November/December 1981 Volume 1, Number 6 $2.50 (USA)
£1.20 (UK)

The magazine for Sinclair users

Programs & Hardware:

¢ Inventory
e Memory & I/O
Expansion
Lo _ .
Machine Language: Py 1 B S ==l

L A % = ".
R o

¢ Introduction
e READ on the ZX80 -

Features:
¢ CompuKid
e Perceptions
e Kitchen SYNC
e Resources

Games:

e Word Search

e Taxman
in a Maze
Moving Artillery
Hampson's Plane
Hidden Chessmen

e ——

David Ahl, Founder and
Publisher of Creative Computing

You might think the term "creative com-
puting” is a contradiction. How can some-
thing as precise and logical as electronic
computing possibly be creative? We think
it can be. Consider the way computers are
being used to create special effects in
movies—image generation, coloring and
computer-driven cameras and props. Oran
electronic “"sketchpad” for your home
computer that adds animation, coloring
and shading at your direction. How about a
computer simulation of an invasion of killer
bees with you trying to find a way of keep-
ing them under control?

Beyond Our Dreams

Computers are not creative per se. But
the way in which they are used can be
highly creative and imaginative. Five vears
ago when Creative Computing magazine
first billed itself as “The number 1 maga-
zine 'of computer applications and soft-
ware,” we had no idea how far that idea
would take us. Today, these applications
are becoming so broad, so all-
encompassing that the computer field will
soon include virtually everything!

In light of this generality, we take “appli-
cation’” to mean whatever can be done with
computers, ought to be done with comput-
ers or might be done with computers. That
is the meat of Creative Computing.

Alvin Toffler, author of Future Shock and
The Third Wave says, "l read Creative Com-
puting not only for information about how
to make the most of my own equipment but
to keep an eye on how the whole field is
emearging.

Creative Computing, the company as
well as the magazine. is uniquely light-
hearted but also seriously interested in all
aspects of computing. Ours is the maga-
zine of software, graphics, games and sim-
ulations for beginners and relaxing profes-
sionals. We try to present the new and im-
portant ideas of the field in a way thata 14-
year old or a Cobol programmer can under-
stand them. Things like text editing. social

A REMARKABLE MAGAZINE

creative
compating

“The beat covered by Creative Computing
is one of the most important, explosive and
fast-changing.”— Alvin Toffler

simulations, control of household devices,
animation and graphics, and communica-
tions networks.

Understandable Yet Challenging

As the premier magazine for beginners, it
is our solemn responsibility to make what
we publish comprehensible to the new-
comer. That does not mean easy; our
readers like to be challenged. It means
providing the reader who has no prepar-
ation with every possible means to seize
the subject matter and make it his own.

However, we don't want the experts in
our audience to be bored. So we try to
publish articles of interest to beginners and
experts at the same time. Ideally, we would
like every piece to have instructional or
informative content—and some depth—
even when communicated humorously or
playfully. Thus, our favorite kind of piece is
acessible to the beginner, theoretically
nen-trivial, interesting on more than one
level. and perhaps even humorous.

David Gerrold of Star Trek fame says,
“Creative Computing with its unpreten-
tious, down-to-earth lucidity encourages
the computer user to have fun. Creative
Computing makes it possible for me to
learn basic programming skills and use the
computer better than any other source

Hard-hitting Evaluations

At Creative Computing we obtain new
computer systems, peripherals, and soft-
ware as soon as they are announced. We
put them through their paces in our Soft-
ware Development Center and also in the
environment for which they are intended —
home, business, laboratory, or schoal,

QOur evaluations are unbiased and accur-
ate. We compared word processing printers
and found two losers among highly pro-
moted makes. Conversely, we found one
computer had far more than its advertised
capability. Of 16 educational packages
only seven offered solid learning value.

When we say unbiased reviews we mean

it. More than once, our honesty has cost us
an advertiser—temporarily. But we feel
that our first obligation is to our readers and
that editorial excellence and integrity are
our highest goals.

Karl Zinn at the University of Michigan
feels we are meeting these goals when he
writes. “Creative Computing consistently
provides value in articles, product reviews
and systems comparisons . .. ina magazine
that is fun to read.”

Order Today

To order your subscription to Creative
Computing send payment to the appropri-
ate address below. Customers in the
continental U.S. may call toll-free to
charge a subscription to Visa, MasterCard
or American Express.

Canada and

Term USA Foreign Surface Foreign Air

1year $20 $28o0r £1250 $500r £ 21
2 years 537 $550r £2400 $97or £41
3years $53 $80or £34.50 3$1430r £61

We guarantee your satisfaction or we
will refund your entire subscription price.

Join over B0,000 subscribers like Ann
Lewin, Director of the Capital Children's
Museum who says, ‘| am very much im-
pressed with Creafive Computing. It is
helping to demystify the computer. Its arti-
cles are helpful, humarous and humane.
The world needs Creative Computing.”

creative
compating

P.O Box 789-M
Morristown, NJ 07960
Toll-free 800-631-8112
{In NJ 201-540-0445)

27 Andrew Close, Stoke Golding
Muneaton CV13 6EL, England

N

&y

The magazine for Sinclair users

— I | g [l

November/December 1981 Volume 1, Number 6
DEPARTMENTS APPLICATIONS
2 R e e 20 Experiments in Memory and I/O Expansion . . . Sommers
Designing hardware
4 SsyNcNotes Grosjean
26 An Inventory System Justham
6 Kitchen SYNC. Groupe, Tardiff, Zatkovich Keeping track of up to 150 items
Making the Most of What You've Got
GAMES
9 Glitchoidz. ...
1 0 38 Hampson'sPlane..c.cc... Hampson
Percaptions.c.oiviiiinnnnrnnnns Ornstein The ZX80 answer to Rubik
Conversion: 4K ROMtn BK ROMand 8K ROM to 4K ROM
40 Artillery with Motion._.... Dawson
28 L A1 PO Pozyski, Richardson Follow your shots
BB Wamourems..svisiiss S 41 vouareinaMaze.......... McGath
Finding the hidden way out
MACHINE LANGUAGE
42 The Hidden Chessmen._....... The Haars
14 An Introduction to Machine Language . ..Logan Finding the pieces
Fourth in a series on machine language
44 Create a Word Search Puzzle Ny B AR McCray
32 Machine Language Teaches the Finding the hidden words
ZXB0tOREAD................... .. Kennedy
Part 2 on READ and DATA 46 The Two Challenges of Taxman. Brown

Can you beat the Taxman?

Staff

David H. Ahl
Paul Grosjean
David Lubar
Elizabeth Magin
Luura MacKenzie
Susan Gendzwil
Diana Negri

Jean Ann Vokoun
Maureen Welsh
William L, Baumann
Patricia Kennelly
Ralph Lovery
Ruth Coles
Frances Miskovich
Carol Vita

Publisher/Editor-in-Chigf
Managing Editor
Associute Editor
Secretary

Production Manager

Art Director

Assistant Art Director
Typesetters

Financial Coordinator
Personnel and Finance
Customer Service
Order Processing
Circulation

MEMBER

MITA

Index to Advertisers

Blank Cassettes

Books for the Sinclair
Burnett Electronics
Byte-Back

Campbell Systems
Computer Cartoon Book
Computer Coin Games
Creative Computing subscriptions
D. Bruce Electronics
Richard Francis
Gladstone Electronics
Hardware Haven

Insight

J. Edmonds

JRS Software

Katie and the Computer
Lamo Lem

L.LH. Emerprises
Sinclair Rescarch

a7

15

13

5

41

29

43
caver 2
3

Small Business Compurers subscriptions

Sofusyne

SYNC subscriptions
T-shirts

Zeta Soltware

cover 4
3

17
cover 3
i}

Volume 1, Number 6

SYNC (USPS: 385-490: 1SSN: (1279-5701 | is published
bi-monthly for $16 per vear by Creative Computing,
M E. Hanover Ave.. Morris Plains, NJ 07950, Second
class postage paid at Morris Plains, New Jersey
07950, and additional entry offices.

Subscription rates: USA: 6 issues $16: 12 issues
$30: 18 issues $42. Canada and foreign surface: 6
issues 5200 12 issues $39: 18 issues 556, UK air: 6
issues £13; 12 issues £25: 18 issues £36. Other air: &
issues $31: 12 issues $60; 18 issues S87, Call (800)
631-8112 tollfree (in N.J. 201-540-0445) 1o begin
yvour subscription,

Postmaster: Send address changes to SYNC, P.O,
Box TRO-M, Morristown, NJ (7960,

Copyright 1981 by Creative Computing. All rights
reserved. Reproduction prohibited in any form.

The Cover
The cover shows scenes from the first ZX Microfair
which was held in London in September. Photos
courtesy of Richard Gollner of Radala & Associales
in London.

