print the car.

Add an end of
Space.
Left: right,

Car Position.

line marker.

or straight ahead.

Collect direction.

Hold the title and
away the blank
Hold the title and
"PRESS S5.E OR 8°

bBut nNnot alwavs.

Scroll

Scroll away
Turn to rishts

Turn to 1eft,

road unscrol led.
I ine.
road unscrol |led.

but not always.

Hold the title unscrol led.

Scroll the road

Add another mile of

Test to see

road.

ifT runs off road.

Increment odometer.

"Survived"
"CRASHED"
Add e=nd of
Space.

S0 drive on.

line marker.

The sien of failure,

7

AUZZIES S Aarobdiems

_1

The Take-Away Game

et’s start off with a game you might care to program for your ZX80
computer, Lay out five rows of five coins each on the table. Each player, in
turn, may remove one or more coins from any row or column of coins.
However, there cannot be a gap between any of the coins. The coins
removed must be contiguous within the row or column. To illustrate,
suppose the first player removes coins number 3 and 4 from the top row of
coins. His opponent could not then remove coins 1, 2 and 5 from this row
because there would be a gap between coins 2 and 5. This player could,
however, remove coins | and 2, or 5 from this row. The person who is forced
1o remove the last coin from the board is the loser of the game.

Find the Numbers

0 0O O O

i we add the digits of a two-digit number together, we get the sum of 5.
Now, if we write this two-digit number down, reverse it, and subtract the
smaller number from the larger number, we find that the difference is 27.
Can you tell us what these two numbers are?

The Farmer and His Four Sons

each of the sons would receive his fair share?

hat's it for this issue. | hope you have enjoyed the problems brought by
Merlin. If you have a favorite puzzle that you would like to share with the

v Merlin's Puzzler, a great book filled with the best in puzzles and games.

readers of $¥NC, send it along. 1f Merlin uses it, he will send you a copy of

Unitil next time, keep puzzling!

Your editor, T
Charles Barry Townsend -

nce upon a time (now where have | heard that before) a farmer
owned a square field which had four apple trees growing on it. The
trees were neatly spaced in a row as shown in the drawing at the right.
The farmer had four sons that he wanted to divide the field among.
His problem was that each son had to have an identically shaped
piece of the field. Also, each piece had to be the same size in area.
Finally, each piece of the field had to have one apple tree on it. If you
had been the farmer, how would you have divided up the field so that

C O O O O

Q Q QO O
QO 0 O O
Q QO O O

Q O

Two-for-One

Pu ere we have two checker puzzles. The first one is a

checker problem and is pictured at the left. White
has the move and should win in seven moves. Can
you solve it? The second problem is straight forward
enough. How many squares are there on a checker-

Cful, waww; board? If your answer is 64, sit down and give

someone else a chance. (From Merlin'’s Puzzler 3 by
Charles Barry Townsend. published by Hammond,
Ine.)

An Easy Creditor

. gentleman was in temporary need of money. A friend

lent him sixty dollars, telling him to repay it in such
sums as might suit his convenience. Shortly after-
wards he made a payment on account. His second
payment was half as much as the first: his third
three-quarters as much, his fourth one-quarter as
much and his fifth two-fifths as much. It was then
found, on striking a balance, that he still owed two
dollars.

What was the amount of the first payment?

{From Puzzles Old & New by Professor Hoffmann
circa 1890)

Answers on page 27. y

20

SYNC Magazine

Sl

Fred D'Ilgnazic and Stan Gilliam have
created a delightful picture book adven-
ture that explains how a computer works
to a child. Katie "falls” into the imaginary
land of Cybernia inside her Daddy’s home
computer. Her journey parallels the path
of a simple command through the stages
of processing in a computer, thus
explaining the fundamentals of computer
operation to 4 to 10 year olds. Supple-
mental explanatory information on com-
puters, bytes, hardware and software is
contained in the front and back end

papers.

J?@for your child...

Katie and the Computer

Thrill with your chidren as they join the
Flower Bytes on a bobsled race to the
CPU. Share Katie's excitement as she
encounters the multi-legged and mean
Bug who lassoes her plane and spins her
into a terrifying loop. Laugh at the
madcap race she takes with the Flower
Painters by bus to the CRT.

“Towards a higher goal, the book
teaches the rewards of absorbing the
carefully-written word and anticipating
the next page with enthusiasm..."”

The Leader

“Children might not suspect at first
there's a method to all this madness—a
lesson about how computers work. [t
does its job well.”

The Charlotte Observer

Katie COMPUTER

The book has received wide acclaim
and rave reviews. A few comments are:
“Lively cartoon characters guide read-
ers through the inner chamber of the
computer.”
School Library Journa!

“...an imaginative and beautifully con-
celved children's story that introduces
two characters—the Colonel and the
Bug—who already seem to have been
classic children’s story book characters
for generations.”

The Chapel Hill Newspaper

Written by Fred D'Ignazio and illustrat-
ed in full color by Stan Gilliam. 42 pages,
casebound, $6.95. (124)

A 1-shirt with the Program Bug is
available in a deep purple design on a

.the book is both entertaining and beige shirt. Adult size S, M, L, XL.
educatuonal o Children’s size S, M, L. $5.00.
Infosystems o
To order, send a check for books plus $2.00 shipping and handling per order to Creative Computing, P.O. Box 789-M, Marristown, NJ 07960. NJ residents add 5%
sales tax. Visa, MasterCard, and American Express orders are welcomed. For faster service, call In your bank card order toll fres to 800-831-8112 (in NJ call
201-540-0445). Or usa the handy order form bound Into this magazine.
INVENTIVE PROGRAMS
FOR THE Zx80 4K ROM 1K RAM ZXBO-4K ROM
K L]
Gamaes, subroutines, and teaching aids in 4 K BASIC qualltY SOEtware...
and MACHINE CODE. All istings inelude statament /
subrouting lagic and 8K ROM/ 16K RAM appendix. 1K SPECE Intruders sznﬂ_ﬁ
y F uritten {n machine code
PRICE: 81.00 per program listing to give fast =moving
{munimum order 10, plus 5250 S B H) 'Flicker Free' graphics.
— A superb achievement.
iiﬁlml_i_!._l. LIST * (@K/1K) Supplied ao & liating only.
* FLIP.A-COIN & TEST PATTERN 16K High Resolution $20°*
% 1 KEY BANDIT » CASSINDEX (192x192) graphic pictures
& TURRET GUNMER ® FOIL FENCING. Never before schieved on the ZXB0.
& ZMBO BASIC TEST * BANG! FOR | Create your own artwork. Supplied
w BLACK JACK * EASTER DATE ®s a listing (§5.20 extra if cassette
required) with Ffull screen
* FIBOMACCH SEQUENCE » STATE CAPITALS TEST demonatration pleture.
s COORD GRAPHICS * MACHINE CODE DISPLAY
* BARRAGE * GUILLOTIME - .
' 9K Nightmare Park $15™
* ACEY-DUCEY |1 = KEYBOARD GRAPHICS
- A good exsmple of o BASIC
& LINE RENUMBER = B BOXES program using MACRONICS
‘Amazing Active Oisplay'
TO ORDER The park of DEATH = can
23 W you get through this
Specily programs wanted and enclose payment. nightmare. No human as
¥et succeeded. Confronted by all sorts of 'Happenings'
you'll be taken to your wits end. Supplied on cossette
ZETA SOFTWARE Gilya
P.0. BOX 3_52_2 i Send International cheque or money order o -
GREENVILLE, §.C 29808 MACRONICS, 26 Spiers Close, Knawile, Solihull
West Midlands B33 9ES, United Kingdom
* Complete list sent with your order, or send SASE other MACRONICS software available
for FREE list and order blank from IMAGE COMPUTER PRODUCTS
in the United States

Subroutine

10
20
a0
40
S50
60
70
80
20
100

DIM B(23)

FOR I=0 TO 23

LET
NEXT 1
FOR I=0
FRINT I
INFUT EB(I
IF B(1)=0
IF IX20
NEXT 1

B(I)=0

TO 23

)
THEN STOP

THEN CLS

Setting Up Bar Charts

Jon Passler

A bar chart is one of the most commonly
used methods of graphically presenting
data for quick interpretation. Such charts
work nicely within the constraints of the
ZX80 and MicroAce. Beside making for
a good display, they provide an excellent
way of storing data.

The program listed here works with 1K
to chart two years of monthly checking
account balances with vertical bars. The
graph is set up for a range of 50 to $1500,
but can be modified for other ranges with

Erase lines 10-100 and use GO

TO 1 instead of RUN hereafter.

Bar Chart Program

100 REM GO TO 1§ (Leave cursar on line

110 PRINT 100 when saving

120 FPRINT reminder not to RUM.)

130 PRINT "X100 AVE DAILY BALAMNCE" (% sp.)
140 PRINT "————({3 sp. and 17 SHIFT G)"

150 PRINT

140 FOR I=-15 TO O

170 LET KE=(I/3)X10-1I%10/3

180 IF K=0 AND I<-% THEN PRINT -I;"-"j

190 IF E=0 AND I>-10 THEN PRINT " "g-Ijz"-"j3 (1
200 IF Kx0 THEN PRINT " -="; (2 sp.)
210 FOR J=0 TO 23

220 IF B(J)=0 THEN GO TO 280

230 LET D=RB(J)+I%100

240 IF D<=25 THEN PRINT " "3 (1 sp.)

250 IF D>-26 AND D425 THEN PRINT CHR%(7);
260 IF D>24 THEN PRINT CHR%(130) 3

270 NEXT J

280 FRINT

290 NEXT I

00 FRINT 1980 (SHIFT E) 1981 (7,
10 8TOP

Z20 REM B(l&)

22

4,

a few changes and some trial-and-error
experimentation. Of course, any other sort
of data such as monthly rainfall or average
temperatures, miles-per-gallon, electricity
use, or frequency distributions (histograms)
can be plotted.

Because of memory limitations the array
storing the data is created and filled in a
routine that is later erased (lines 10-100).
All elements of the array contain either
data or zeroes, and line 320 is used to
show the user which element of the array
should be filled next. To add a monthly
figure enter 330 LET B(16)=XXXX, then
GO TO 330 and N/L, and finally erase
line 330 and update line 320 to REM
Bi17).

After entering the program, you can
enter the following data to see how it
works: 1012, 796, 931, 1236, 1252, 1088,
T86, 1132, 1194, 908, 1113, 896, 913, 849,
553, 429. "

Jon Passler, 344 Cabot Si., Beverly, MA 01915,

sp.)

and 3 =sp.)

SYNC Magazine

Bisection Iteration
Square Root Program

Mike Goins

10 PRINT "SGUARE ROOT OF X"

20 FRINT "ENTER X "; (3 spaces)

Z0 INFUT X

¢ 40 FRINT X
S0 LLET =0
&0 LET H=182 This program operates by means of
3 70 LET T=(L+H) /2 bisection iteration. which is basically just

80 LET K=X/T a varation of the old high-low game. The

ey .) size limitation of the integer basic |vari-
. 90 IF K=T) T.l:jEN GOTO . 160) able size) limits the maximum root to 181.
100 IF H-L < 2 THEN GOTOD TO 160 Besides the mathematical value, this
110 IF E < T THENM GOTO 140 square root program is handy for use as a
120 LET L=T subroutine to represent the distance
130 GOTO 70 between two points (using the Pythagor-
14(." LET H=T ean theorem) in some game programs in

S e i which one might try to guess the location
150 6OTO 70 of an object and when in error to find out
160 FPRINT "ROOT IS "1 T (2 spaces) by how great a margin.
170 PRINT
180 STOF Mike Goins, P.O. Box 3341, Bristol, IN 37620,

NOW AVAILABLE SUPER INVASION

Eeyboord._

+ Standard Computer Keyboard
* Type programs in half the time
¢ Minimize errors

* Wired keyboard hooks up in minutes

Plans for keyboard conversion with reverse video
$10.00

Keyboard with complete parts and plans $55.00
Wired keyboard, complete with plans $75.00

conversions

Mail for information:

L.J.H. Enterprises
P.O. Box 6273, Orange, CA 92667

For information or Visa or MasterCard orders call
(714) 772-1595. Shipping charge for U.5.—8§5.00.

July/August 1981

ON YOUR ZX80!

SYNC magazine says Super Invasion is the
"..best action game we have seen for the ZX80."

DOUBLE BREAKOUT

DOUBLE BREAKOUT challenges you to get through two barricades,
ys;ngéwe'::all a\'r_lgllilsl.]With set:jen Ieh\rels of 1:'!'.-.1'.'. DOUBLE BREAKOUT
is hard to beat. You'll be amazed at the super

graphics in this 1K game. 51495

SUPER ZX80 INVASION

SUPER ZX80 INVASION is a flicker free, moving graphics game with
three levels of play. SUPER INVASION challenges Luur skill as you
shift your craft left and right and fire lasers at the invading

space ships. Added bonus—each cassette $

contains a more sophisticated 2K version. 14 95

——

Multi-Dimensional Arrays for the ZX80

Jamie O’Connell

How many times have you sat down to
convert a program for the ZX80, only to
find that the first line was 10 DIM
A(10,10)7 Chances are that you gave up
and turned the page. The next time you
do not have to turn the page because it is
possible to simulate dimensioned arrays
on the Sinclair through the use of a simple
algorithm.