November/December 1981

I2LLErs

Thick Black Bars

Dear Editor:

Thick black bars on the display screen
may be caused by 60 Hz. A.C. hum resulting
from a failing capacitor in the power supply.
Cure is replacement. On my MicroAce
this involved breaking open the external
power supply case at the glue lines, and
replacing the large 1000 M.F.D. capacitor
with a new one. Be sure to observe the
polarity if you make this replacement.

Cecil Bridges
1248 N. Denver
Tulsa, OK 74106

Help Wanted

Dear Editor:

Do you think that a receive only teletype
program could be written into the 1K of
RAM or would it take more?. ..

Thanks for producing a fine magazine
for a pretty neat little computer,

James S. Johnson

Dear Editor:

[have had my ZX80 micro computer
for a few months now and [must say [am
very pleased with it. The only drawback
to the system is its limited RAM. | know
that a 16K RAM pack is available, but 1
feel 1 do not need that much. | would be
satisfied with 2K or even 4K.

I am very familiar with electronics and
have done extensive breadboarding of
digital projects so 1 would like to see an

2

article showing a do-it-yoursell memory
expansion with schematic diagram and all
the details.

Eric Bergstrom
3957 Denley, Apt. 108
Schiller Park. IL 60176

Dear Editor:

I have a Sinclair ZX80 with 8K ROM
and 16K RAM. Can you suggest where |
can get information on how to:

1) Use the ZX80 as a terminal with
coupler.

2) Decode and display Morse Code and
RTTY from shortwave (see QST magazine.
July 1981, p. 30).

J) Connect external inputs such as
switches or analog inputs to connector or
ear-jack.

4) Connect a printer (Is the ZX8I printer
available?).

5) Implement “slow™ display mode.

Ronald Silver
2635 Cranston Rd.
Philadelphia, PA 19131

Ed. —Readers who have suggestions for
meeting the above requesis are invited to
send their ideas to SYNC letiers. The ZX
printer will not be available yet in the US
market although it is available in the UK.

Scrolling REM
Statements

Dear Editor:

When entering a machine language
program into a REM statement, you want
to scroll the REM off the screen. After
entering the Basic program, use the immedi-
ate instruction POKE 16403,A. A should

4K ROM

be the next Basic statement number after
the REM statement. Poking this puts
statement A at the top of the screen. |
have found this much easier than using
dummy statements, and [have not found
this technique suggested elsewhere.

Richard Van Workum
920 Leslie Ln.
Hanford, CA 93230

Cecil Bridges' LED
Load Monitor

Dear Editor:

Cecil Bridges™ article entitled “Adding
an LED Load Monitor to the ZX80" (SYNC
1:1) actually describes this useful hardware
modification for a MicroAce and not a
ZX80. If a schematic were available for
this modification to a ZX80. it would be
greatly appreciated since the MicroAce
diagram is useless to me.

Also, no part numbers are listed for the
Radio Shack LEDs that have been used
or at least their low current require-
ments.

Hopefully you can provide me with the
necessary information.

Cal Butler
81 Dorian Lane
Rochester, NY 14626

Ed. —David Ornstein points out that Cecil
Bridges’ LED Load Monitor can be adapted
to work with the ZX80. Although the title
implied that the circuit was for use with a
ZX80, the connection diagram given was
for the MicroAce, as Reader Butler cor-
rectly notes. To use the circuit with the
ZX80, connect the X wire as shown in
the article. The Y wire should be connected
to ground. A good place to tap ground is
just below IC17, on the large silver pad
on the printed circuit board.

SYNC Magazine

v

“THE BEST ACTION GAMES WE HAVE SEEN"—SYNC MAGAZINE. ¥

-~ SUPER INVASION . -
AND WALL BUS TERS
. .FOR YOUR ZX87 i

% TOTALLY FLICKER FREE. * MACHINE LANGUAGE

Absolutely no {licker. You don't need 1o press anvthing These programs are written in the computer's own
for the display to mowve, language making continuous, flicker-fres Actian
possible for the first time.

* AVAILABLE FOR THE ZX81 & ZX80 * FITS 1K BASIC MACHINE.
Compatible with the ZX81 or the ZXE0 with 8K ROM, Loads just like any other program on cassette. FEach
Also available for the ZX80 with 4K ROM. tape contains instructions

* MOVING GRAPHICS % ALL PROGRAMS ON CASSETTE.

No hardware madifications required lor these exciting Amazing as it is, these moving graphics programs Fit
moving graphics games! A breakthrough for 1K inta your basic 1K Sinclair!
computers.

on how bhest to load the

SUPER INVAS/ION

"The best Sinclair game to hit the market” — SYNC Magazine.
SUPER INVASION is a [licker-free, moving graph game with
three levels of play. SUPER INVASION challenges your skill as
you fire lasers at the attacking space invaders while
maneuvering your space craft to avaid their deadly lasers, '
‘hen the winner emerges, the parme automatically resets and '

the battle begins again. 514. 95

WALL BUSTERS

"A breakthrough in creating active display games" --SYNC
Magazine, WALL BLUSTERS (formerly "Double Breakout”)
challenges you to break through two barricades using nine balls
and a curved bar. With seven levels of play, WALL BUSTERS is
hard to beat. You'll be amazed at the superb graphics in this

IK game. $14.95

November/December 1981

SLUMNC NOores

Paul Grosjean

ZX Microfair Report

September 26, 1981, was a great day
for many ZX80 and ZX81 users in the
UK. They braved the wind and rain to go
to the first ZX Microfair, held in Central
Hall, Westminster, London. The show was
a resounding success to the extent that
some people queued up to one hour to
get in. But once inside, the display of new
software and new products was well worth
the wait.

Quite a few new products caught my
attention. First of all, Quicksilva had a
Programmable Character Generator Board
which allows you to create your own
character set, either for output to the
television or to the ZX Printer. The board
would, therefore, allow an upper and lower
case set to be generated or a “Space
Invader” character to be formed. Also on
Quicksilva’s stand was their Sound Board
playing Bach in three-part harmony and a
full feature Defender program with sound
effects (if a Sound Board is connected,
that is).

Moving on, DCP Microdevelopments
has a prototype Voice Synthesizer Board
attached to a ZX81 through one of their
Peripheral Packs. The Voice Synthesizer
should be available in early 1982, but the
Peripheral Pack, containing 4K RAM and
an 8-Bit Input/Output Port, is available
now,

Technomatic had a demonstration of
some of the many uses for their low cost
1/0 Port for the ZX80 and ZX81, including
music (well actually just a series of bleeps!)
and various external control functions,

Haven Hardware had their Program-
mable Character Generator on show and
a prototype of their Colour Board. The
Colour Board looks very impressive, but
is not available yet.

Lots of software cassettes were for sale,
ranging from Business Database packages
to arcade-game programs. There must have
been some fifty different software packages
and fifteen books about the ZX80 and
ZX8I1!

Sinclair had one of the new ZX Printers
at the Microfair, but no other product
news at the moment. The range of Sinclair

4

software was there for sale, as was the
ZX81 and 16K RAM Pack, but not the
ZX Printer.

SYNC was there, represented by Hazel
Gordon, Creative Computing’s UK repre-
sentative. Altogether 32 exhibitors
crammed into the one hall, and, despite
the problem of large crowds, a fantastic
time was had by all who went.

Martin Wren-Hilton
UK Correspondent to SYNC

ZX81 Launched
in the U.S.

Sinclair Research Ltd., introduced the
ZX81 to the U.S. market on October 7,
1981, at a press conference in Boston,
Massachusetts. The ZX81 succeeds the
ZX80. Based on Sinclair’s innovative four
chip design, the ZX81 will be the least
expensive personal computer in the world.
It will retail in the U.S. at $149.95 assembled
and at $99.95 for the kit version. Mail
order sales will continue to be the main
means of distribution, but American
Express will also act as distributor.

Over 100,000 have been sold in Britain
since its introduction there in March 1981,
Sinclair expects the unit sales of the ZX81
to pass the unit sales of all other personal
computers by the end of 1981,

In the question period following the
announcement, Clive Sinclair emphasized
that the ZX81 is aimed at two main
potential buyers: the hobbyist and the
man on the street who wants to learn
about computers. Sinclair Research will
emphasize educational programs and
provide software. Software from others
will be encouraged. Asked about a dise
system, Sinclair noted that a British firm
is offering one already and that Sinclair
Research is working on its own model to
be available sometime next year.

The ZX81 is described in Sinclair
Research's ad elsewhere in this issue of
S¥NC, so we will not repeat that infor-
mation here. But three features that will
be of great interest to U.S. users are: a
switch allowing use on either channel 2

or 3, a built-in booster circuit for tape
loading, and an increased power supply
that will accommodate the 16K RAM.
Most impressive, however, was the
printer demonstrated along with the ZX81.
Unfortunately, it will not be available in
the American market for the immediate
future. A full sized sample of the printout
demonstrated is shown in Figure 1.

The World of Compukid

We have had a generation grow up not
knowing a world without radio, another
not knowing a world without TV, another
not knowing a world without computers.
Now we are watching another growing
which has not known a world without
personal home computers. When we look
at the world, we use the images and the
symbols we grew up on. This generation
will look at the world with “computer
eyes” and see things in new ways. We
want to capture something of what they
see and share it through the cartoon series
we are introducing in this issue of S¥YNC
“The World of Compukid |com-pu-kid|].”
How will the “computer age kids” use the
computer symbols and language to describe
and interpret the world? The difference
between the compukid's picture and the
more conventional one should bring a
smile at least and hopefully a good laugh.

We invite you (especially our younger
readers) to submit ideas for our cartoonist.
Natural, real life incidents are the best,
but you do not need to limit your contri-
bution to those. Older readers may have
some fun by trying to see how the world

LR

might look through “Compukid's” eyes.

Second ZX Microfair
to be Held

Mike Johnston, who organized the first
ZX Microfair held in September, has
announced that a second one will be
organized for January 30, 1982, again at
Central Hall Westminster, London.
Extended hours and doubled floor space
will take the second fair beyond the first.
Anticipating a larger show, Mike still hopes
“to keep the same informal and friendly
atmosphere” of the first. Mike can be
contacted at 71 Park Lane, Tottenham,
London, N17 OHG (Tel. after 7 p.m., 01
801 9172). "]

SYNC Magazine

.

CONTROL THINGS

WITH YOUR ZX80

The Travels of COMPLIKIO

$59 1
IN STOCK ! 0%

BYTE-BACK'S BB-1
CONTROL MODULE

* 8 Independent Relays
=8 Independent TTL Inputs

The BB-1 CONTROL MODULE plugs directly
into the ZX80/1 expansion port. It
accepts inputs from remote switches,
thermostats, photocells, A/D's etc.
and under the command of a program in
the 2ZX80/1 it can use the 8 relays to

Hey. Dad! Look at all the backwards cursors!!!

= | |control lights, motors, pumps, alarms,
recorders, water heaters, furnaces,
model railroads, 8 bit parallel port

-‘'_. printers and even remote data logging,
. R A

comprehensive manual is included

o u, that has complete software and
= = | |2application details. (It runs in 1K)
= » |

» = | [By using the BB-1 with your 7X80/1 to

= = | |control lights or other energy saving

% = | |devices you can get a TAX CREDIT based

e & | on the cost of your 2ZX80/1 and your

5 a BB-1 CONTROL MODULE. Details included,
-- ' BB-1 KIT + MANUAL .. vonivenss $59 £3D|

"-__-" ' I1BB-1 WIRED § TESTED + MANUAL..$69 £35
10 DIM C(64) |BB-1 BLANK PC BOARD + MANUAL..$29 £15 |
280 FOR U=1 TO &4 I Shipping & Handling $3.00 '
30 _LET C(U) =22+20%(SIN (-1}~

RREBELE o 15 'order Phone 803-532-5812 |
19@ FOR_G=1 TO 64 I il my-0 visa-D Mastercharge ¢, e |
112 fLoT §-1.C (S Pl -

117 GOSuB 1000 A WEACCEET. |
:La GOSUB 1000 | sittrens :mgggcmacﬂ
%gg %3%5:; 1 TO & B I
14@ LPRINT [
145 NEXT H | .

%gg ISTENEEYSH}HH bl i | BYTE-BACK Co. ORDERS MAILED |
: | Rt 3. Box 147 * Brodie Ad. First Class (U.S.A.) |

Figure 1. { Leesville. $.C. 29070 Air Mail (England)

SRR ——

Movember/December 1981 5

4K ROM
1K RAM

HIilChEen sunc.

Alan Groupe, Michael Tardiff, and Ivan Zatkovich

Making the Most
of What You've Got

This month's column was inspired by
two other articles appearing in the May/
June issue of S¥YNC. In the first, David
Lubar told of his experiences in using the
NOT operator of Sinclair Basic. In the
second article, Bill Eckel introduced a
game called Bluck Hole and presented a
version which he “almost” got to it in the
ZX80's 1K available memory. These two
articles started us thinking, and we decided
that the Black Hole pame might be the
perfect medium for demonstrating both
the usefulness of AND, OR, and NOT, as
well as a method for packing as much
possible into what might be considered a
“tiny" amount of memory.

But first, a short discourse on logical
operations.

As you have heard over and over again,
computers only understand “ones and
zeros.” While this is true, a computer’s
life is not quite that dull. Since you cannot
do much with just () and 1, bunches of (I's
and 1's (called bits) are grouped together
into larger sets, the most common of which
are bytes.

The normal arithmetic operators you
are accustomed to (+.-.*/) take integers
(which in the ZX80 are represented as
groups of 16 bits) and add, subtract,
multiply, or divide them as numbers.
Likewise, AND, OR, and NOT take integers
and combine them in various ways. In the
instance of these operators (called logical,
or Boolean, operators), however, it is more
useful to think of the integer as the group
of 16 individual bits rather than as a
whole.

The operation A AND B" is the col-
lection of 16 bits that are the result of

6

each bit of A "ANDed” with each bit of
B. These logical operators are often shown
in the form of tables as follows:

AND 1O L ORIO 1
0ro0 0 010 1
1o 1 Li1 1

NOT § ..
041
110

As you can see, AND returns a 1 when
both bits are 1; OR returns a | when
either bit is equal to 1. NOT inverts the
bit value (returns [if given 0, 0if given 1).

There is one more Boolean operator
you should know about, called the EXCLU-
SIVE OR, or XOR for short. Here is what
it looks like:

XOR 0 1
010 1
11t 0

While OR returns a 1 if either or both
bits are 1, XOR returns a 1 only if either.
but not both, are 1. In other words. XOR
returns a 1 if the bits are different, While
XOR is not in Sinclair Basic, it can easily
be coded as:

(A OR B) AND NOT (A AND B)

Groups of bits are combined to create
larger values much the same way as decimal
digits are combined in base 10. In base
10, the digit positions represent increasing
powers of 10 from right to left (1, 10, 100,

and so on). The value of the number is
the sum of the digit values. Therefore,
“24" represents 2 tens and 4 ones, added
together. which is 24.

Binary works the same way. Bit positions
represent increasing powers of 2 from
right to left (1, 2, 4, 8, 16, etc.). Hence.
“11000" represents | sixteen, | eight, and
no fours, twos, or ones. Adding these
together, we also end up with 24,

Specific bits can be turned on or off
using the AND and OR operators of Sinclair
Basic. To turn a bit on in an integer. you
can “OR" it with a word that has just that
bit {or bits) turned on. To turn a bit off.
“AND" the word with one in which every
bit except the one you want is turned on,

To see how all this works, try the test
program in Listing 1. It asks for two
numbers, A and B. Enter these in decimal
(as normal numbers). You should keep
running the program until you have some
understanding of what is going on.

The main program itself is rather simple.
The subroutine at line 1000 probably
deserves some discussion, though,

Lines 1000-1010 test the lefimost bit
(the sign bit, which indicates if the integer
is a positive or a negative number) and
print out a 0 or 1 depending on that bit’s
value. The remaining bits can be tested
by bit position, using a loop that steps
from 14 down to zero. (The leftmost bit
could not be tested in this loop because
of the way the Sinclair handles numeric
overflow.) Lines 1020-1030 and 1060-1070
set up a FOR-NEXT loop that counts
down from 14 to 0. Lines 1040-1050 test
the single bit 2**Y1 (Y| going from 14 to
0—2**0=1

SYNC Magazine

JRS SOFTWARE

19 WAYSIDE AVENUE, WORTHING, SUSSEX, BN13 3JU
TELEPHONE WORTHING 65691 (Evenings and Weekends only)

ZX80 - PROGRAMMABLE MOVING DISPLAY
S She e (4K-ROM only)
Yes! This really is a genuine moving display, not
another pause routine. If you want moving, flicker
. free displays [and who doesn’t] then this is the
"I Shoot the Invaders’ program for you. The secret lies in the ZX80's ability
to keep the display on your screen without the need
to use all of the time available to it. Normally the
ZX80 would be doing nothing during this spare time
but the programmable moving display cleverly
Interupts to process your own instructions written in the simple but highly
effective JRS numeric code. Great care has been taken so that the processing of
your codes can always be interupted to return to the display routine at the
precise microsecond that is required to ensure that your T.V. picture remains
completely rock-steady.