Many versions of Basic define a two-
dimensional matrix by the command DIM
A(X.Y); where the X is the row subscript,
and Y, the column. Any location on the
matrix can be accessed by specilying
values for X and Y. For example, LET
A(3.4)=9 assigns the value 9 to the element
located at row 3, column 4.

On the ZX80, we define a one-dimen-
sional/vector array containing as many
elements as we need and then use a simple
formula to locate a given element. For
example, if we want to initiate a 10 by 10
matrix, the instruction DIM A(99) sets up
100 locations and the formula A(X+Y*10)
=9 assigns to the element at (X.Y) the
value 9. In order to save space, the first
element in the array simulates A(0,0) and
the last, A(9,9). If we take the first element
to be A(1,1) (as it is in most Basics), then
we would use the general formula A((x-
1}+(y-1)*X). These formulae result in
column-order storage: all of column 1 is
stored before 2. To simulate row-order
storage, use the formula A{(y-1)+(x-1)*Y)
as in Figure 1.

In similar fashion, arrays of any number
of dimensions can be accessed. The
element A(X.Y ,Z....) is located at A((x-1)

Z X80 Basic

10 DIM A(59)
20 LET X=3
JOLET Y=1
40 LET Z2=2

Hy-1* X+ (21 XY+ X*Y*Z+..). A
simple comparison shows how the ZX80
can simulate three-dimensional Basic:

J-dimensional Basic

10 DIM A(3.4.5)
20 LET X=3
JOLET Y=1
40 LET Z=2

SO0LET A((X-1)+(Y-1)*3+(Z-1)*3*4)=9 50 LET A(X.Y,Z)=9

ZX80 Simulated

Simulated

Simulated

Actual Column-order Column-order Row-order

Location Location
AlL) L=x+y*3

Location
L=(x-1)+(y-1)*3 L=(y-1)+(x-1)*4

Location

ALD) A0, AllLL A(lL1)
A(l) Al1,0) Al2.1) A(l1,2)
A(2) A(2.00 Al3,1) A(1,3)
A3 A0 All,2) All4)
Ald) AL A(2,2) A(2.1)
A(5) A(2,1) Al3.2) A(2.2)
Al6) A(0,2) A(1,3) A(2.3)
A7) Al1,2) A2 A(2.4)
A(B) A(2,2) A(3,3) A1)
A(9) A(0,3) Alld A(3.2)
A(10) AL A(2.4) A33)
AlLL) A(23) Al34) A(34)

Figure 1. Simulated Locations for a 3 by 4 Array

Jamie O'Connell, Apt. 17 Cricket Brook, Dover,

NH 03820,

24

The best way to illustrate the use of
dimensioned arrays is by a demonstration
program. The one offered below is fun
because the movement of the ship is
essentially random. You can never know
where it is until you blow it up or actually
have it captured. Note that in a 10 by 10
matrix the array location is the same as
the simulated location: A(37) is equivalent
to A(3,7). This allows direct input of the
coordinates desired. The display routine
illustrates a fairly standard procedure for
the printing of a matrix.

Capture

Capture is similar in some respects to
many other matrix manipulation games;
but, instead of trying to hit the enemy,
you must surround and immobilize him.
If you do succeed in hitting his location,
you lose the game.

You have a total of fifteen mines which
you use to block the enemy's progress.
For a capture, his progress must be
blocked in every direction. The display
will show you where he was on the
previous move. You can always place a
mine at this previous location, as he has
to move one space on each turn.

Lines 10-50 set up the enemy’s initial
location. Lines 80-195 output the display
which shows: the matrix, the previous
enemy location, the number of mines left,
and the location of the mines as you place
them. Lines 210-60 decide the enemy's
new location, test for capture, and check
the remaining number of mines. Lines
370-430 input your mine placement coor-
dinates and test for a hit on the enemy.

SYNC Magazine

To vary the number of mines, change
line 60. Line 370 was keyed in using the
following space saving technigque: 370
INPUT (SHIFT 5) PRINT * (SHIFT 8)
ROW-COLUMN?", If you fail to use this,

the program will print error code 4 when
run—every byte counts! When entering
the coordinates at line 370, enter them
both before hitting NEWLINE. Happy
hunting! "

Capture Program Listing

1% RANDOMIZE

2@ DIM A(99)

3¢ LET X=RND(18)-1
4@ LET Y=RND(1d)-1
58 LET A(Y+X*1@)=1
6@ FOR M=-16 TO @
7% PRINT

48

8@ PRINT "I WAS LAST AT..."

9@ PRINT

14@ PRINT " @123456789"

117 FOR I=g TO 9
12¢ PRINT I;
138 FOR J=§ TO 9

14@ PRINT CHRS(A(J+I*18));

15@ NEXT J

164 PRINT

178 NEXT I

184 PRINT

19@ PRINT "MINES="3-M
195 PRINT

20@ LET A(Y+X*1d)=¢
214 FOR T=1 TO 64

22¢ LET I=RND(3)-2
238 LET I=I+X

248 IF I 9 OR I # THEN GO TO 220

25@ LET J=RND(3)-2
268 LET J=J+Y

278 IF J 9 OR J ¢ THEN GO TO 258
284 IF I=X AND J=Y THEN GO TO 25¢
29¢ IF NOT A(J+I*1g)=2@ THEN GO TO 334

3@F NEXT T

31¢ PRINT "OOPS-CAPTURED"

32@ STOP

338 LET X=I

344 LET Y=J

350 LET A(Y+X*1#)=148

368 IF N=@ THEN GO TO 448
37@ PRINT " INPUT ROW-COLUMN"

38¢ INPUT R

399 IF A(R)=148 THEN GO TO 4648

413 CLS
42¢ LET A(R)=20
430 NEXT M

44@ PRINT "OUT OF MINES"

45@ STOP

46@ PRINT "YOU BLEW ME UP"

July/August 1981

Capture Sample Run

I WAS LAST AT...
0123456789
L

O oM bBwmpHO

MINES=16
INPUT ROW-COLUMN
17

I WAS LAST AT...
0123456789

0

1 *
2 * *
3 * % % ¥
4 "
5 R
6

-

8

9

MINES=3

INPUT ROW-COLUMN

45
I WAS LAST AT...

0123456789

* ok %k
* Ml %
* % ok K X

o0 O
*

MINES=2
O0PS-CAPTURED

25

—

TRS and LET AS=AS+BS on the ZX80

Harry Doakes

String handling on the ZX80 is reason-
ably good. The 4K Integer Basic lets the
user print, input, and compare strings,
and do specialized routines that will
transform numbers into strings or charac-
ters.

There are also some large holes in its
string handling abilities though such as
limited string truncation and no conca-
tenation. It is not hard to figure out why:
Integer Basic takes up less than 3600 bytes
of space, since the character generator,
about 500 bytes long, is also in the 4K
ROM. The only command for changing
the size of a string is TLS (which stands
for Truncate (shorten) from the Left of
the String). PRINT TLS{(“FRED") produces
“RED"; TLS chops off the leftmost char-
acter of the string in parentheses whether
it is a literal string (like "FRED™) or a
variable (AS, for example). With TLS you
can trim as much as you like from a
string—but only one byte at a time, and
only from the left side.

Sinclair's Integer Basic has no string
concatenation commands at all. In other
words, there is nothing like LET AS=A%+
BS. You cannot lengthen a string.

Other small Basics—for example, Radio
Shack’s Level 1 —allow fewer string vari-
ables and only INPUT and PRINT com-
mands. The ZX80 looks good by compar-
ison, but comparison cannot fill those string-
handling holes.

This program can.

Enter the program in Figure 1. Line 10
should contain 52 zeroes.

10 REN 00000000000000000000000
00000000000000000000000000000

20 FOR 4=1 TO 52

30 PRINT A;" ";

40 INPUT B

50 POKE 16426+44,F

60 FRINT B,

T0 MEXT A

80 INPUT A

90 IF A=0 THEN STOF

100 INPUT B

110 POKE 16426+4,B

120 PRINT A" "3B,

130 GO TO 80

Figure 1,

Harry Doakes, P.O. Box 10860, Chicigo, 1L
GOG 1,

26

Run the program and enter the following
numbers in order. The numbers in paren-
theses are just entry numbers. Do not key
them in.

(1 175(2) 235 (3 30 9 10
(5) 197 (6) 225 (T) 57 (8) 235
(9} 249 (10) 235 (11) 227 (12) 43
(13} 43 (14 43 (15 40 (16) 9

(17} 227 (18) 209 (19) 213 (20) 227
(21) 35 (22)3 (23 3 (24 24
(250 21 (26} 60 (27) 237 (28) 185
(29) 35 (30) 235 (31) 33 (32 0

(33 0 (M) 35 (35 12 (36) 32
(37) 252 (38) 4 (39) 32 (40) 249
(41) 227 (42) 193 (43) 213 (44) 227
(45) 35 (46) 35 (47) 237 (48) 176
(49) 235 (50) 227 (51) 249 (52) 201

When you have keyed in the 52nd value,
stop and proofread the contents of your
screen very carefully.

I you find a mistake, type the entry
number. hit NEWLINE. then enter the
correct value. The new version will appear
at the end of the list of numbers. When
you have corrected all mistakes, enter ().

The program listing should now look
something like Figure 2. Delete lines 20
through 130, and you are ready to key in
yOour own program.

You now have two new string functions.
The first will truncate a string from the
right side; a TRS, il it existed, would do
the same thing. To perform the equivalent
of

LET GS=TRS(GS)
you write:

LET G$=GS§

RANDOMISE USR(16428)

After the routine is complete, a PRINT
G5 would show that the final character is
gone,

The second function is even more useful;
it is the equivalent of

LET L$=L$+Ms
The appropriate program lines are:

LET LS=LsS

LET Ms$=M3

RANDOMISE USR(16427)

At the end of the routine. MS no longer
exists, and LS contains both strings.

Each function will work with any string
variable, AS-Z3,

A few caveals:

You must perform the LET commands
immediately before the USR line. LET
creates a new entry at the end of the list
of variables in RAM. By performing those
LETs, you put the strings you are working
on at the end of the variable list so the
USR routine knows just where to go to
find them.

You can substitute LET, PRINT,
IF.. THEN, and most other commands
for RANDOMISE. Remember, though. if

10 REM B FOR 2w? OR T FOR CONT
INUE FOR =FFFC#-? THEN =Tmmé/W P
OKE §@iT FOR 5 T£4 LOAD ®4 CONTIN
UE =% THEN =77 POKE WFOR = CONTI
NUE ¢

Figure 2.
you create a new variable with LET, you
will have to LET AS=AS etc. again before
performing any more of these string func-
tions.

Do not try to TRS a string with nothing
inside. You can do it if, for example.
Q%=" "—but not if Q$="", If CODE
(Q%)=1, do not use the TRS routine.

These routines will not work with
literals—only string variables. You must
put a string into a variable before you can
perform these operations on it.

SYMNC Magazine

_

If you want to use line 10 for your
program, you can renumber the REM
line using the EDIT function. It will work
without change if it is still the first line of
the program; if not, you will have to find
its new location to call the routines with
USR. The routines should never begin
beyond 16639, or you will have to alter
the machine language program.

Figure 3 lists the routine in assembly
language. The procedure is relatively
straightforward. Each routine loads HL
with the E-LINE value (which points to
the end of the variable list); finds the end
of the variable it wants to work on: shifts
the variable list down, one byte at a time,
until it reaches the end of the list: then
loads the new value of E-LINE into the
proper location.

Parts of the routine may seem more
complicated than necessary. The extra
code is used to avoid instructions using
values between 64 and 127 decimal (40h-
TFh). These values cause screen distortion
and quickly crash the system if the ZX80
tries to display them as characters in a
string or program line. A program that
cannot be safely listed is too impractical
for general use, so this one avoids those
values. The routine begins, for example,
not with LD HL. (4004A), but with a longer
instruction sequence that avoids the unlist-
able values,

At the beginning of the routine, certain
things are taken for granted: BC=0, the
Z flag is reset, and H=40h. The first two
are always true when a routine is called
with a USR command. The third is true
for any routine between USR(16384) and
USR(16639), since the ZX80 simply loads
HL with the starting point and does a JP
(HLJ.

Finally. notice that the end of the routine
HL=5P. Thus, PRINT USR(16427) will
not only add two strings together, but will
also tell you where the top of available
memory is. PRINT USRi(16427)-PEEK
(16400)-256*PEEK(16401) will return the
amount free memory remaining—but be
sure that you have the strings in place to
be worked on, or you will scramble your
variables and you may crash the sys-
tem. [

AUZZIE aNSwUErs

Find the Numbers: 41 and 14

Two-for-One: (A) White to move and win: 26-
22, 1825, 21-17, 14-21, 19-16, 12-26, 27-31. (B)
There are 204 squares in a checkerboard. Some
are single squares, some are made up of 4
squares, 9 squares, and so on.