Normally a true moving display on a ZX80 would take weeks to write and you
would need to be an expert at machine-code programming. Now, at last, this
program offers you the ability to write your own true moving displays in under an
hour with no maching-code experience required whatsoever.

Cassette with 1k, 2k versions and 3 example programs plus FULL documentation
£4.95

ZX81 - SLALOM (16K RAM PACK REQD.)

_———

-
é / il‘i Slalom events always draw great crowds to the ski
E LA LEA resorts and the T.V. cameras are never far behind.
- Now the skier on your T.V. screen is directly under
your control and his success in negotiating the
slalom posts and achieving a fast time relies entirely
on your skill with the ZX81 keys.

Cassette and instructions £2.95

T c¥3 ZX81 - BLACK HOLES (16K RAM PACK REQD.)
L7 "
@ \N_J Your starship is in an unknown galaxy consisting
7~ entirely of black holes which continually threaten to
@ .Q 7= swallow you. Your skill at the controls and your
@ @) ability to look and think many moves ahead is the
i only thing that stands between you and destruction.
I How long can you survive!
Cassette and instructions £2.95
e
SPECIAL OFFER SLALOM and BLACK HOLES on one cassette for only £4.50
OVERSEAS CUSTOMERS Payment must be made in Sterling by International Money Order (available

IPIEASE NOTE at your bank) Please add 50 pence to cover overseas postage.

T — — ——

As you can see, AND can also be used
to test specific bits. If you “AND™ the
integer you want to test with another in
which only the bits you want to test are
cqual to 1 (called a “mask” by programming
types) the integer you end up with will be
zero if none of the tested bits were set,
and non-zero if any were. The resulting
integer will have a 1 in each bit position
that was equal to | in both the tested
integer and the mask.

Now, back to Black Hole. 1f you
remember, the problem was that the
program still did not fit into a 1K Sinclair,
which kept most Sinclair owners from
playing the game. Not being very happy
about being deprived of some fun with
our ZX80s, we tried to do something about
that.

Let us take a good look at the game
itself. The game board, called the “galaxy,”
has nine positions, each of which can be
either a “star” or a “black hole.” The

Listing 1.

10 PRINT "ENTER A"
26 INPUT A
if PRINT "ENTER R"
40 INPUT B
50 CLS
01 PRINT "A",
70 LET Z=A
A0 GO SUB 1pap
9n PRINT "B",
104 LET Z=B
117 G0 SUB 1nraAn
128 PRINT "f#noT A"
134 LET Z= NOT A
144 GO SUB 1006
158 PRINT "#NOT B",
1A@ LET 2= NOT B
178 GO SUB 1400
1R# PRINT "A AND B",
198 LET Z=A AND B
200 GO SUB 1ann
210 PRINT "A OR B",
220 LET Z=A OR B
23 GO SUB 1aan
24¢ PRINT "A XOR B",
250 LET Z=(A OR B) AND NOT
{A AND B)
26 GO SUB 1@An
274 PRINT
280 PRINT
290 GO TO 1n
10@A IF Z<A THEN PRINT "1";
171@ IF MOT 2<@ THEN
PRINT "a";
LET ¥1=14
FOR ¥=1 TO 15
IF Z AND 2**Y] THEN
PRINT "1";
1658 IF (Z AND 2*%*Y])=p
THEN PRINT "g";
LET Y1=Y1-1
NEXT ¥
PRINT "4";7
RETURMN

-

1a2a
1A3A
1man

laap
1a70
1aR0
1090

most obvious way to store the galaxy is
with an array of nine integers, each
representing a position in the galaxy. Since
there are only 9 positions and since each
position can only be in one of two states
(star or hole), the entire galaxy can be
represented in a single integer, with 9 of
the bit positions representing the nine
positions in the galaxy. This type of
representation saves memory in two ways—
the game board itself takes less memory,
and, more importantly, the entire galaxy
can be updated all at once, rather than by
twiddling each position separately.

The representation we chose uses bits
1-9 (bit numbers go from 15 on the left 1o
0 on the right) to represent positions 1-9.
So the bit that represents the state of
position 'n’ is 2**n. The remaining bits
are zeros. Since the initial state of the
board is all holes (0) with a star (1) in
position 5, we can set the whole galaxy to
the initial state with the statement LET
GALAXY=2**5 (line 10). Compare this
with lines 10-20 in the original program.

Lines 35-70 simply print out the galaxy.

Line 75 tests to see il the value of
GALAXY is 0. GALAXY being equal to
0 means that the collection of 16 bits that
represents the value of GALAXY is all
zeros. So GALAXY =0 means that each
position in the galaxy is a black hole —the
definition of losing.

Line 95 tests 1o see if the value of
GALAXY is 990. This value is represented
by a pattern of bits where bits 1, 2, 3, 4, 6,
7,8, and 9 are 1's and bit 5 along with the
unused bits (0 and 10-15) are zeros. You
can verify this with the binary calculator
above. This pattern is the definition of a
win.

Line 130 tests to see if the selected
position is valid. Since you can only shoot
at stars and not at black holes, the input
would be invalid, if the selected bit position
Were a zero,

Lines 135 and 202-219 are the most
cryptic part of the program. Looking back
at Eckel's original Black Hole article, we
see that for each possible move, there is a
pattern of positions that must be inverted
(a star becomes a hole, a hole a star), If
the state of the galaxy can be represented
in a single integer, then certainly each of
these patterns can be too. Line 135 selects
the appropriate subroutine to set the value
of CHANGE to represent the required
pattern.

For example, if you look at the pattern
of positions that must be inverted if you
choose to shoot at star 5, you can see that
positions 2, 4, 5. 6, and 8 must be inverted,
The others must stay the same. This can
be represented by setting the corresponding
bit for each position that must be inverted.
Therefore, the required value mask) would
have bits 2, 4, 5, 6, and 8 set with the
other bits cleared. This is what is done in
line 210. You can use the binary calculator
program to verily that 372 has the correct
pattern of zeros and ones,

While OR can be used to set certain
bits to ones and AND can be used to set
certain bits to zeros, XOR can be used to
invert certain bits without knowing their
original value. This is done in line 140.

As you can see, by carefully selecting
the representation of the data of your
program, you can squeeze more into—and
get more out of—the 1K memory of the
Sinclair. b

1A LET GALAXY=p#%%g

15 CLS

20 PRINT "BLACK HOLE"
25 PRINT

im PRINT

35 FOR I=A TD 2

4% FOR J=1 TO 3

45 IF (GALAXY AND (2%#* (3%
I+7)))=A THEN PRINT "0 ";

58 IF GALAXY AND (2%% (3%
I+3)) THEN PRINT "* ",

55 NEXT .J

A PRINT ,3%[+];" ";3%I42;
n II; 3*1_!_?

A5 PRINT

70 NEXT I

75 IF NOT GALAXY=A THEN GO
TO 95

RA PRINT "¥OU BLEW IT"

85 PRINT "YOU ARE LOST IN
SPACE FOREVER"

an STop
95 IF NOT GALAXY=99¢ THEN
GO TO 115

1AA PRIMT " CONGRATULATIONS"

105 PRINT "YOU FOUND THE
BLACK HOLE"

11@ STOP

115 PRINT "WHICH STAR?"

120 INPUT STAR

125 IF STAR<1 OR STAR>9 THEN
GO TO 124

13@ IF (GALAXY AND 2**STAR)
=A THEN GO TO 124

135 GO SUB 2*STAR+2pP

l4d LET GALAXY=(GALAXY OR
CHANGE) AND NOT (GALAXY
AND CHANGE)

145 GO TO 15

202 LET CHANGE=54

203 RETURN

2p4 LET CHANGE=14

205 RETURN

207 LET CHANGE=10R

207 RETURM

208 LET CHANGE=144

29 RETURN

214 LET CHANGE=372

211 RETURN

212 LET CHANGE=5R4

213 RETURN

214 LET CHANGE=43?

215 RETURN

214 LET CHANGE=R04{

217 RETURN

218 LET CHAMNGE=BA4

219 RETURN

SYNC Magazine

—

Glitchoid =
Report

T,

FHaRmm

Widget (1:2, p. 23)
Author McGath writes: “Wait one widgeting minute! It is
not necessary to tinker with the economics of Widger to
make it winnable; just correct one typo: 600 should be
LET S=S+B*§
This vastly improves the return on small advertising outlays
as was originally intended. The other tinkering can still be
done to vary the challenge of the game, but a conservative
strategy will result in steady growth. I hope the error in
Widget has not shaken anyone's confidence in the free market
too badly.”