July/August 1981

deeimal hex assembler
175 AF XOR A A=0, Z=1
235 EB EX DE, HL D=40h
30, 10 1EQA LD E, Oih E=0Ah
197 C5 PUSH BC HI=0
225 EA FPOP HL
57 39 ADD HL, SF HL=SP
235 EB EX DE, HL DE=5F, HI=4004Ah
249 F9 1D SF, HL SP=400Ah
235 EB EX DE, HL HL=SF
227 E3 EX (8P), HL HL=(4004h), (SP)=SF
43 2B DEC HL EHI, =80h
43 2B DEC HL HL)=01h
43 2B DEC HL (HL)=character
40, 9 2809 JR Z, 09h Jump to §+8
227 E3 EX (SP), HL DE=HL
209 D1 POF DE (DE)=character
213 D5 PUSH DE
227 E3 EX (SP), HL
35 23 INC HL (HL)=01h
3 03 INC BC BC=0002h
3 03 INC BC
24, 21 1815 JR 15h ump to finish
60 3C INC A +Z: A=01h
257, 185 EIB9 CPDR BC=dieplacement
35 23 INC HL HL%:th
235 EB EX DE, HL DE)=01h
33, 0, 0O 210000 LD HL, 0000 HL=0
35 23 INC HL HL==BC
12 ac INC C
32, 252 20FC JR Nz, FCh
4 04 INC B
32, 249 20F9 JR NZ, F9n
227 E3 EX (SE), HL
193 ¢1 POP EC BC=HL=displacement
213 D5 PUSH DE
227 E3 EX (SP), HL HL=DE
35 23 INC HL
35 23 INC HL (HL)=character
237, 176 EDBO IDIR finish: shift until
BC=0, DE=E-LINE
235 EB EX DE, HL
227 E3 EX (5P), HL HL=5P, E-LINE=E-LINE
249 ¥9 1D SP, HL SP=SP
201 Cc9 RET
Figure .
——— s —_—
An Easy Creditor: The amount of the first The Farmer and His Four Sons:

payment was $20. To ascertain this amount, let
X = the first payment. Then according to the
conditions of the puzzle:

X3k ox 2,

x+2+4+4+5+2—6()

Multiplying by 20, the least common multiple
of the various denominators,

20x + 10x + 15x 4 5x + 8x 40 = 1200

S8x = 1200 -40 = 1160

x =20

Ojojo|o

27

'E
MARRIEP
YES! OUYES !

oee kl m’KW LITTER!
MY TR

UE HEART'S LOVE?

MY ONE ! MY ONLY f ER--
HOW WONPERFLUL T
SEE vOL AGAINT

cggsoz 4 ‘:vré

WERE SUPPOSER?
TO GET MARKIEP/
FREMEMBER 2/

T 5 ¢OOL THE SOLAR
2 - WINDE, CRASH ! vau
‘BUT- D\3 AN OL/T ON ME?

SOMETHING CAME LP/
mg PEEEE%E =
/ LACTIC
CATASTROPHE...!
AWFLUL THING...

ZQ |

/

Y

]

WAS ALL REAL Y SOYJ/A)

/ #
%

.. ' BOUGHT A NEW WEDPPING-
" § R SN A R
FLOWERS/ ¢ mé.’.. EVEN A

EVERYTHING

[rhere #AS
TO BE A WAY
OUT OF HERE...

= N
HONEYMOON SUITE ON Exzsﬂiﬂ’

0! A way ouT oF
”Tl-iI'E- JOINT 1

4
Yrrr

HELEY HELE
GUARD i ffee
SUIIVE 7/

e

2
R

R

7

Anv SO.FOLLOWING A

QUICK~BUT_PRAMATIC—
REAPOUT BY SYNK..-

s |
LR
s e

et
BB 3

fr
v W

s,
i

e Mo

i gy

B g

O.

&

=/

CLR
s AR E:

>

1

FROBL UM
HERE /722

4
KZ_::_EWHUT A

Y’ A

+

SAQUNEIL

SEES/ IT'S
HUNG !! THERE

HE~ U

vow, WAIT
MINNIT=-. 528

PUH-
A

S
T

| HAVE 0 TIE
THESE ARE.

R,

SYNK 2
NEW SHOES,

THE

e
LI i A T

You

PUH-- |

YEAH! | 60!

NoOW! Yuvr

{ &GET HELP/
yu

GEEZ/ onwy TuRNED My
BACK FOR A SECOND, TO cLEAN
MY PISCS, AN WHEN | TURNEDR
ARDUNP, "THERE HE WAS--
TRUSSEF UF LIKE AN ARCTURAN
TURKEY /... HANGING THERE
LIKE A MARTIAN HAM 727

IT MUST HAVE BEEN THE
SHOCKK OF INZARCERATION !
CRASH WAS A FREE Soul. ,
USEP T0 THE FREEROM
OF SPACE,ONE WITH THE
GALAYY, THE WINPS OF
SPACE BLOWING THROUGH
HIS RECENTLY-WASHED
HAIR! THE PULSE oF
MALFUNZTIONING ROCKETS
RAN “THROLG
HIS HEART KKE -
TIME wWiTH THE BLE
OF STAR-FIRE, HIS
FEET WITH THE SOUNP
OF THE FOOTFALLS OF
PURSUING cREVPHDES !

: R
ANP NOW, ITS .
COME TO Fragrs, ¥

-

WELL-- How

7 LOOKZ

\ 1 l| Wt "'v I .
Lo M i ;'-_.'5"- P o

LASER P5ANS [MORE ... 1 1]

_

The ZX80 Makes the Grade

Lawrence Auer

Introduction

It is not a toy! Even with only 1K bytes
of storage, the ZX80 can be an invaluable
aid to the teacher in the calculation and
evaluation of grades. In this article we
present two programs running on the 1K
Basic machine. The first determines the
test scores and keeps track of which
question caused the class the greatest
difficulty. The second finds the class
distribution of grades, enabling the teacher
to scale the grades. While with more
memory the two programs can be easily
combined, presentation of the separate
codes is made for those, like me, who
want to do something while they wait for
the 16K memory to arrive.

These programs have been used to
handle the bi-weekly exams of twenty
guestions given to the 95 students in my
introductory astronomy class. While, in
principle, the same sort of computations
could be accomplished at the university
main frame computer, there is no compar-
ison between that and a comfortable chair
in front of the TV and ZX80. Further,
because of the way the programs are set
up, the data can be entered piecemeal,
with more being added at your con-
venience. Finally, the tape storage system
makes it a trivial task to keep the results
for all the tests together. You can mount
the cartridge and “instantly” see how the
class did on any exam,

Program 1: Test Scoring

Using the ZX80 to add the scores on
questions is an obvious and useful applica-
tion. The ZXB0 can be even more useful,
however, because it can also keep track
of which questions are being missed. After
all the tests are graded, the teacher has a
measure of which concepts were the
hardest for the students. Knowing the

Lawrence Auer, 1301 Park Hills Ave., State College,
PA 16RO,

July/August 1981

question-by-guestion scoring, the teacher
can see exactly which topics need review.

Before using the first program, edit lines
10 and 11, N is the number of questions
on the test (20 or fewer; more may cause
memory overflow). P is the default number
of points per question. This number is
used for the default when no number is
explicitly entered in answer to the prompt
at line 136. The reason for having a default
P is that most answers are right (we hope!)
and it is needless to have to enter numbers
when just a single NEWLINE will do.

Having defined N and P appropriately,
we can now enter the data. In response to
the prompt “Q", where Q is the number
of the question whose score is being
requested, reply with the value earned.
As described above, NEWLINE by itsell
will give the default value, P. Any other
number is simply typed in the normal
manner. The characters “K" and “E” are
special and are interpreted as follows: 1)
“K* stops (i.e., “kills”) the program at this
point. You can resume grading at exactly
this point at a later time simply by using a
CONTINUE command. More on this
below. 2) “E” means the last score entered
was in “error.” The score is erased, and
you are asked to correct its value.

After the scores on each question have
been entered, the student’s total is given.
At this time you can get a plot of the
relative number of points lost per question
by typing “P" in answer to the prompt.
The length of the bar is proportional to
how many fewer points were earned by
correct answers to this question than the
one that earned the most points. Note
that the shortest bar is the question the
students did best on. The numeric value
of the plotted quantity is listed at the end
of the bar. After looking at the plot, you
can either kill the program with “K" or go
back to enter another exam by typing
NEWLINE,

After stopping the program by entering
“K™ at any time, it may be SAVEd. All
the relevant information is stored. The
program and data may be LOADed, and
you will start at the place where you
stopped simply by executing
CONTINUE.

Program 2: Grade Distribution

The overall performance of the class is
determined by entering the test grades
into Program 2. Grades are assumed to
be in the range 0 to 100. A different range
is easily accommodated by modification
of the scaling used in line 225. Instead of
5, use another number which maps your
input into the range (0.20). After a grade
is entered, a plot of the number of students
receiving a grade in each indicated interval
is made. The first number in a row is the
grade interval being plotted. The length
of the bar labeled with the value G in the
first column is proportional to the number
of people who scored in the range, G to
G+4; e.g., the bar labeled 75 contains all
who scored 75 to 79. The second column
contains the number who scored in this
range; the bar length is proportional to
this figure. The third is the cumulative
distribution, i.e., how many were in this
grade range or lower. The cumulative
distribution is particularly important
because it indicates the relative merit of a
given absolute grade. The last value in
this column is always just the number of
test grades entered so far.

As in Program 1, the letter “E” entered
instead of a grade deletes the grade just
entered, i.e., it erases the error. If you
type the letter “K", the program will stop.
CONTINUE will start you again. SAVE
preserves all data as well as the program,
50 you do not have to enter the grades
again if something prevents you from
finishing in one session.

Programming Suggestions of General
Applicability

Several programming techniques used
in these codes will be useful in other
ZXB0 programs.

When you have to enter the grades for
95*20=1900 answers, most of which are
for full credit, you can get very tired of
typing “5" then NEWLINE. It is much
more efficient simply to type NEWLINE
(NL in prompts) and let the machine make
the default. Unfortunately, if you are
INPUTing into a numeric field, NEWLINE
by itself is ignored; thus, you have to use
a string variable for INPUT. In this case,
NEWLINE by itself sets the string to be
the null string, *". The price paid is the

31

need to convert any non-null string to a
numeric value. For example, one has to
set G=15 when the input is the string
“15", i.e., characters “1” and “5". The
requisite code is in lines 148-151 of
1. Line 152 takes care of the default for
null strings. Note the use of the operator
", which permits the code to work
even if AS is initially null.

It is human (rather than machine!) to
want to use mnemonic notation to enter
signals for action, That is, when you want
something erased, it is more natural to
type “E” than to enter the value 101.
When the input is being made into strings,
it is no problem to check whether the
string is the symbolic signal. This is the
technique used in Program |, line 265. In
Program 2 the input is numeric, however.
In order to use the letters “K™ and “E” as
symbolic signals there, we have to be a
little more tricky. What we do in lines 3
and 4 of Program 2 is to define the variables
E and K, giving them appropriate numerical
values. The text typed in response to an
INPUT statement is evaluated before being
stored into the destination. Thus, typing
E in response to the INPUT statement in
line 200 is equivalent to entering the
number 101. Typing the letter K there
sets G=K=-1 and this value of G triggers
the STOP command in line 201. As each
of these variables can be set to any
appropriate “impossible” test scores, it is
no problem to make modifications if
grades 100 are allowed. Finally, if you
prefer, more dramatic and memorable
variable names like KILL or ERASE can

The CONTINUE Command

Of all the pieces of hidden gold in the
ZX80, the most valuable is the command
CONTINUE. When you leave the program
execution mode either voluntarily because
of a STOP statement in your program or
involuntarily because of an error (like
trying to write too much on the screen),
the place you were when you stopped is
remembered. While in immediate mode,
you can do what you want, including
resetting variables and even editing the
program. The CONTINUE statement will
start you again at the line following the
one where you stopped. Thus, in these
programs you can kill (i.e., “K") whenever
you want, then SAVE the file on tape.
The LOAD operation brings in the file
with the program, all the data, and even
the information on where you stopped.
CONTINE following the LOAD acts just
as if there had been no tape storage in
between. That is, SAVE followed by LOAD
completely re-establishes the environment
as it was before the SAVE operation. The
only thing to remember if you are going
to use the STOP-CONTINUE trick is to
make sure that the statement following
the STOP produces a recognizable cue.
If you just have the sequence, 100 STOP,
110 INPUT X, when you restart with

screen and the cursor waiting for input
with no hint as to what input is wanted.
To avoid this problem in Program 1, for
example, line 139 jumps back to the input
prompt, so you can tell what is expected
when you restart.