Looking inside the ZX80 (1:3, p. 16)
92 PRINT CHRSI(X+28):* "
240 PRINT CHRS(X);

A Trick and a Graphic System (1:3, pp. 30-31)

Author Comer calls attention to the continual problem of
making a distinction between zero and the letter O. Since this
is not clear in the listing, he suggests: “In order 10 get the
examples to run all one need realize is that everything is an
Oh. The only exception is in the example called the *U.S.
Map." At the end of the second line the data should be
“eleven Oh twelve.” Otherwise the map data is correct, but
pay close attention to the zeros (which are narrow) and the
Ohs (which are wider).”

Perceptions (1:5, p. 11, col. 2)
4th line from bottom: R2 should be R32.

Gra+PIX (1:4, p. 16, listing 5)
Add:

9010 REM ENTER FROM POLYGON/SEGM
ENT /ARC

Correct:

9920 IF P2>2%PI THEN LET P2=p2-2
FPI#INT (P2/(2%P1))

9925 IF T2>2%PI THEN LET T2=T2-2

Hangman (1:4, p. 40)

340 Be sure to use zero alter &
430 PRINT CHRSICODEI(CS)):"2"

THE ZX80 BOOKSHELF LIBRARY OF CASSETTES

This attractive bookshelf folder [blue vinyl exterior, black interior)
contains a library of six Lamo-Lem 4K ROM cassettes, each held
firmly within a slot in the folder. Cassettes snap in and out with fin-
ger pressure. The 9% by 9% by %:'folder stores your library of
casseltes easily and compactly on a bookshelf. It includes the fol-

lowing cassette packages:

THE ZX80 HOME COMPUTER PACKAGE

Etch-A-Screen
Electronic Blllboard
Composer
Calculator
Checkbook Balancer

THE CHEST OF CLASSICS

Lunar Lander
K-Trek

Life
Mindmaster

A NIGHT IN LAS VEGAS

Blackjack
Roulette
Craps

Slot machine

THE ZX80 BOOKSHELF CASSETTE LIBRARY — Six cassettes of
computer programs in a bookshelf folder with dozens of manuals,
reference cards, and full-color keyboard overlays. Also, many addi-
tional sheets, forms, and accessories, Including a pad of coding
sheets. For all 4K ROM ZX80 and MicroAce computers

THE ZX80 BUSINESS PACKAGE
Search & Save

VideoComp-4

VideoGraph

ZXB0 1K DISASSEMBLER
Disassembler Program

Memory Test

SUPER Z

(Adds 7 new BASIC stalements)
The Super Z Program

A Super Z Module
A Super Z Demonstration

$59.95
postpaid.

LAMO-LEM LABS, CODE206 BOX 2382, LA JOLLA, CA 92038

November/December 1981

| ————

4K ROM
8K ROM

AErCEALIONS

David Ornstein

Conversions: 4K ROM
to 8K ROM and
8K ROM to 4K ROM

One of the big questions raised by
Sinclair users is how to convert programs
from the 4K ROM 1o the 8K ROM and
vice versa. This article will serve as a
comprehensive guide to such attempts.
Let’s begin by a review of each of the
commands and functions of both ROMs.
It should be noted in the interim that
there is no guarantee that all programs
can be converted from one ROM to the
other. It should also be noted that, barring
an extremely complex software scheme.
there is no way to load a 4K program
from tape into an 8K machine or 8K
programs on tape into a 4K machine.

Expressions

An expression is a series of values, strung
together with operands, for example, 3
4+8/AMD. Expression evaluation is
carried out by applying operators to their
operand(s). For example. applying the +
operator to the operands 4 and 26 yields
the value of M). Expressions are evaluated,
operator by operator, according to the
priorities of the operators they contain.
The priorities for operators are shown in
Figure 1.

As you can see, the only difference
between the ROMs is the priority of the /
(division) operator. In theory, this could
cause problems. In practice, however, one
can usually be assured that an expression
specified on one machine, can be trans-
ferred as is, without ill effects. If you do
find this difference to be a problem, you
can always use parentheses to alter the
order of evaluation,

10

Functions

Many funetions previously unavailable
to the 4K ROM user are now available
for owners with the 8K floating-point ROM.
The primary problem with converting
programs from 8K to 4K is that there is
simply no way to work with floating-point
numbers (that is, a number like 4.827736,
as opposed to an integer like 6 or 327), on
the 4K machine. Many of the new lunctions
are “floating-point functions.” For example,
there is no purpose in having a PI function
on an integer-Basic machine, as the value
3 is not as useful as 3.14159265.... The
following functions fall under this category
of “floating-point only™:

ACSix) Arc Cosine

ASNix) Arc Sine

ATN(x) Arc Tangent

COSix) Cosine

EXPix) Natural logarithm (base ¢)
Pl The value 3.14159265
LN (x) Natural logarithm
SIN(x) Sine

SQRix) Square root

TAN(x) Tangent

INT(x) Integer

Many other functions, however, are
worth the conversion process, These are
detailed below.

CHRS(x)
CODE|(xS)

These functions perform the operation
of converting a number to its corresponding
character, and vice versa. They work
identically on both ROMs, but it must be
emphasized that the character sets on the
two ROMs are different. For example,
CHRS(20) yields a multiplication sign on
a 4K ROM, but on an 8K ROM it produces
an equals sign. You must not assume that
a line such as:

3100 IF CODE(A%)=13 THEN GOTO
100

can be directly transferred to the other
ROM. Most of the character set, primarily
the most important and most commonly
used sections, are the same on both ROMs,

The characters for numbers and letters
have the same codes, but this is not true
of all characters. The primary rule is: /f
you are not sure, check it.

RND
RND(x)

The random number generation func-
tions differ simply in that the 4K returns a
random integer and the 8K a random
floating point number. The 4K random
number function, when called, spews up
a random integer between | and x, x being
the argument of the call, i.e., J=RNDix).
The 8K function RNDino argument)
returns an FP (floating-point) value between
(O and 1. It is clearly a fruitless venture to
attempt to simulate the 8K function on a
4K machine, as you cannot have a floating
point number in an integer Basic program.
(A number between 0 and 1 must,
obviously, be an FP number.)

8K ROM 4K ROM

Operator priority priority
Substrings 12 —
All functions
(except unary
minus and NOT) 11 11
et 10 10
Unary Minus 9 9
* 8 b
/ 8 7
+ 6 [
- (binary) 6 6
=<.,>2 5 5
L= S=diB 0§ =
NOT 4 4
AND 3 a
OR 2 2
Figure 1.

SYNC Magazine

Make the most of your
Sinclair Computer . . .

Software
on Cassette!

MULTIFILE Data Storage

System An amazingly versatile
multi-purpose filing system for the
16K ZX81. The program is menu-
driven, and number, size and
headings of files are user-definable.
Both string and numerical files are
catered for. Files may be created,
modified, replaced, and searched,
and are protected by an ingenious
fooiproof security system. Output to
the ZX printer is also provided.

The program comes on cassette,
together with three quality data
cassettes for file storage, and com-
prehensive documentation, describ-
ing a host of applications for both
business and personal use. If your
ZX81 is bored with playing games,
then this program will give it plenty to
think about! . .$29.95 ($39.95 in Canada)

ZXAS MACHINE CODE
ASSEMBLER Bored with BASIC?
POKEING not your scene? Learn and
program in machine code the easy
way with this powrful Z80 assembler,
commissioned specially for the ZX81
& ZX80.

Standard Z80 nemonics are simply
written into REM statements within
your BASIC program. The assembly
listings, together with addresses and
assembled codes are displayed on
the screen when assembled. The
assembled code is executed with the
USR function. The program uses 5K
of memory and is protected from
overwriting. Full documentation, in-
cluding examples, is supplied with
the cassette. This program is a must
for all serious ZX81 & ZX80 users. . ..

$9.95 ($12.95 in Canada)

Last Minute Addition: ZXDB

The perfect complemant to ZXAS
assembler, ZXDB Is a complate cembined
machine code disassembler and debugging
program, May be usad in conjunction with
ZXAS and will lsave about 9K of memory for
your own program, Additional featuras in-
clude Single Step, Block, Search, Transfer
and Fill, Hex Loader, Ragister Display and
mare. Execuled by single keyboard eniry,
The combination of ZXASIZXDB plus one of
our books will taach you all you nesd 1o
know to program in machine codes,

IXDB .. $9.95(%$12.95in Canada)

Exciting
BookTitles!

MACHINE LANGUAGE MADE
SIMPLE FOR ZX80 and ZX81. A
complete beginners quide to machine
language programming. Go beyond
BASIC and open new computer
horizons! Finally find out what PEEK
and POKE is all about. Machine
language program enables more com-
puting power in less space, faster
running programs. The 120 pages of
this book are packed with programm-
ing techniques, hints and tips; useful
BASIC program to edit machine
language; numerous sample routines:

easy-to-use reference tables. .
$19.95 ($23.95 in Canada)

UNDERSTANDING YOUR
SINCLAIR ROM. A more advanc-
ed publication explaining the various
ROM features.$19.95 ($23.95 in Canada)

ZX
CHESS!

(for ZX81 and
BK/ZX80
both with
16K RAM)

A challenging chess programme. wrilten in machine
language, designed o operate in the ZX81 last mode. ZX
Chess allows you to select from & lavals of play, choose
@ither black or white, and enables castling and en passant
movies. Unique “salf-running’” feature: you start the tape
and when the chess board appears on the screen, start
your game

ZX CHESS! Melbourne House. $24.95 {29.95 in Canada)

| Mail Orders to:

it

The ZX8&1 Pockel Book
Written in the informative and clear style of the earlier.
highly successful ZX80 Pocket Book, but with all new
content. This is the ideal foliow-up to the Sinclair manual,
with application to both ZX81 and BK ROM ZX80! The
£XB1 Pocket Book begins with an exceptional 1K RAM
programme (Pinning the Tail on the Donkey), which is
followed by revealing chaplers on String-Functions and
Efficient Programming. Throughout there is a balance
between serious computing concepts and fun programs.
A particular emphasis is placed on the use of subroutines
Ohter chapters provide Hints 'n’ Tips, Decimal Justification,
Using Machine Code. Numeric Conversion, and ZX81
Adwventure. Programs for both 1K and 16K machines
include: Ski Run. Ball & Bucket, Etch-a-Skeich, Digital
Clock, Standard Deviation, Dice Simulation_ City of Alzan
(a long adventure program), plus many others. The book
contains 5 appendices containing ZXB0 and ZXB1 con-
versions, ZX81 modula salector listing, solutions to prob-
lems in tha book, ZX81 Basic command summary, and
error code summary. The emphasis throughout is on a
programming style designed to consarve memary, and
demanstrate practical lechniques to make your programs
function better. Every Sinclair owner should have a copy
right alongside his manual!

The ZX81 Pocket Book_ by Trevar Toms, Phipps Associates
136 pages. Spiral bound. 5$11.985 (514,95 in Canada)

NOT ONLY 30 PROGRAMS FOR
THE SINCLAIR ZX81 ... BUT
ALSO ... detailed explanations and
much much more. All programs
designed to fit into the 1K memory of
the ZX81. Includes such favorites as
Star Wars, Lunar Lander, Blackjack,
Mini Adventure. Also explanations of
how programs were written, hints on
how to write your own exciting pro-
grams, space-saving techniques,
peeks and pokes and other “com-

plicated” functions.
$14.95($16.95 in Canada |

‘-ll-——---———-'---i—————----——--H————!--u————————-—_————-—-u__‘

801 Fuhrmann Blvd., Buflalo. NY 14203. (in Canada. mail to

I Full replacement warranty all tapas.

I
1
: GLAOSTONE-| |-ELECTROMICS Gladstone Electronics, 1736 Avenue Rd., Toronto, Ont M5M YTy :

|
L] S — |
= Please send :
H Mame Quantity | Descriation Price sach]
T

I Addrass —\ CASSETTES []
Kiultifde -Data Storags 120,08 1538 84 13 I
1 il 895 (31085 Can) |
1 City State —__Fip ZHAS - Ansimihin L L CTETEE Y= E T |
1 h O Visa Maste rd ZXDE - Disassomblar ¢ $8.95 (512 95 Cgm) 1
| Charge to m] Ca | Zx cHESS! 52495 (igapscan) |
| BOOKS 1
I Card No. Maching Linguage Made Simpls . N 1
i . lor ZXAD & FXB 1 $19.95 (52306 Cdm)
I Expiry — Understanding Sinclair ROM B19.95 (32 dnl |
[Tng ZX81 Pockel Book $11 895 (574 G5 Can) i
II O Check H Maney order (Sorry, no CODs} "‘";f,’;f;,’?fﬁ‘,""’*‘”““' §14 95 (516 95 Can) I
j Amount enclosed Shipging chargo. all o #1.50 1
I
1

e i e —

- . |

It is, however, possible to obtain a
random integer on an FP machine. To
get a random number between 0 and x-1,
use the expression INT{(RND*x)+ 1. Com-
pare the sample lines below:

4K Integer Basic
100 J+RND(100)
110 REM set] equal to a random
120 REM number between 1 and 100

8K FP Basic
100 I=INT(RND*100)+ 1
110 REM set J equal to a random
120 REM number between 1 and 100

INKEYS

The INKEY'S function is available only
on the 8K ROM. Without a moderate
amount of machine language programming.
there is no way to simulate it on the 4K
machine. If the thought of such an
endeavor strikes you as an interesting
project, | would suggest my article on the
ZX80's keyboard system (S¥YNC 1:2)as a
good starting point.

LEN(xS)

This function is not available on the 4K
machine, but it is easy to simulate by a
simple subroutine. On a 4K machine you
would add this subroutine at the end of
your main program. Then to find the length,
in bytes (characters) of a string you can
set a few argument variables and call the
subroutine. This process is illustrated in
Figure 2. The Len subroutine is found in
Figure 3.

SGN(x)

The SGN(x) function is used to
determine the sign (not sine) of a given
number, its argument. If the value passed
to the SGN(x) (often pronounced 'signum’)
function, is negative, the function returns
a value of -1. If the value passed is 0, the
function returns a zero. If the value passed
is positive, that is, greater than zero, the
signum function returns the value -1. For
example, if you PRINT SGN(-237) the
computer will dislay a -1 on the screen.
Whereas, were you to PRINT SGN(237),
the computer would place a 1 on the
screen.

This is a useful function. It is not quite
50 useful, however, if you have to use a
subroutine call to access it. To elucidate,
you lose much of the value of being able
to specify an expression as
100 LET X=SGN(RES23/2)+USR{AD)*
4+1
when you must express it as:

100 LET TEMP=RES23/2
110 GOSUB 9000
120 LET X=TEMP+USR(AD)*4+1

12

9000 REM LEN

THIS SUBROUTINE FINDS

9010 REM THE LENGTH OF A STRING.
TO USE IT, SET Z5=x5; x5

9020 REM BEING THE STRING YOU
WANT TO FIND THE

9030 REMLENGTH OF. THE SUB-
ROUTINE WILL RETURN

9040 REM WITH THE LENGTH OF THE
STRING IN THE VARIABLE

9050 REM J. YOU SHOULD BE SURE
THAT YOUR PROGRAM

9060 REM WILL RUN PROPERLY IF
THESE VARIABLES (Z5.])
ARE DESTROYED.

9070 LET J=0

9080 IF Z$=*" THEN RETURN

9090 LET I=J+1

9100 LET Z$=TLS%(Z5)

9110 GOTO 9080

Figure 2.

100 REM MAIN PROGRAM

110 LET H§="LKJHGTYL"
120REMNOW CALLTHELENROUTINE
130 LET Z5=H3

140 GOSUB 9000

150 PRINT J

160 REM THIS PROGRAM WILL
PRINT

170 REM THE NUMBER 8, BECAUSE
HS

180 REM HAS 8 CHARACTERS INIT.
190 STOP

The listing of the routine to simulate
SGNix) is given in Figure 4. The calling
procedure for the SGN(x) subroutine is
found in Figure 5. You may, however,
find it more useful (and easier) to find the
signum, directly in your program, as
opposed to calling it as a subroutine all
the time.

9000 REM 'SGN

9010 REM THIS SUBROUTINE IS USED

9020 REM TO FIND THE SIGNUM OF

9030 REM A GIVEN NUMBER. TO USE

9040 REM IT. YOU PASS ITS ARGU-

9050 REM MENT IN THE VARIABLE

9060 REM TEMP. THE SUBROUTINE

9070 REM RETURNS THE SIGNUM OF
TEMP IN TEMP.

9080 IF TEMP=0 THEN GOTO 9200

9090 IF TEMP >0 THEN GOTO 9230

9100 REM HERE IF TEMP < 0

9110 TEMP=-1

9120 RETURN

9200 REM HERE IF TEMP=0

9210 RETURN

9230 REM HERE IF TEMP >0

9240 LET TEMP=1

9250 RETURN

Figure 3.

Figure 4.

100 REM MAIN ROUTINE
|
I
!

500 LET TEMP=N

510 GOSUB 9000
520 LET NEWVAL=TEMP

9000 RE'M SGN

1
I
1
I

! You now want the SGNi(N)
!Call the subroutine

!Get the SGN into NEWVAL
!

! This sequence of code
!'is equivalent to:
!

| LET NEWVAL=SGN(TEMP)
1

Figure 5.