One of the problems in having only 1K
of memory is that peculiar errors can
occur when you are OUTPUTing. The
characters to be written on the screen
occupy the same memory as your program.
You can, therefore, be running quite nicely,
entering question scores, and then have
trouble when you try the plot, because
you do not have enough memory for the
output. The choices made for the scaling
of the bar lengths in these programs work
well for my exams with 20 questions and
95 students, but there may be something
unusual about your distributions. If you
do have trouble, do not panic! Simply
change the scaling; reduce the 15 in line
226 of Program 1 and/or the 20 in line
120 of Program 2. None of the data will
be lost as long as you use CONTINUE to
restart.

More memory will permit these programs
to be significantly improved. Programs 1
and 2 could then be combined so that all
you would ever enter would be the question
scores. Also, one could add a subroutine
which would give the test grade above
which a specified fraction of the class
scored. Finally, with 16K you should be
able to store the names with the grades
and thus have your “mark book” on tape.
In any case, | hope that you find these
programs as useful as [have even in their

be used. CONTINUE you will have a nice blank limited form. "
Program 1: Test Scoring

10 LET N = 20 144 LET S(I) = S(I) - G

11 LET P = 5 145 GOTO 135

20 DIM S (N) 148 LET G 0

25 LET T = 0 149 LET G 10%G + CODE(AS) - 28
100 CLS 150 LET A% = TLS(AS%)
105 PRINT "SCORES?"™ 151 IF A% > "" THEN GOTO 149
10 LET T =T + 1 152 IF G < O THEN LET G = P
115 LET R = 9999 153 PRINT G
116 LET ¢ = 0 155 LET 2 Z + G
120 LET Z = 0 160 LET S(I) = S(I) + G
130 FOR I = 1 TO N 165 IF S(I) < R THEN LET R = S(I)
135 PRINT “Q";I;: 166 IF S(I) > Q THEN LET Q = S(I)
136 INPUT AS 170 NEXT I
137 IF NOT A$="K" THEN GOTO 140 171 LET R Q - R

138 STOP 175 PRINT "P TO PLOT",
139 GOTO 135 200 PRINT "GRADE", %
140 IP NOT A$="E" THEN GOTO 148 205 INPUT Af%

141 CLS 210 IF NOT A$ = "P" THEN GOTO 100
142 LET I =1 -1 215 CLS

143 LET Z = 2 - G 216 PRINT "REL ERRORS™

a2

SYNC Magazine

220
222
224
226
227
230
231
232
233
250
255
260
265
270

1
3

4
10
15
20
25
100
110
115
120
122
123
124
125
130
135
140
145
150
155
160
198
199
200
201
203
204
205
206
207
208
' 215
216
220
221
225
230
235
240
245

FOR I = 1 TO N

IF I < 10 THEN PRINT " "
PRINT I;" “;

LET Z = 15%(Q0 - S(I))/R
IF Z = 0 THEN GOTGO 233
FOR J = 1 TO Z

PRINT CHRS (128);

NEXT J

PRINT "R";Q-5(I)

NEXT I

PRINT "K TO KILL"

INPOT AS

IF A$ = "K" THEN STOP
GOTO 100

Program 2: Grade Distribution

REM GRADE HISTOGRAHM

LET K = -1

LET E = 101

DIM C(20)

LET A = 0

LET N = 0

LET S = 1

LET G = 0

FOR T = 0 TO 20

LET G = G + C(I)

LET L = 20%*C(I)/S

IF I < 2 THEN PRINT " v;
PPINT 5%T

IF C(I) < 10 AND I < 20 THEN PRINT "g":

PRINT C(I);"B";G;
IF L = 0 THEN GOTO 150

FOR J = 1 TO L
DRINT CHRF(128)
NEXT J

PRINT "g"

NEXT I

IF N > 0 THEN PRINT "AV=";A/N;
REM K=KILL(STOP), E=EREOCR
PRINT " GIVE GRADE, K OR E"
INPUT G

IF G > K THEN GOTO 205

S5TOP

S0TO 100

IF G < © THEN GOTO 215

LET D = =1

LET G = 9

GOTO 220

LET =
LET
LET
LET
LET
LET
IF
CLS
G0TO 100

+ D

+ N*G
/5
>

B -

L

(G) + D
THEN LET S = C(G)

NOG»z0 D

—,

W Gy il

S

C
5

July/August 1981

Blank Cassettes)

The quality of cassette tape used to
save and load programs is an important
factor in getting the programs to run.
Tape quality for computers is measured
differently from quality for audio tape
The tape must be capable of sending to
the computer the electronic signals of
the program without transmitting extra-
neous noises that could interfere with the
ability of the computer to load the tape.

QOur blank cassettes are tested and
recommended for computer use. C-10
cassette, 5 min. per side, blank label on
each side in a Norelco hard plastic box
[0010] $1.25 each.

Head Cleaner

After hours of use, the read/write head in
a cassette recorder will pick up minute
particles of tape oxide. This dirt will hardly
be noticable in dictation or music. But it is
very noticable in computer use. One dropped
bit in 16.000. and the program won 't load

Help keep your recorder in top shape
with our non-abrasive head cleaner. It consists
of 1B inches of stiff cleansing fabric-in a
standard cassette sheil. One 10-second pass
every 40 hours of use will keep vour heads
as good as new. [0011] $2.00. Send pay-
ment plus $1.00 Shipping per order to:

Peripherals Plus

39 East Hanover Avenue
_ Meorris Plains, NJ 07950 J

MUSIC! for 4K ROM, 1K or more RAM. 2
octaves, 127 note length, any tempo.
Songs repeat. Random sounds also. Cas-
sette and insts. $6.95 pp. $10. outside
U.S. Wm Don Maples, 688 Moore St.,
Lakewood, CO 80215.

Find ZX-80
Owners

Advertise in SYNC, the magazine ex-

clusively dedicated to the Sinclair ZX-80
and The MicroAce. Call or write for de-

tails and a rate card. Let SYNC readers
know who you are.

SYNC

19 E. Hanover Ave.

Morris Plains, New Jersey 07950

33

o

—

Multiplication
Three-in-a-Row

Austin R. Brown, Jr.

“Multiplication Three-in-a Row" is based
on the program “Multiplication Bingo,”
by Jean Wilson, Special Education teacher
at Leadville High School, Leadville,
Colorado. She was seeking a way to
motivate students who were having diffi-
culty learning to multiply and found that
completing five in a row on a Bingo board
helped supply the motivation. An array 5
by 5 is too big for the 1K ZX80, but 3by 3
will fit.

The game proceeds as follows. You
select a square on the board. You are
then given a multiplication problem to
solve. If you solve it within two tries, an
*X" goes in the square. If you fail, an “O"
goes in the square. If you get three X's in
a row before the board is filled, you win.
See Sample Run 1.

The program can be used to build skills
in mental arithmetic, pencil and paper
arithmetie, or calculator arithmetic. It can
generate other ranges of problems by
changing lines 120-130. For example, use
RND{(19) rather than RND(9) to generate
factors into the teens.

This is not a tic-tac-toe game. The
number or location of ('s does not matter,
as long as you can get three in a row by
the time the board is filled.

Programming Notes

The program is built upon the array
U(N), N=1,...9, where N represents one
of the squares on the board. If the square
has not yet been used (the number of the
square still shows in the display), U{N)=0,
If the player has successfully solved a
problem at that square, “X" shows in the
display, and U(N)=1. If the player has
failed to solve a problem at that square,
“0" shows in the display, and U{N)=2,

Austin R. Brown, Jr., 407 Peery Parkway, Golden,
OO RO401.

34

Use of the array helps the program
logic in several ways, as shown in Listing
1. First, we can generate and update the
display without the need for nine different
string variables and the repetitious logic
they require (lines 740-890). Second, we
can easily check for an already occupied
square,, since U(N) will no longer be zero
(line 110). Third, we can also check for
three-in-a-row, since we have success if,
and only if, all three U’s, and hence their
product, are equal to one (lines 230-380).
Fourth, we can easily tell when the game
is over. As long as there is at least one
unoccupied square, its U is zero (lines
300-320). Fifth, we record a right or wrong
answer simply by changing the current U
(lines 190 and 510).

Tie-Tac-Toe

The program can easily be adapted to
a tic-tac-toe game either for two players
or for one player against the computer,
Success for “O" is tested as well as success
for “X" in lines 230-280, except that the
product must be eight,

Listing 2 shows the program modified
for a two-person game, with the computer
simply keeping track of the action. Sample
Run 2 shows a game. Modifying the
program to play computer against human
is left as an exercise for the reader. For
example, a simple strategy of random
moves by the computer could be imple-
mented by the following changes:

74 IF J=2 THEN GO TO 500
500 LET N=RNDi9)
510 IF NOT U(N)=0 THEN GO TO 500
520GO TO 120

This strategy can be bewildering to the
human encountering it for the first time.

Notes:

REMarks should not be entered into
the ZX80. They are included strictly to
show the program logic. "=

Three-in-a-Row

5 REM Multiplication 3-in-a-row
6 REM A.R.Brown,Jr. &6/1/81
7 REM Initialize
10 RANDOMIZE
20 DIM D(g)
30 FOR I=1 TO 9
50 LET U{I)=0
50 WEKT I
60 GO SUB TO0OQ
TS5 REM Pisk sgquare
80 PRINT "WHICH SQUARE?®
90 INPUT N
100 GO SUB 70O
110 IF N<1 OR H>9 OR NOT U(H)=0
THEN GO TO 80D
i1% REM Generate problem
120 LET A=RND(9)
130 LET B=RND{9)
140 PRINT "SQUARE ";N
160 PRINT "WHAT IS ";A;w@n;p;n3

170 INPUT C

i75 REM Cheek for correct answer
180 IF NOT C=A"E THEN GO TO 500
185 REM Right answer

190 LET U(M)=1

200 GO SUB TOOQ

210 PRINT "RIGHT"

220 PRINT

225 REM Cheeck for 3 in a row
230 FOR X=1 TO 3

240 IF U(K)®*U(K+3)%U(K+6)=1 THE
N GO TO 900

250 IF U(3%K-2)%U({3%K=1)%0(3%K)
=1 THEN GO TO 900

260 NEXT K

270 IF U{1)*U(5)*U{9)=1 THEN GO
TO 900

280 IF U(3)%0U(5)*U(T)=1 THEN GO
T0 900

295 REM Check for end of game
300 FOR I=% TO 9

310 IF U(I)=0 THEN GO TO BO

320 NEXT I

355 REM Losing end

360 PRINT "SORRY, YOU LOSE"™

370 GO TO 999

495 REM Check error

500 IF F>0 THEM GO TO 600

505 REM 2nd time, answer & move
510 LET U(H)=2

520 GO sSUB TOO

530 PRINT A;"an;B;"=";A%B

540 GO TO 300

595 REM 1st time, try again

600 LET F==1

610 PRINT "WRONG,"

520 GO TO 160

695 REM Output tableau

700 cLs

710 LET F=1

720 PRINT "MULTIPLY 3-IN-A-ROW"®
T30 PRINT

THO PRINT " ";

T50 FOR I=1 TO %9

760 LET A$=STR$(1I)

770 IF U(I}=1 THEN LET A§="X"
780 IF U(I)=2 THEN LET A$-="O"
790 PRINT A$;

800 IF NOT I=3%(I/3) THEN PRINT
"l " (Shift 4z 1 time)

810 IF I=3 OR I=6 THEN GO SUB B
60

B20 MEXT I

830 PRINT

840 PRINT

850 RETURN

860 PRINT

870 pRINT I

iS5hift A3 11 times)

B&0 PRINT ™ m;
B90 RETURN
B95 REM Winning end
900 PRINT "=- HOORAY, YOU WIN =

Listimge 1.

SYNC Magazine

Sample Run 1

MULTIPLY 3-IN-A-ROW

WHICH SQUARE?

SQUARE 1
WHAT 15 9%87

We gave T2 for the answer

MULTIPLY 3-IN=A=ROW

RIGHT

WHICH SQUARE?

SOUARE &
WHAT 15 6%9%
WRONG ,

WHAT IS 6%g7

We gave Tirst 69, then 54
for the anawer

MULTIPLY 3-IH-A-ROW

RIGHT

WHICH SQUARE?

SQUARE 9
WHAT 15 T®4?
WHONG ,

WHAT IS5 TRA?

We gave first 21, then 14
for the anawer
MULTIPLY 3-IN-A-ROW

July/August 1981

Tic-Tac-Toe

5 REM Tie-Tac-Toe
6 REM A.R.Brown,Jr. B6/6/81
7 REM Initialize
i0 RANDOMIZE
20 DIM U(g)
30 FOR I=1 TO 9
o LET U(I)=0
50 MEXT I
&0 GO SUB 70O
65 LET J=0
69 REM Piek square
70 LET J=d-{J/2)%241
72 IF J=1 THEN PRINT "X MOVES

T4 IF J=2 THEN PRINT "0 MOVES

80 PRINT "WHICH SQUARE?"

90 IHPUT N

100 GO SUB 700

110 IF N<1 OR N>9 OR NOT U(N)=0
THEN GO TO B0

120 LET U(M)=J

130 GO SUB 70O

225 REM Check for 3 in a row
230 FOR K=1 TO 3

235 LET I=U(K)®U(K+3)*U(K+6)
240 IF I=1 OR I=8B THEN GO TO 90

o

245 LET I=U(3*E-2)%U({3*K-1)00(3
=K)

250 IF I=1 OR I=8 THEN GO TO 90
0

260 NEXT K

265 LET I=U{T1)%0(5)%*0(9)

270 IF I=1 OR I=8 THEN GO TO 90
0

275 LET I=U{3)*U(5)*u({T)

280 IF I=1 OR I=8& THEN GO TO 90
0

295 REM Check for end of game

300 FOR I=1 TO 9

310 IF U(I)=0 THEN GO TO TO

320 HEXT I

360 PRINT * - T I E -»

370 GO TO 999

695 REM Output Tableau

T00 CLS

T10 LET F=1

T20 PRINT "TIC-TAC-TOQE"

T30 PRINT

TUO PRINT "™ n;

750 FOR I=1 TO 9

T60 LET A$=STHR$(1I)

T70 IF U(I)=1 THEN LET A$a"Xx"

TBO IF U(I)=2 THEN LET A&="gQn

T90 PRINT A$;

800 IF WOT I=3%(1/3) THEN PRINT

L (shift A 1 Lime)

810 IF I=3 OR I=6 THEN GO SUB 8

820 MNEXT I
B30 PRINT
40 PRINT
850 RETURN
860 PRINT

AT0 PRINT "~ i+ 4

880 PRINT ™ n;

890 RETURN

895 REM Winning Ends

900 IF I=1 THEN PRINT "X WINS "
970 IF I=8 THEN PRINT "0 WINS "

Listing 2.

L1

Lrimes

Sample Run 2

1IC-TAC-TOE

X MOVES,
WHICH SQUARE?

X chooses 5,

TIC-TAC-TOE

0 MOVES,
WHICH SQUARE?

0 chooses B,

TIC-TAC-TOE

X MOVES,
WHICH SQUARE?

X chooses 7.

TIC-TAC=TOE

0 MOVES,
WHICH SQUARE?

0 chooses 3.

as

A murder has been committed and the
perpetrator has threatened to strike again!
It is up to you to uncover the two pieces
of evidence which will identify the murderer
before he can carry out his threat.

The game consists of searching the 4
rooms in the building where the crime
occurred for the incriminating weapon
and fingerprints. Your initial location is
randomly selected as are the locations of
the gun and the prints. The amount of
time allocated to you ranges from 6 to 30
minutes. To remain in your current position
or to move in either a clockwise or counter
clockwise direction requires from 1 to 5
minutes. A diagonal move can take from
2 to 9 minutes.

To search for one piece of evidence
requires from 1 to 5 minutes; to search
for both requires from 2 to 9 minutes. If
your allotted time drops below 6 minutes
one of your associates may search a room
for you and declare it “clean” and therefore
you do not have to search it yourself,
although you already may have done so.

If you run out of time, the locations of
the fingerprints and the gun are displayed.
If you locate the evidence, the amount of
time remaining is printed.

The program is loaded in three sections.
First, an array of 72 print characters is set
up. This array contains the floor plan
display.

DIM A(71)
FOrR I - 0 TO 71

1000
1010
1020
1030
1040
1050
1060
1070

PRINT I + 1,
INPUT K

LET A(I) = K
PRINT A(I)
NEXT 1

Direw Nisbet, 6 MolTan Cre. Toronto, Ont. Canada,
MYVAEL

36

Run this portion of the program and
input the 72 character codes listed below.
If you make an error in entering the values,

Drew Nisbet

you can either rerun the routine or correct
individual entries with a LET statement
le.g., LET A(O) = 135).

135,131,131,131,131,131,131,131,131,131,131, 134

2,

133,

2,

133,

IF (1/12) # 12 = 1 THEN CLS

0,

3,

a0,
0,
0,

29,

8,

0,

o, o0, 0, 31, 0,130
0,133, 3, 0, 3,132
o, o, 0, 0, 0,130
o, o, o0, 32, 0,130
0,133, 3, 38, 3,132

After the first portion has been run,
delete lines 1010 to 1070 inclusive and
enter the following lines:

170 LET K = O

180 FOR I = 1 TO 6
190 FOR J = 1 TO 12
200 PRINT (CHR$(A(K));
210 LET K = K + 1

220 NEXT J

230 PRINT

240 NEXT 1

250 STOP

SYNC Magazine

Key GO TO 170 and NEWLINE and

check the display. If it requires correction
use a LET statement as above. If the
display is functioning properly, it would
be a good idea to save the partial program
at this point.

Now enter the main body of the
program:

100
110
120
130
140
150
160
250
260
270
280
290
300
302
304
310
320
330
340
850
380
390
400
420
430
440
450
460
470
480

Delete line 1000 and save the program.
To execute, key GO TO 100 rather than
RUN as the latter will clear the print
codes stored in array “A", This program
could easily be altered in order to create
other “Search and Find” games. By chang-
ing the names of the articles to be searched

RANDOMISE

LET G = RND(4)

LET P = RND(4)

LET R = RND(4)

LET M = RND(25) + 5
LET GF = 0

LET PF = 0

PRINT “ROOM=";R,”TIME=";M
LET § = RND(5)

PRINT “SEARCH?”

INPUT Y$

IF Y$ = “N” THEN GO TO 470
PRINT “1-GUN”

PRINT “2-PRINTS”

PRINT “3-BOTH”

INPUT F

LETM = M - §

IF F = 8 THEN LET M = M
IF M < 0 THEN GO TO 600
IF F = 2 THEN GO TO 430
IF NOT G = R THEN GO TO 420
LET GF = -1

PRINT “GUN FOUND”

IF F = 1 THEN GO TO 460
IF NOT P = R THEN GO TO
LET PF = -1

PRINT “PRINTS FOUND”

IF GF AND PF THEN GO TO 700
LET T =~ RND(4)

IF M < 6 AND NOT (T = G

LOCATION OF GUN
LOCATION OF PRINTS
STARTING ROOM
AMOUNT OF TIME

GUN FOUND SWITCH
PRINTS FOUND SWITCH

TIME FOR CIRCULAR MOVE

-G

CHECK FOR GUN

460 CHECK FOR PRINTS

OR T =P ORT = R) THEN PRINT

T;” CLEAN”

490
500
510
520
530
540
550
560
570
600
610
620
700

PRINT “ROOM?Z*

INPUT S

IFS<10RS >4 THEN GO TO 500
CLS

LETM=M - 8§

IF ABS(S - R) = 2 THEN LETM =M - G
IF M < 0 THEN GO TO 800

LET R - S

GO TO 170

PRINT “OUT OF TIME®

PRINT “G:*;G,”P:";P

STOP

PRINT “TIME=":M

To run, key GOTO 100, Do not use RUN,
July/August 1981

for and by setting up an appropriate display
for the top of the screen this program
could be used as a basis for a “treasure
hunt,” “spy” or similar game where it is
necessary to locate something that is

hidden. ")

Sample Run

2 8

1 4
ROOM=4 TIME=24
SEARCH?
« °Y" — N/L)
1 =GN
2-FRINTS
S=BOTH
{ "3 - N/L)
GUN FOUND
ROOM??
(*1* = N/L)Y
ROOM=2 FIME=S
SEARCH?
("% = N/L)
1=GUMN
2-FPRINTS
3—E0TH
{ "27 = N/sL)
1 CLEAN
ROAQM?
¢ S = NAL)
ouT OF TIME
G:4 P:3

2 3

1 4
ROOM=2 TIME=1&
SEARCH?
¢ 2¥* = N/L)
1-GUN
2-FRINTS
3-BOTH
{ *3* -~ N/L)
GUN FOUND
FRINTS FOUND
TIME=8G

37

A Parallel Interface for the
ZX-80/MicroAce Computer

Alger Salt

Introduction

Almost everyone who owns a computer will ask or be
asked, “What sort of practical things can it do?" One of the
most obvious practical applications is controlling external
devices; however, few microprocessors or CPUs are designed
to do this directly.

Most manufacturers of microprocessors offer devices called
peripheral controllers which are integrated circuits designed
to be compatible with their particular CPU. These controllers
greatly simplify the task of interfacing external peripheral
devices such as disk drives, terminals, and printers. Fortunately,
the engineers at Sinclair Research Limited chose to design
their microcomputer around the Z-80 CPU which is well-
supported by several excellent peripheral controllers. One of
these, the Z-80 PIO can be used in constructing a simple
parallel interface for the ZX80/MicroAce computers.

Overview of the Z-80 P10

The Z-80 PIO is a 40 pin integrated circuit designed to
serve as a simple direct, TTL compatible interface between
the Z-80 CPU and peripheral devices employing parallel data
transfer. (See Figure 1.) Communication between the PIO
and the CPU is accomplished by connecting the PIO dara
lines directly to the CPU data bus. The P10 is a two-port
device. This means it can send and/or receive two sets of &
bit parallel data. Control lines on the PIO select one of the
two ports (B/A SEL), enable the PIO (CE), and allow the PIO
to differentiate control words from data words (C/D SEL).
Three other control lines (M1, TORQ, RD) insure proper
timing sequences during CPU 1/0 operations, The bars over
the signal names indicate that they are active low,

Each port has two control lines used to establish handshaking
between the P10 and the peripheral device. These two control
lines (RDY and STB) are sometimes, though not always,
necessary Lo synchronize data transfer. In other words, one of
these control lines, the RDY line, may be activated to tell a
device which is sending data to the P10, “Do not send data
now. [am not ready... O.K., now I am ready. Send data.” The
device may respond by activating the STB line, *0O.K., here is
the data. Get it now so I can do something else.” By using the
handshake lines, communication is established between the
P10 and the peripheral device resulting in an orderly, efficient
transfer of data,

Alger Salt, East Carolina University. Chemistry Diepartment, Greenville,
NC 27834,

a8

The PIO contains a number of internal registers used to
control its operation. The most important is the 2-bit mode
control register which can be programmed to select one of
several operating modes on port A or port B,

The PIO may be operated in one of four modes, designated
mode 0 through 3. Mode 0 is the output mode: all eight lines
on the designated port are output to a device. In mode 1, the
input mode, all lines on the port are input from a device.
Mode 2 is the bidirectional mode and is restricted to port A.
In this mode the handshake lines of port B along with the port
A handshake lines are used to control the flow of data in both

Z-80 PIO

i..__ 3

Figure 1, Functional Diagram of Z-80 P1O.

directions on port A. Mode 3, the control mode, is a hybrid of
the input mode and the output mode; any line of the specified
port can be designated as input or output. The control mode
differs from the bidirectional mode in that once a line is
designated as input or output, it stays in that condition and
reprogramming is necessary to alter the direction of data
transfer on that line. The handshake lines are not used in
made 3. A more detailed explanation of the Z-80 PIO operating
modes can be found in references 2, 6 and 7 at the end of this
article. This discussion is restricted to the control mode
imode 3). Other control registers internal to the PIO are used
to store interrupt vector addresses, a distinguishing feature of
the Z-80 P10.

SYMNC Magazine

Let us now see how to construct and program a parallel
interface for the ZX80/MicroAce computer, using this Z-80
PIO under non-interrupt, non-handshake control.

Construction of the Parallel Interface

Figure 2 shows a schematic diagram of the parallel interface.
Port B is used for input to read the states of eight toggle
switches (51-58) while port A is configured for output to drive
eight light emitting diodes (D1-D&). Inverters are used to
buffer the output port. The maximum output current capability
of the PIO port data lines is about 1.5 milliamperes, not
enough to drive an LED but enough to drive one TTL input
or about four low power Schottky {LS) TTL inputs. The
inverted system clock, @, is available at pin #6B on the back
of the computer board. This signal is inverted again before
being presented to the P1O. The handshake lines, STB and
RDY, on each port are not connected. They are not needed
because operating mode 3 will be selected. Since this application
does not require interrupts, the IEI (Interrupt Enable In) line
is tied high and the IEO (Interrupt Enable Out) is not con-
nected,

Signals on the edge contacts of the computer board can be
brought out through a cable using a modified 50-pin edge
connector with 0.1 inch spacing between contacts (i.e., 3M
part #3439-1000). The connector must be modified because it
is closed ended and the computer requires an open ended
version. The modification can be done with a sharp knife or a
small saw.

The parallel interface circuit should be constructed on
some sort of plug-in circuit board for easy inspection and
modification. A high quality plug board such as Vector's
4677-2DP works well since it provides an etched power and
ground bus. Etched pads for mounting dual-inline-plug (DIP)
integrated circuits are also provided. All ICs should be socketed.
Interconnections can be made by soldering small wires to the
pads or by wire wrapping or a combination of both. 1 recommend
the latter method: solder all power and ground lines to the
appropriate pins on the wire wrap IC sockets and wire wrap
control, data and address lines. Locate 0.1uF capacitors at
each IC package, connected between +5V and GND, to
decouple power supply spikes and suppress high frequency
oscillations on the supply.