SYNC Magazine

VAL[xS)

The VAL(x3) function is used to convert
between a string containing the character
representation of a number to an actual
number. For example, PRINTing the
VAL("12347) yields the number 1234, not
the string “1234”. You cannot assign the
result of using the VALI() function to a
string, nor can you use a number as the
argument. That is, X$=VAL(TS) is illegal,
as is T=VAL(J). Once again, the 4K ROM
falls short by not providing this useful
function, but we can use the subroutine
in Figure 6 to simulate it. The subroutine
takes the argument T$ and returns the
VAL of it in the variable TEMP,

9000 REM VAL

9010 REM

9020 REM THIS SUBROUTINE IS USED
9030 REM TO FIND THE VALI(TS). IT
9040 REM RETURNS THIS VALUE IN
9050 REM THE VARIABLE TEMP.
9060 LET TEMP=0

9070 IF T$="" THEN RETURN

9080 LET TEMP=TEMP+CODE(T$)-28
9090 LET T$=TLS(TS)

9100 LET TEMP=TEMP*10

9110 GOTO 9070

Figure 6.

STRS(x)

This function is the inverse of the VAL()
function. It returns a string which corre-
sponds to the characters which would
appear on the screen if you were to PRINT
the number. For example, LETting T$=
STRS(23) would give the 2-character string
“23", not the number 23, This function is
available on both the 4K and 8K ROMs,
and works identically on both. Therefore,
when translating from one ROM to the
other, you can use exactly the same
function without any problems.

USR(x)

The USR (pronounced ‘user*) function
is used to call machine language subroutines
in the computer. The 4K and 8K versions
differ only in where they get the value to
return to Basic. The 8K version, when
your machine language subroutine
RETurns, yields the 16-bit number held
in the BC register-pair. The 4K version
returns the value in the HL register-pair.
(Do not worry if you do not understand
this; this is directed to machine language
programmers.)

ABS(x)

This function returns the absolute value
of its argument.This function is available
on each ROM and can be transferred
freely between 8K and 4K ROM pro-
grams.

PEEK(x)

The PEEK function is used to find the
value of an arbitrary byte of memory (i.e.,
byte x). It is available on both ROM:s.
The only difference between the two is
that, whereas on the 4K ROM one might

say:
J=PEEKI(-13420)
on the 8K ROM one would say:
J=PEEK(46188).

The formulae for conversion between
ROMs are:

4K to 8K

If the address is negative, make it positive
and add 32768,

8K to 4K:

If the address is greater than 32768,
subtract 32768 and make it negative.

NOT X

This function is used to obtain the logical
inverse of the value given as the argument.
It is available on both ROMs. The only
difference is that on the 4K ROM “True”
is represented as -1. Whereas on the 8K
ROM, “true” is represented by 1. Both
ROMs use 0 to represent “false.”

XANDY/XORY

AND is available on both ROMs. It
does, however, work differently. On both
ROMs a statement such as:

IF A=120R B >37 AND X$="Y"THEN
GOTO 1000

will execute identially on both ROMs.
But a statement such as:
JY=PAND2+Z

will create different results on the two
ROMs.

On the 4K ROM AND (and OR) are
binary. That is, each bit of the operands
are ANDed (or ORed) together. On the
8K ROM the AND and OR operators
work differently, The expression AN AND
XZ will yield 0 if XZ is equal to 0.
Otherwise, it will return AN, Thus,

47 and 227
returns 227, But,

0 and 227
returns zero. OR works in a similar way.
X OR Y returns 1 if Y=0, Otherwise, it
returns X. The general rule for conversion
is: If the operators are used in a boolean
expression (like an IF statement), they
can be transferred directly. If not, you
are probably in trouble.(Ed. — See Kitchen
SYNC in this issue for further discussion
of AND, OR, and NOT.)

In the next issue, I will continue the
discussion of program conversion by giving
tips for converting commands (e.g., PRINT
and INPUT) from one ROM to the other.
Until next time, same relativistic time
period, same non-Euclidian universe. "4

You can help
this computer,
or

you can turn
the page.

ANNOUNCING ...
a

KEYBOARD BEEPER
FOR THE ZX80

This Tow power CMOS
circuit ends data entry
problems common to
Sinclair-style keyboards
by beeping when a key is
depressed. Fully
assembled and fits
inside computer.

SEND $12.00 TO

555
£ a new ad%;11c0ﬂ
tow 1 qoved O
ye e o
yalley!

BURNETT ELECTRONICS

1729 Woodland Ave., #D
Palo Alto, CA 94303

4K ROM; 1K RAM
8K ROM; 1K RAM

How is it done?

An Introduction to Machine Code

Dr. lan Logan

The managing editor and 1 are frequently
asked about how one starts to use machine
code on a ZX80/1. So this article is an
attempt to reply to these questions, and 1
trust that you will find that machine code
is not only for the expert.

An Outline View

The ZX80/1 microcomputer system as
supplied by Sinclair Research is capable
of being programmed in two different
languages, i.e., Basic and Machine Code.

Basic is a very easy language to use for
the beginner and. as long as one’s programs
are simple, the language is almost “ideal.’
However, Basic is a rather ‘slow” language
and limited in its commands.

Machine code, however, is a much more
difficult language to use. The resultant
programs are executed by the ZB0) micro-
processor at a fantastic speed and the
complexity of the programs is limited more
by the knowledge of the programmer than
by the actual microcomputer.

It is always difficult to explain o the
‘beginner’ just how to write a machine
code program, but in this article we will
begin by drawing upon the similarities
between Basic and machine code.

Program Structure

A Basic program is made up of a set of
Basic lines. In the ZX80/1 system these
lines are kept in an area of the RAM
(random access memory) that is termed
by Sinclair as the PROGRAM AREA.
When the user first turns on the machine,
this PROGRAM AREA is empty, and the
user will then proceed to enter a program
into this area. The program can be as
short as a single line, e.g., 10 PRINT or
can be several hundred Basic lines. The
user will then RUN the program, and this
will result in the system interpreting line
after line of the program, as has been
determined by the programmer, until the
‘last’ line has been reached.

lam Logan, 24 Nurses Lane, Skellingihorpe, Lincoln
LN6OTT,

14

A machine code program is in many
ways dealt with in a similar manner. First,
the programmer must decide just what
part of the RAM he is going to designate
as his ‘machine code area.’ It is possible
in the ZX80/1 systems to choose an area
from several different parts of the RAM
but my favorite technique is to reserve
part of the PROGRAM AREA by using a
REM statement. The next task is to actually
enter the machine code into the RAM
and this has to be done by using POKE
commands. An actual machine code pro-
gram entered in this fashion can be made
up of just a single instruction or many
thousands of instructions. This program
is then ‘run’ by using a USR command
which is either a single line Basic program,
e.g.,

10 LET A=USR(16427)

or a2 USR command occurring in a longer
Basic program, in which case the machine
code program becomes a ‘machine code
subroutine’ of the Basic program. Note
how the USR command has 1o be followed
by a number. This number is the address
of the location within the machine code
area where the machine code program
begins.

Instruction Format

All Basic lines can be described as
containing an obligatory ‘operator’—the
command —and an optional ‘operand.’ The
line
10 PRINT
contains only the ‘operator’ PRINT whereas
the line
20 PRINT A
contains the ‘operator’ PRINT and the
part that is to be printed, the ‘operand’ A.
Note how the Basic line has the ‘operator’
coming before the ‘operand.’

This division of a line into an ‘operator’
and an ‘operand’ is an essential part of
Basic syntax and the ZX80/1 systems with
their ‘syntax checking’ facility ensure that
the user has no difficulty remembering to
place his ‘operators’ before his
‘operands.’

Just as it is in Basic so it is in machine
code, but there are hundreds of different
‘operators,” as opposed to the 20 or so in
Basic.

Whereas a Basic program is made up
of ‘decimal numbers and letters,” a machine
code program consists of only a set of
numbers. These numbers can be considered
to be in binary, decimal or hexadecimal
arithmetic, but for users of the ZX80/1
systems the use of the decimal values is
the easiest method, although the ‘expert’
will usually only think in hexadecimal
arithmetic.

So what are the ‘operators’ in machine
code? Well, they are the decimal numbers
0-255, (hex. OO-FF), but since more than
256 ‘operators’ are required, the numbers
203, 221, 237, and 253 (hex. CB, DD, ED,
and FD) introduce a second decimal
number into the ‘operators.’

In Basic the ‘operators’ are commonly
called the ‘commands’ and in machine
code the ‘operators’ are called the ‘instruc-
tions." Fortunately, one does not have to
memorize all the different numbers as
each instruction has been given a descrip-
tive ‘mnemonic’ and most programmers
only ‘look-up’ the numbers when they need
them.

The ‘operands’ in machine code are
also numbers in the range decimal (-255,
(hex. OO-FF), and these ‘operands’ are
placed after the instructions proper when
they are needed.