A suitable enclosure for the interface can be purchased
from most electronic supply companies. It should be large
enough to house a separate power supply which is required
for operation of the interface. The circuit and power supply
could also be mounted on a flat piece of material, such as
aluminium or plexiglass, “open face™ style.

There are two basic options for handling the power supply.
IT you are planning to add more circuitry to your system later,
you should buy or build a relatively high current power
supply. A schematic for a +3V, 3A power supply is shown in
Figure 3. The regulated portion can be used to power the
interface. The unregulated portion can be used to run the
computer if you want to eliminate the standard calculator-
type power supply. However, if you are not planning to add
more active circuitry and you are satisfied with the caleulator-
type supply, you can get by without a separate supply. You
will need though, a +5V veltage regulator to regulate the
rough +9-11V going to the computer down to +5V for
powering the interface which requires a total of about
100mA.

July/August 1981

é
T

— <>t

oty | : EBE

el !
Wicrokoe 'and edge

5y I
£ e] —
iran oY ¢ lfres Fig, ﬂD

r]
Farallel interface board o6 pin DIF “Real world
4 a1
. b y dewice
1

Figure 2. Schematic diagram of parallel imterface circuit showing port A
1/0 lines being used as inputs and port B 1/0 lines as outputs, (Note: The
software driver routine mentioned in the text assumes the opposite
configuration: port A is output and port B is input.)

SECE SN

A Transfommer Radin Seack 273-1514

Q

I Silican dindes ME-114

Figure 3. Schematic diagram of power supply used 1o operate the computer
and the parallel interface circuit.

a9

Figure 5. The inside of the author's system, The parallel interface and
extra memory are located on the expansion board mounied above the
computer.

Figures 4, 5 and 6 are photographs of the author's MicroAce
system. The power supply provides unregulated +10V for
the computer and 2K of on-board memory, and regulated
+5V for the parallel interface pius an additional 6K of memory
on the expansion board which is mounted just above the
computer. The entire system is housed in a steel enclosure
fitted with a hinged lid to which a standard size keyboard is
mounted. The parallel port 1/0 (input/output) lines and
handshake lines are brought out through two 16-pin DIP IC
sockets. The cassette 1/O connections are made available
through two isolated phone jacks mounted on the front of the
enclosure. Two RCA type phono jacks bring out the video
signals: one for driving a standard video monitor and one for
the RF modulator, Since the modulator is external to the
computer, | use a TV as a video monitor for my other
computer (Exidy Sorcerer),

40

Figure 4. Author’s 8K MicroAce system connected 1o a
standard video monitor and standard size kevboard.
The bread board in the foreground holds 16 LEDs
which are used to monitor the outputs of both ports,

Figure 6. The inside with the expansion board removed, revealing the
compuier board.

Programming the P10

Since the ZX80 version of Basie offers no direct means of
communication with an 1/O device, a driver subroutine coded
in Z-80 machine language must be loaded into memory to
operate the P1O. Data and control words can be passed from
Basic to the driver routine through the POKE instruction.
The routine is executed by calling it with a USR instruction.
Some knowledge of the Z-80 CPU instruction set is helpful in
understanding the driver routine.

Data is transferred from the CPU to the PIO by addressing
one of its internal registers and writing to it by using one of
the Z-80's OUT instructions. We need only be concerned
with four of the PIO registers in this application: port A
control, port B control, port A data, and port B data. Each
register is accessed by a unique address. [/0 instructions are
always associated with one-byte addresses comprised of the

SYNC Magazine

lower 8 bits of the address bus. A minimum of 3 address bits is
required to operate the PIO. Normally, address line AO is
connected to the port select line (B/A SEL) of the PIO and
address line Al is connected to the control/data select line
(C/D SEL). The six remaining bits of the address byte are
decoded to select one of a number of 1/0 devices. Since the
P10 is the only 1I/O device in this system, decoding is not
necessary. As shown in the schematic (Figure 2}, address line
A7 is inverted and connected to the chip enable line (CE) of
the P10. Therefore, any address within the range 100000008
(B stands for binary) 11111111B will enable the P1O. The
machine language driver routine (Figure 7) uses the “output
immediate From Accumulator” instruction to transfer a byte
of data to the PIO. This instruction is represented
mnemonically
OUT(n).A

It transfers the contents of the Accumulator of the A register
{one of the Z-80 CPU internal registers) to the [/O device
addressed by n. The table in Figure 8 gives the addresses of
the PIO internal registers and their significance when using
the OUT immediate instruction in this configuration.

Address Meaning

Binary Hexadecimal* Decimal* Contents of
Accumulator
interpreted as...

IXXXXX00 80 128 data — port A

IXXXXX01 81 129 data — port B

IXXXXXI10 82 130 control — port A

IXXXXX11 83 131 control — port B

OXXXXXXX 00 0 PIO is not enabled,

no change

X means “don't care™; this bit can be 1 or (. * These values assume that
X=0.

Figure 8,

Label Location Machine code Mnemonic Comment
(Dec) (Hex)
0 0 00 NOP Do nothing.
1 0 00 NOP Do nothing.
2 62 JE LD A, CFH Load register A with operating
3 207 CF mode control word.
4 211 D3 OUT (82H), A Send control word to port A
5 130 82 control register.
6 62 3E LD A, 00H Load register A with data
7 0 00 direction word. All lines output.
8 211 D3 OUT (82H), A Send data direction word to
9 130 82 port A control register.
10 62 JE LD A, CFH Load register A with operating
11 207 CF maode control word.
12 211 D3 OUT (83H), A Send control word to port B
13 131 83 control register.
14 62 JE LD A, FFH Load register A with data
15 255 FF direction word. All lines input.
16 211 D3 OUT (83H), A Send data direction word to
17 131 83 port B control register.
18 62 JE LD A, 0TH Load interrupt control word.
19 07 a7
20 211 D3 OUT (82H), A Send interrupt control word to
21 130 a2 port A control register,
22 211 D3 OUT (83H). A Send interrupt control word to
23 131 83 port B control register.
24 201 9 RETN Return to Basic program.
23 62 3JE LD A, 00OH Load register A with the
26 00 00 contents of this location.
27 211 D3 OUT (B0OH). A Send contents of register A
28 128 80 to port A data register.
29 201 C9 RETN Return to Basic program.
30 33 21 LD HL,, 0000H Clear the HL register pair.
31 0 00
32 0 00
3 14 OE LD C, 81H Load register with port B
34 129 81 data register address.
35 237 ED INL,(C) Read port B 1/0 lines. Load
36 104 68 data into register L.
37 201 c9 RETN Return to Basic program,
Figure 7.

July/August 1981

41

—

Before data can be sent through a port, certain control
words must be loaded into the internal registers of the PIO.
This process is called initialization, and the code that does
this is called the initialization routine. Several things must be
done in the initialization process: the operating mode must be
set, the data direction must be established, and the interrupt
servicing must be taken care of. In this example the selection
of mode 3 simplifies matters since the handshake lines are not
used. The operating mode is selected by writing a control
word with the four least significant bits set high. The two
most significant bits determine the opterating mode and the
other two bits are not used as shown in Figure 9.

Operating Mode Control Word
Binary Hexadecimal Decimal
Output 0 00XX1111 © 15
Input 1 01XXI1111 4F 79
Bidirectional 2 10XX1111 8F 143
Control 3 HIXXI111 CF 207
Figure 9.

When the control mode (mode 3) is selected for a particular
port, the next control word sent to that port will define the
direction of data transfer on each of the port’'s 1/0 lines. Each
line corresponds to a bit position in the control word: the
most significant bit of the control word corresponds to the
most significant 1/0 line. A high condition (1) means input
and a low condition (0) means output. For example, suppose
the control word FOH (H stands for hexadecimal) is used to
select data direction on the port B. Lines PBO through PB3
would be set up for output while lines PB4 through PB7
would be set up for input,

Interrupts are handled very conveniently in this application;
they are disabled by simply writing 07H (00000111B) to the
control registers in both parts,

The PIO machine language driver routine listed in Figure
7 may be located in the unused spare portion of memory.,
However, in order to save the driver on cassette tape it must
be located in the variables area of memory which is located
immediately following the user Basic program. (When a program
is stored on tape only the program itself, system variables and
program variables are saved; not all of memory.) The two
memory locations 16392 and 16393 contain the low byte and
high byte, respectively, of the starting address of the variables
area. This address will be referred to by the symbol ORG
which stand for origin. Since the value of ORG depends on
the size of the Basic program, all addresses in the driver
routine must be relative to ORG.

The driver consists of three machine language subroutines,
each ending with a return from subroutine instruction. The
first routine initializes the P10, setting up port A for output
and port B for input. (Note: This is opposite to what is shown
in the schematic diagram of the parallel interface. This means
that the switches should be connected to port B and the
inverter-buffer inputs should be connected to port A.) The
interrupts are disabled in the last portion of the initialization
routine. Another routine sends a selected byte of the port A
output routine. It is altered by the execution of a POKE
instruction in the Basic program. The third routine, the port
B input routine, reads the data present at the port B 1/0 lines
and stores the information in the L register. The HL register
pair is cleared, set to 0, at the beginning of the routine.
Storing the data in the L register is convenient because, when
a USR function is called, the value of the HL register pair is
returned. For example, suppose that during execution of a
Basic program the statement LET X=USR(Z) is encountered,

42

where Z is equal to the starting address of a machine language
routine that merely loads the value 31264 in the HL register
pair. The variable X would then be equal to 31264 after the
completion of the machine language routine. If the HL register
pair was not altered during the routine, X would equal Z.

The Basic program that calls the driver routine must provide
a means of entering the machine language code. Getting the
code into the variables area is done by setting up an array.
i.e., allocating a portion of memory (large enough to hold the
driver) with a DIM statement. Getting the proper code into
the array can be done in several ways. The simplest is to enter
the elements as signed integers. Be aware that the integers
are stored in two bytes of memory, with the less significant
byte first. This makes it very difficult to decipher the machine
code. A more elaborate method involves writing a Basic
monitor which would include a hexadecimal-to-decimal routine
and a decimal-to-hexadecimal routine for entering and displaying
one-byte entries in hexadecimal notation. This would require
perhaps more memory than a 1K machine could accommodate,
but inspection and modification of the machine code would
be much easier. The Basic program in Figure 10 employs the
former method for entering the code.

10 ODIM M{20)
20 LET v=14392
30 LET ORG=FEEK (V) +PEEK (V+1) 325642
40 LET AD=0RG+25
30 LET BI=0ORG+30
&0 LET FMLA=A0+1
70 PRINT
a0 FRINT
PO FRINT
100 FRINT “MENUY
120 FPRINT "1) INPUT CODE“
130 FPRINT "2} REVIEW CODE™
140 PRINT *"3) FORT —-@&- OUT"™
150 PRINT "4) PORT —-B-— INY
160 INFUT &
170 LET A=Ax1000
180 CLS
190 GUSUBR A
1000 FOR I=0 TO 20
1020 FPRINT 1
LO4d INFUT ML)

1060 NMEXT 1

1080 RETURN

2000 FOR I=1 TO 20

<020 PRINT I+0RG,FPEEK (1+0RG) , L+ORG+21,

FEEE ({ I4+0RG+21)
2040 MEXT 1
200 INFUT I4
2080 RETURN
J000 PRINT “"ENMTER BYTE OUT"
020 INFUT B
3040 POKE MLA.B
S0&0 LET X=USK(ORG)
080 LET A=USK (AL
100 PRINT "ANOTHER BYTE +v
F120 INFUT Is
3140 CLS
Z1&0 IF NOT Ig="" THEM RETURM
2180 GOTO Z000
4000 PRINT "HIT MEW LINE 10 READ FUORYT BY
4020 INFUT I3
4040 [CLS
4060 IF NOT Zs="" THEN RETURN
AOB0 LET X=USR{(ORG)
4100 LET X=USR(BI}
4120 FPRINT "DATA AT FPORT B...":¥
4140 GOTA 4000

Figure 10,

SYNC Magazine

This Basic program is menu-driven, giving the user the
following options: entering the machine code, reviewing or
listing the machine code, entering the byte to be sent out
through the port A 1/0 lines, and reading the data present at
the port B 1/0 lines. The variables used in the program are
listed in Figure 11. The Sinclair version of integer Basic
allows variables to be used as labels for GOTO and GOSUB
statements. This feature is absent from many “expensive”
versions.

Variable Meaning

ORG Beginning of driver routine.

AOD Beginning of port A output routine.

BI Beginning of port B input routine.

MLA Location of byte to be output through port A.
V.V+i Points to the beginning of the variables area.

Figure 11.

Remember, when you get the driver routine loaded into
memory, either by hand or by tape., do not press RUN.
Instead, press GOTO followed by a number less than or equal
to the lowest line number. GOTO 1 is safe.

Operation of the program is straightforward. The user is
first shown a menu and is prompted to input a number
between 1 and 4. If 1 is entered, the user is prompted to enter
the signed integer elements which comprise the machine
code, In this program the user should respond with the
following integers. The screen is cleared after each entry.

Display Enter Display Enter

0 0 10 =32045
1 -12482 11 -31789
2 -32045 12 16073
3 62 13 -11386
4 -32045 14 -13952
5 -12482 15 13
6 31789 16 3584
7 -194 17 -4735
8 -31789 18 -13976
9 1854 19 0

20 0

Figure 12,

Item 2 on the menu displays the contents of the array in
which the driver routine is buried. Item 3 asks the user to
input an integer, between 0 and 255, to be output through the
port A I/O lines. For example, if the integer 255 is entered, all
eight 1/0 lines will be set high; if 0 is entered, all lines will be
set low. Selection of item 4 will read the port B data present
at the port B 1/0 lines. If lines 0 and line are high and the
others connected to ground, the decimal value *129" will be
displayed. One way 1o exit the program is to break (hit the
space key) while the screen is blank. Another way is to enter
the letter “Z" when the computer is expecting an integer
input, indicated by the appearance of the cursor in
inverse video.

Applications

The number of possible applications for the ZX80/MicroAce
with a parallel interface is limited only by the user’s imagination.
With 16 /O lines, interfacing devices such as A/D (analog to
digital) and D/A (digital to analog) converters to the computer
is a possibility perhaps once thought unachievable by many
ZXH0/MicroAce owners. Control of high voliage-current devices
is also possible with relays and relay driver circuits.

With an A/D converter one could realize an inexpensive
data acquisition system for monitoring and recording various
quantities in the laboratory, in industry, or in the home. For

July/August 1981

instance, a temperature to voltage or temperature to current
converter could be connected to the A/D for recording
temperatures over a period of time at specified intervals. The
calibration could be done in software to reduce hardware
costs. Of course, a simple voltmeter would also be a useful
application.

A programmable voltage source or power supply could be
constructed by connecting a D/A converter to the parallel
interface. Complex waveforms can be generated by cycling
through a table of data words to be output by the D/A thus
providing the user with a programmable function generator.
An A/D converter can even be realized by using a D/A and a
voltage comparator in a configuration known as a successive
approximation A/D converter.

Figure 13. Schematic diagram of relay and computer controlled, optically
isolated relay driver circuit.

Figure 13 shows a circuit that enables computer control of
high voltage-current devices such as televisions, coffee makers,
and lights, (NOTE: Use caution if you decide to build this
circuit. All high voltage wires and connections should be
isolated and insulated from the user and the computer circuits).
In this circuit an output line from one of the inverting buffers
is used to drive an optically isolated relay driver circuit. An
optical coupler with a darlington transistor output is used 1o
isolate the computer circuits from any high voltages which
may appear. The darlington output provides higher current
driving capability than a standard, single transistor optical
coupler but at the sacrifice of speed which is of no consequence
in this application. Any comparable relay with a 12 VDC coil
will also work. Be sure to stay within the current ratings of the
contacts, however. Relays with other DC (direct current)
voltage ratings will also work with appropriate resistor-value
substitutions in the circuit.

As [said, the possibilities are limitless. You may decide to
just let the computer turn on LEDs in random sequence. At
any rate, | hope you will experiment and share your discoveries
with others via SYNC.

Selected References
I. Artwick, Bruce. Microcomputer Interfacing. Prentice-Hall, 1980,

1. Barden, William Ir. The Z-80 Microcomputer Handbook, Howard
W, Sams and Co,, 1979,

X Engineering Stall on Analog Devices, Inc. Analog-Digital Conversion
Nates. Analog Devices, 1976,

4. Nichols, Elizabeth: Nichols, loseph; Rony, Peter. Z80 Microprocessor
Programing and Imterfacing. Books 1 and 2. Howard W. Sams and Co.,
19749,

5. Sali, Alger. “Build Additional RAM.” Synsax 2, no. 3 (March 1981).

6. Z80 Assembly Language Programming Manual. Zilog, 1977,

7. Z-80-PICG Z80A-PIO Technical Manual. Zilog, 1977,
See SYNC NOTES for a P.5. from the author.

43

If you have spent much time looking at
the schematic for your ZX80 or MicroAce,
and if you have had the opportunity to
compare it with schematics for other home
computers, you probably have noticed
that there are considerably fewer parts.
This is due to the efficiency of circuit
design in several areas. One of these areas
involves the absence of separate character
generator ROMs in the video circuitry.

The character generator is contained
in the same ROM that holds the Basic
interpreter. Sixty-four eight byte blocks
are located in addresses 3584 to 4095 (0E00
to OFFF hex). While the ZX80 is in the
video display mode, the CPU is addressing
these memory locations and loading the
data into IC9 (U10 for MicroAce). This
data transfer is parallel, or eight bits at a
time. The data is then shifted serially, or
one bit at a time. These bits go to the
video modulator which causes either light
or dark spots on screen, depending on
whether the bit is a “one” or “zero.” The
IC21 (U14) keeps track of which byte is
to be addressed by counting up to eight
horizontal syne pulses to determine which
of the eight horizontal lines for each
character is being displayed.

You can examine each of the 64 char-
acters in more detail by using the following
program.

1@ INPUT A%

28 LET A=(CODE(A%)+*B)+I584
I8 FOR X=@ TO 7

4@ LET C=PEEK (A+X)

S@ FOR ¥=@ TO 7

E@ LET E=2Z#%({7-Y)

7@ IF C=E OR C}E THEN GO TO i0@
8@ PRINT " "3

S@ GO TD 12@

1@@ LET C=C-E

11@ PRINT CHR®(128)3

128 NEXT Y

13@ PRINT

140 NEXT %

PRESS RUM and MNEWLINE.
any kKey and MEWLINE.

Then press

Dennis Duke, 716 Torri Cr.. Aledo, TX 76004,

44

Mini-Billboard

Dennis Duke

Press RUN and NEWLINE. Then press
any key and NEWLINE.

Line 20 converts the character AS into
the address of the first byte for that
character in ROM. Line 40 sets C equal
to the decimal value of that byte which is
between () and 255 inclusive. In the first
pass of the FOR-NEXT loop in lines 50 to
120, C is examined to determine if the
most significeit bit (MSB) of the data is a
“one” or a “zero.” If the MSB is a “zero,”
a space is printed. If the MSB is a “one,”
an inverse space is printed. In the next
pass, the second most significant bit is
examined and printed. The last pass will
examine and print the least significant
bit.

After eight bits have been printed, line
130 causes a new line so the next byte can
be printed directly below the first, The
FOR-NEXT loop in lines 30 to 140 causes
eight bytes from sequential addresses to
be printed.

The addition of another FOR-NEXT
loop, an array, and some other modifica-
tions to this program allows us to print an
eight character string on two rather large
lines to create a “Mini-Billboard” on the
TV screen.

Mini-Billboard

S DIM ACB)

12 INPUT A%

15 FOR I=1 TD 8

20 LET ACI)=(CODE¢ASI+E)+T584
21 LET A%=TLH(AS%)

23 NEXT I

25 LET F=1

27 LET L=4

I@ FOR X=@ TO 7

35 FOR I=F TO L

4@ LET C=PEEK (RCIX)+X)
5@ FOR ¥=B TO 7

E@ LET E=2##k(7=Y)

7@ IF C=E OR C)E THEN GO TO 1@@®
EBA@ PRINT " "5

8@ GO TO 12@

108 LET C=C-E
110 PRINT CHR&(122)3

120 MEXT ¥

130 MNEXT I

14@ MNEXT X
1580 LET F=F+4

LE@ LET L=L+4
178 IF L=B THEN GO TO 3®

Press RUN and NEWLINE. Then enter
READ SYNC {or any two four letter words)
and NEWLINE,

You probably noticed we no longer
need a PRINT statement in line 130 since
four groups of eight characters are now
printed in a line which will cause an
automatic new line by coming to the end
of a 32 character line. If you want to use
a different graphic, change the number in
line 110. Try also 7, 136, 8, and 223,

S0 now you have a program which will
print two large, four letter words on your
TV screen. This may lead to some inter-
esting suggestions from your friends, but
have fun with it anyway.

SYNC Magazine

——_—_—

Hardware Review

Anyone with a Sinclair or MicroAce has experienced the
hassle of having to check the TV screen after every entry to
see if it got into the machine. Of course, there are those
people with good peripheral vision who can manage this feat
without bobbing their heads, but not me. So when I saw an ad
for a “keyboard beeper,” | realized this most certainly would
be a big help in entering programs on the membrane keyboard
and sent for one.

owm———

The beeper comes assembled and is extremely simple. It
consists of two integrated circuits, two resistors, and a capacitor
mounted to a P.C. board barely larger than the components.
The power and ground wires are connected to the ZX80
board just below the modulator on some wide power traces.

Joe Urasi, 2028 Knightsbridge Dr., Cincinnati, OH 45244,

Keyboard Beeper

Joe Utasi

Five wires (which were twisted into a bundle) go to the
keyboard side of the five pullup resistors at the extreme lower
left side of the board. The order of sequence does not matter,
as long as you connect to the side of the resistors that goes to
the keyboard and not power. It is easy to see which side goes
to the keyboard by just following the traces.

The last step is to install the small round piezo-electric
transducer which produces the sound. The directions provided
with the beeper suggest soldering one edge to the top of the
modulator (the left side), so that is where [put it. The one
remaining wire from the beeper board is soldered to the
white portion of the transducer. | used a piece of carpet tape
(not included in the package) to mount the beeper to the
inside of the case top on the front surface of the “blister.”

The beeper worked perfectly the first time. Slight changes
in the tone of the beep for different keys can be detected.
This might be an asset if you have a good ear.

The real advantage comes when entering SHIFTed com-
mands. Programming seems to go faster with less aggravation
now that I know | am making good “contact” with the
keyboard. 1 would certainly recommend the beeper as a
definite improvement to the ZX80.

Keyboard Beeper, $12.
Burnett Electronics
908 Morris St.
Cincinnati, OH 45206

The Colossal Computer Cartoon Book

—

Do

Have
More
Fun?

.

Computer
Enthusiasts

woul FAVORITE S{ILHCE |

The best collection of computer cartoons ever is now in
its second printing, and sports a bright new cover. The
fifteen chapters contain hundreds of cartoons about
robots, computer dating, computers in the office, home,
and lab, and much more. 36 cartoonists share their views of
man's ultimate machine.

Keep this book with your reference works. When
needed, the right cartoon can say it all for you. When you
need a break from debugging a good laugh can give you a
welcome lift. Recommended for hours of fun and comic
insight.

Edited by David Ahl, mastermind behind the April Fool's
issue of Dr. Kilobyte's Creative Popular Personal Re-
creational Micro Computer Data Interface World Journal,
this cartoon book contains much of that same incurable
zaniness. [Want this issue? It's April 1980 and only $2.50
postpaid].

— 1T
"‘\' |

A large 8% x 11" softbound collection of 120 pages, it still sells for only $4.95. (6G).

July/August 1981

45

—

Hardware Review

8K Basic ROM

David Lubar

While the 4K Integer Basic in the Sinclair
ZX80 is adequate for many applications,
most programmers will eventually feel a
hunger for more power. True, advanced
functions can be simulated by way of
subroutines, but such measures eat memory
at an alarming rate. Enter the 8K Basic
ROM. The chip costs a mere $39.95, which
is an extremely low price for any ROM.
Some versions of Basic are sold for over
5200 on disk. Sinclair gets four stars for
not robbing its customers.

Plugging In

Installing the ROM chip requires opening
the Sinclair. Most owners have probably
already done this out of curiosity and
learned that nothing disasterous follows.
One really has to go out of his way to hurt
the little critter, The only problem is dealing
with the plastic pins which hold the case
together. Once the case is open, the old
ROM has to be removed. This requires
some patience. Il a chip is pulled with
unequad pressure, the pins can be bent,
It's best 1o keep the old ROM intact, for
reasons that will be covered later. The
new ROM is installed by lining up the
pins and exerting gentle pressure, Next, a
new keyboard overlay is put in place.
This overlay contains letters, numbers,
keywords, graphics symbols and functions,
with color coding to aid the confused.
Once the ROM has been tested by power-
ing up the computer, the case can be
replaced.

Features

With the ROM installed, the Sinclair
has floating point capability, It can handle
decimals with nine-place accuracy, Other
added functions include string and numeric
arrays of any dimension, trig functions,
and extended string functions, The PLOT
and TAB commands allow formatting of
text and graphics. Unfortunately, the
proposed DRAW command, which would
have drawn a line between any two sets
of coordinates, was not included in the
final version of the Basic,

46

As before, keywords are obtained with
a single stroke. By hitting the FUNCTION
key. the user can also obtain functions
with one keystroke. Don't get excited about
the commands FAST and SLOW. The
Sinclair already operates in the FAST
mode. The SLOW mode (1o eliminate
flicker of the display) only works on the
ZX 81, which is not yet available in the
U.S. There is a SCROLL command, which
moves the screen display up one line.
The computer will still crash if you attempt
to write beyond the screen.

Several commands have been provided
for use with the printer Sinclair plans to
introduce. The user will be able to send
listings to this printer and to print. the
contents of the screen. For interactive
programs, there is an INKEYS command.
This reads the keyboard without requiring
NEWLINE. The pause command sends
the contents of the display list to the
screen and waits a specified amount of
time. This allows for limited animation.
but still produces a flicker. All in all, the
8K Basic greatly expands the potential of
the Sinclair.

Compatability

The 8K ROM contains an improved set
of tape routines. While this means that
loading and saving should be less hassle.
it also means that you can't load old-
ROM tapes into a new-ROM machine.
And even if you could load such programs.
they wouldn't run. This means most users
will be doing a lot of translating. Two
major differences must be kept in mind.
First, many programs took advantage of
the Integer Basic, ignoring the remainder
after division. To simulate this in the new
Basic, use the INT function. Secondly,
where the Integer Basic ROM used minus
one for true when evaluating logical
operations, the 8K ROM uses positive
one. Any calculations based on logical
operators will require a sign change during
translation.

Ideally. it would be nice to be able to
switch from one ROM 1o the other.

Someone is bound to produce such a switch
in the near future and many enterprising
hobbyists are likely to design their own.
While such a switch would clobber anything
in memory, it would allow loading of either
flavor of tape without pulling and replacing
chips. For this reason. it is advisable to
hold onto the old ROM.

The most noticable difference between
the ROMs occurs when you try entering
a 1K program. The new ROM uses about
100 bytes more of RAM than the old
ROM. Most programs that fit into 1K
before won't fit now. To get any value
out of the new Basic, a user should have
at least 2K, preferably 16K.

S0, if you are feeling limited by 4K
Basic, and either plan to expand memory,
or already have, then the 8K Basic ROM
is an excellent way to extend the capabilities
of your Sinclair. The 8K Basic ROM is
available for $39.95 plus 54 shipping from
Sinclair Research Lid.. 1 Sinclair Plaza.
Nashua. NH 03061. "

Iru) Ehis

This column will feature short programs
to show off your ZX80. impress your family
and friends. and tickle your imagination
when SYNC arrives at your place. We
invite your contributions. Address them
to S¥YNC. 39 E. Hanover Ave.. Morris
Plains. NJ 07950,

10 LET M=16567
20 FOR A=386 TO 419
30 POKE M+ A-386,PEEK(A)
40 NEXT A
30 POKE M+A-386,201
60 FOR A=0TO 32767
70 PRINT A
80 LET B=USR(M)
90 CLS
100 NEXT A

Notes:
10 A few bytes after DF-END
20 Section in Basic to turn on screen
50 Return at end
Enter RUN and NEWLINE. You will have
to adjust the screen to get as good a
picture as possible, but it still will not be
perfect.
Our thanks to:
David Goodrich
124 NE Spruce
Bartlesville, OK 74003 "

SYNC Magazine

e ——————————————————————— e

——

Software Review

And the Walls Came).0
2
i
L4
Down

After the successful introduction of
Super ZX80 Invasion, |see SYNC 3:5]|
Softsyne has come out with Double Break-
out, its second active display game, Double
Breakout is just as much fun as Super
ZX80 Invasion, and even more challenging.
This, too, fits into 1K of memory.

After loading the game from the cassette,
the words “100 REM" appear at the top
of your screen. Enter “GO TO 1" and
then select your level of play. There are
seven skill levels where 7 is slow enough
for beginners, 4 is medium, and 1 is
extremely fast for the expert. Softsync's
brochure claims that you do not have a
chance at level 1, but we have found that
after extensive play you do have a good
chance.

A game field 31 spaces wide and 18
spaces high appears on the sereen. Within
the area are two walls of blocks running
vertically, each five rows thick. One is in
the middle of the screen, and the other is
off to the right. The paddle appears in the
upper left hand corner of the screen and
can be moved up and down along the left
side by using the arrow keys (5 and 8).
The makers recommend that your com-
puter be turned sideways so the keys will
face up and down according to the move-
ments of the paddle, but we suggest that
you turn your television sideways if possible.
The ball, represented graphically by the
letter “0", bounces between your paddle
and the blocks, each time chipping a block
off the wall. Once you break through the
first wall there is another wall which you
must also knock out.

David and James Grosjean, 50 Kings Rd., Chat-
ham, NJ 07928,

July/August 1981

David and James
Grosjean

You have nine balls with which to knock
out the blocks. The number of balls
remaining is displayed in the left hand
corner of the screen, just outside of the
playing area. Each time you miss the ball,
the number diminishes by one, and the
next ball is served immediately. If you
lose all the balls, a new game is started,
and, if you successfully clear out all the
blocks, the ball continues to bounce
around.

= [y | e
SOFTWARE PROFILE
Name: Double Breakout
Type: Arcade Game
System: Sinclair ZX80; MicroAce.
4K ROM
Format: Cassette
Language: Basic
Summary: Even more challenging
than Super ZX80 Invasion

Price: $14.95 plus $1.50 shipping
Manufacturer:

SOFTSYNC, INC.

P.O. Box 480

Murray Hill Station
New York, NY-10156

You cannot stop the game to change
skill levels during play. The BREAK key
does not function. You must unplug the
machine and reload the game,

By deleting line 100, the portion of the
program written in Basic is revealed. This
is the part which asks for the ball speed
and then calls a machine code subroutine
which actually plays the game. Line 450
of the program makes sure you do not
enter a speed slower than 7 or faster than
1. If you delete this line, you can enter a
speed slower than 7. The game will run
the same as before even with line 100
missing.

For those of you who play the original
arcade Breakout games by Atari, here
are a few comparisons: The name Double
Breakowt does not mean two balls and
two paddles, like Atari's, but two walls of
blocks. This could be confusing. In Atari’s
arcade Double Breakout, the ball increases
speed as it hits more blocks, but in this
Double Breakout the speed you choose
at the beginning of the game remains the
same. Softsync's Double Breakout gives
nine balls with automatic serving, while
the arcade game gives only three balls
with manual serving. Double Breakout
serves a new ball as soon as one is lost, so
on level 1, if a ball is lost, the next one
will be served so quickly, that you might
not be able to get to it in time return it.

One shortcoming of the game is that
there is is no scoring, and another is that
there is no extended play such as extra
balls or walls.

Double Breakout is another break-
through in creating active display games
for the ZX80. We had great fun playing
Double Breakout and are amazed at how
much they fit into 1K. L

47

rEsOurcE2s

Software

¢ ZX80/MicroAce software on cassette:
Dragon Castle Adventure, Betting Sys-
tem for Horse Players, Robot Composer,
and ESP Guessing; all 4 for $10.
Cecil Bridges
1248 N. Denver
Tulsa, OK 74106

* Three cassette tapes: (1) Slor Machine,
Robot Fight, Corporation, Tank Battle:
(2) Lucky Lindy, Crop Duster, Nuke
Em, Carrier Landing; (3) The Pharaohs
Treasure; $10 each.

Tensor Technology Inc.
P.O. Box 17868
Irvine, CA 92713

o Smart Reversi |Othello]. Play the classic
game against your ZX80. Uses a very
strong move algorithm extracted from
a much larger program; game board
display. (Othello [R] is a trademark of
CBS Toys, Ine.) $6. £3.50 (U.K.)

C. W. Percival
193 Peaceable St.
Ridgefield, CT 06877

* The ZX80 Companion is now available
with a 20 pp. supplement for the ZX81.
The supplement is available separately
for £1.50,

Linsac

68 Barker Road

Linthorpe

Middlesbrough, Cleveland, TS5 5ES
England

* ZX80 Multiple Line Statements

Easy. Useful Programming Trick.
Saves memory, runs faster. Details £1
ine. postage (U.K.) or $2.50 inc. airmail
(USA).

Tim Humphries

16 Coniston Road

Sutton Coldfield

West Midlands

England

* ZX80 Graphics; 48 pp. containing pro-
gramming techniques and 6 original pro-
grams: 38 incl. postage.

SUMWARE
P.O. Box 30
Shawville, PA 16873

48

ZX80/1 Record: a tape record system
to save, load, or enter new 96 byte
records; ideal for addresses: for all 1K
machines (4K/8K ROM); £3; 89, Direc-
tory; a simple program to read tapes
and display program names; (8K ROM);
£2; 36.

Logan Software

24 Nurses Lane

Skellingthorpe

Lincoln LN6 OTT

UK

Music cassette: Side A: Player ZX80;
Side B: space MUSE-AK, a random
sound program. Prepaid orders; $6.95
postpaid ($10 outside the U.S.). Other
programs available.

William Don Maples

688 Moore St.

Lakewood, CO 80215

5 cassettes: (1) Games; (2) Junior Edu-
cation; (3) Business and Household: (4)
Games; (5) Junior Education: £3.95,
Designed for the ZX81, but many will
run on the ZX80 with 8K ROM: some
need the 16K RAM pack. Cheque/PO;
Access/Barclaycard.

Sinclair Research

FREEPOST 7

Cambridge, CB2 1YY

UK

* Microcomputer Index: subject index-

ing of articles in 20 microcomputer peri-
odicals,
Microcomputer Information Services
2464 El Camino Real
Box 247
Santa Clara, CA 95051

Filing program “Multifile™; £17.50.
Machine code assembler “ZXAS™ for
ZX80 or ZX81 (specify); £3.95.

Bug-Byte

251 Henley Road

Coventry CV2 |IBX

England

* Compute and display program (1K &
2K) with instruction booklet, coding
sheets, and coding charts for Z X80 (4K
ROM); £4.95.

JRS Software

19 Wayside Avenue
Worthing

West Sussex, BN13 IV
England

* Wide range of games for ZX80/1 (4K
& 8K ROM).
Premier Publications
12 Kingscote Road
Addiscombe, Croydon,
Surrey
England

* 2 versions of Defender with built in
software to drive their soundboard (£25);
£4.50 small screen; £5.50 large screen.

Quicksilva

95 Upper Brownhill Road
Maybush, Southampton,
Hants

England

Hardware

* Re-Zolv Resist. Used with positive or
negative transparencies; circuit patterns
can be drawn also; develops with water.
For the hobbyist and the professional
engineer. Starter kit: COD $13.40; §12
for prepaid. Phone (217) 352-9336.

Coval Industries, Inc.
2706 W. Kirby Ave,
Champaign, IL 61820

* MicroAce upgrade products:

8K ROM; 535,
Video upgrade board for flicker free
display (8K ROM required); $29.50.
MicroAce 2K Computer Kit; $149.
Planned for the fall: 16K RAM, $150;
4K RAM, 5110,

MicroAce

1348 E. Edinger

Santa Ana, CA 92705

Users Groups

» ZX80 Southeast Region Club
869 Levitt Parkway
Rockledge, FL 32955
Newsletter planned beginning in August.
Pres. Ralph Coletti. Inquiries from
interested parties welcome.

SYNC Magazine

e

creative
compating

Creative's own outrageous Bionic Toad
in dark blue on a light blue shirt for
kids and adults.

Plotter display of Pi to 625 Places in
dark brown on a tan shirt.

Creative Computing-- Albert Einstein in
black on a red denim-look shirt with red
neckband and cuffs.

Give your
tie a rest!

I'd rather
- be playing
g, SPacewar!

"

All T-shirts are available in adult sizes
5.M,L.XL. Bionic Toad, Program Bug and
Spacewar also available in children's sizes
S(6-8), M(10-12)and L{14-16). Made in USA.
$6.00 each plus 75¢ shipping.

Specify design and size and send payment
to Creative Computing, 39 E. Hanover Ave..
Morris Plains, NJ 07950. Orders for two or
maore shirts may be charged to Visa, Master-
Card or American Express. Save time and
call toll-free 800-631-8112 (in NJ 201-540-
0445),

Crash Cursor and Sync from the comic strip
in SYMNC magazine emblazoned in white on
this black shirt

I'd rather be playing spacewar-- black
with white spaceships and lettering.

Beware the
Program BUG!

iremm Bt ad (e Cmmpne

The Program Bug that terrorized Cyber- Rall little

down the block with this
Computer Bum-- black design by car-

toonist Monte Wolverton on gray
denim-look shirt with black neckband
and cuffs.

nia in Katie and the Computer is back
on this beige t-shirt with purple design.
You can share the little monster with
your favorite kid.

black Robot Rabbit (on a bright orange
t-shirt) on your back and you can
intimidate every carrot, radish or cuke

in your way.

THRILL TO THE INSANE ADVENTURES OF-- %E’T

-..A SCIENCE -
FICTION
CARTOON
COMEDY
SERIES IN
EVERY ISSUE
OF...

Brought to you by the people at

creative compatirg

SYNC is the dynamite bi-monthly magazine for users of the Sinclair ZX80. The main
focusis on applications, programming technigues, hints and tips forgetting the most
outofthe ZX80. SYNC also reviews new peripherals, software and books for the ZXB0,
Subscriptions to SYNC cost just $10 for six bi-monthly issues (E10 in the U.K.). Send to
SYNC, 39 E. Hanover Avenue, Morris Plaing, NJ 07950, USA,

L

games,
applications,
reviews and