A machine code program may also

SYNC Magazine

N

The ZX81 Companin

The ZX81 Companion by Bob Maunder follows the
same format as the popular ZX80 Companion. The book
assists ZX81 users in four application areas: graphics.
information retrieval, education and games. The book
includes scores of fully documented listings of short routines
as well as complete programs. For the serious user, the
book also includes a disassembled listing of the ZX81
ROM Monitor,

MUSE reviewed the book and said, “Bob Maunder's
ZX80 Companion was rightly recognized to be one of the
best books published on progressive use of Sinclair's first
micro. This is likely to gain a similar reputation. In its 130
pages. his attempt to show meaningful uses of the machine
is brilliantly successful.”

“The book has four sections with the author exploring
in turn interactive graphics (gaming), information retrieval.
educational computing, and the ZX81 monitor. In each
case the exploration is thoughtfully written, detailed, and
illustrated with meaningful programs. The educational
section is the same —Bob Maunder is a teacher—and here
we find sensible ideas tips, warnings and programs 100"

Softbound, 5 1/2 x 8", 132 pages. $8.95.

Getting Acquainted
With Your ZX81

This book is aimed at helping the newcomer make most
effective use of his ZX81. As you work your way through
it. your program library will grow (more than 70 programs)
along with your understanding of Basic,

The book is chock full of games such as Checkers which
draws the entire board on the sereen. Other games include
Alien Imploders. Blastermind. Moon Lander. Breakout.
Digital Clock. Roller-Ball. Derby Day. and Star Burst.

But the book is not all games, It deseribes the use of
PLOT and UNPLOT. SCROLL. arrays. TAB, PRINT AT.
INKEYS. random numbers and PEEK and POKE. You'll
find programs 1o print cascading sine waves. tables and
graphs: 10 solve guadratic equations: w0 sort data: 1o
compute interest and much more.

Softbound. 5 1/2 x 87, 120 pages $8.95,

The Gateway Guide

to the ZX81 and ZX80

The Gateway Guide to the ZX81 and ZX80 by Mark
Charlton contains more than 70 fully documented and
explained programs for the ZX8&1 (or 8K ZX80). The book
is a “doing book.” rather than a reading one and the
author encourages the reader to try things out as he goes.
The book starts at a low level and assumes the ZX80 or
ZX81 is the reader’s first computer. However by the end,
the reader will have become quite proficient.

The majority of programs in the books were written
deliberately to make them easily convertible from machine
to machine (ZX81, 4K ZX80 or 1K ZX80) so no matter
which you have, you'll find many programs which you can
run right away.

The book describes each function and statement in
turn, illustrates it in a demonstration routine or program
and then combines it with previously discussed material,

Softbound. 5 1/2 x 87, 172 pages, $8.95,

Computers For Kids
P)
Sinclair Edition
Computers For Kids. by Sally Larsen is the fourth book
in this highly successful series. (Previous editions have
been released for TRS-80, Apple and Atari computers.)
Written expressly for youngsters ages 8 to 13. the book
requires no previous knowledge of algebra, variables or
computers. Armed with a ZX81 and this book. a child will
be able to write programs in less than an hour. A section is

included for parents and teachers.

The book starts with a patient explanation of how to use
the Sinclair. graduates to flow charts, and simple print
programs, The twelve easy-to-read chapters go through
loops, graphics and show other programming concepts,
and show in a painless way how to make the computer do
what you want.

Donald T. Piele, Professor of Mathematics at the University
of Wisconsin-Parkside says. “Computers For Kids is the
best material available for introducing students to their
new computer. [t is a perfect wol for teachers who are
learning about computers and programming with their
students. Highly recommended.”

Softbound. 8 1/2 x 117, 56 pages. $3.95,

Order Today

To order any of these books. send payment plus $2.00
shipping and handling per order to Creative Computing
Press at the address below. Visa, MasterCard and American
Express orders should include card number and expiration
date. Charge card orders may be called in toll-free to the
number below.

creative compating

Toll-free 800-631-8112
In NJ 201-540-0445

39 E. Hanover Avenue
Morris Plains, NJ 07950
J/

November/December 1981

15

contain ‘data.’ Once again this will be in
the form of locations holding decimal
numbers in the range 0-255.

All this is better illustrated by the
example in Figures 1 and 2.

Note that the machine code subroutine
would occupy 5 locations and would
be entered by:

50 POKE 16427,62

52 POKE 16428,1

54 POKE 16429,198

56 POKE 16430,6

58 POKE 16431,201
and ‘run’ by using:

60 LET A=USR(16427)

Note: Reserve 16427-16431 first (16514-
16518 for 8K).

Variables v. Registers

In a Basic program there are two
different ways of handling variables. The
first is to use ‘named variables,’ e.g.,
A.B,COUNTER, and this is very much
the standard method. However, there is
an alternate method that involves the use
of ordinary memory locations to which
the user will assign values as necessary.
This second technique is commonly used
in games that use the display file. E.g., if
location 16800 is a ‘certain point’ on the
screen, then ‘POKE 16800,..." will assign
the required value and ‘PEEK 16800" will
collect the value of the variable.

A machine code program normally uses
this second method. That is, the program-
mer first selects certain locations that he
wishes to be filled with ‘named variables”;
however, these ‘names’ are only known to
the programmer and not the ‘computer,’

Itis possible though to take the general
concept of the ‘Basic named variables' a
little further and draw a useful analogy
between the use of certain Basic variables
and the internal registers of the Z80 micro-
processor,

In a Z8B0 microprocessor as used in the
ZX80/1 there are many ‘registers.’ These
registers can be considered as ‘named
variables’ in an internal ‘variable area.’
Each is equivalent to an ordinary memory
location in that it can hold a number
which has the decimal range 0-255 (hex.00-
FF). The simple registers are the A, H, L,
B, C, D, and E registers. The full set of
registers is shown in Figure

Although the registers dfe equivalent
to ‘one memory location,’ there are many
times when it is desirable to use a pair of
registers that would thereby have the
equivalent of ‘two locations in memory.’
The simplest register pairings are those
of the H and L registers, the B and C
registers and the D and E registers. Usually
these are written as HL,DE, and BC. Such
register pairs can be considered to be
able to hold numbers in the range decimal
0-65535 (hex,0000-FFFF).

16

A Simple Basic Subroutine

10 LET Z=1
20LET Z=Z+6
30 RETURN

‘operator’is ‘LET Z', ‘operand’ is ‘1’
‘'operator’is ‘LET Z', ‘operand’ is ‘Z+6’
‘operator’ is ‘RETURN",

Comment

Figure 1.

The Machine Code Subroutine Comment
mnemonic | Decimal | Hex
LD A,+1 62 3E Load the *A’ register with

1 01 the constant 1. o
ADD A, +6| 198 Ch Add the constant 6 to the

il 06 value in the ‘A’ register.
RET 201 | C9 Return to the calling routine.

Figure 2.

The registers of the Z80 can therefore

be considered as follows:

The A register is a variable named
A

The H register is a variable named
\H'
and so on for all the simple registers named
above. The register pairs can be considered
a5

The HL register pair is a variable
named ‘HL'.

The BC register pair is a variable
named ‘BC’,

The DE register pair is a variable
named ‘DE".

Actual Machine Code Insiructions

Now that the analogy has been made, it
is possible to use the variables A, H, L, B,
C, D, E, HL, DE, and BC to explain the
more simple of the 600+ instructions of
the Z80 machine code language.

1) Loading Constants.

The simplest instructions are those that
are used to load a register or a register
pair with a ‘constant.’ For example, in the
instruction ‘LD A,+dd", the actual code
would be two bytes. The first is a decimal
62, (hex.3E), and the second, the value of
the constant itsell. This instruction can

The Registers of the Z80 Microprocessor

The simple registers.

L= "] Fiee |

x| [e)
in[LI LIY]ISP|
EnaSEEs
- =

The more complicated registers.

Figure 3,

SYMNC Magazine

| —————

—————

be considered to have the same result as
a Basic line:

LET A+ a constant,
when the variable A is located in the
microprocessor. In the instruction 'LD
HL.+dddd’ the code is three bytes. The
first is decimal 33 (hex.21) and the following
two are the constant. Note that the constant
always appears with the ‘remainder’ coming
before the integer of the ‘constant/256."
This instruction would be equivalent to:

LET HL = ... a constant.
or more precisely:

LET L = ‘remainder’ and

LET H = ‘constant/256
2} Loading Registers from memory Loca-
ffons

There are only two simple instructions
in this group. The first instruction is ‘LD
A,laddr.)" which is a three byte instruction,
The first number is a decimal 58 (hex.3A)
and whose other two bytes are the ‘address
in memory” of the location that is to be
copied. Note that the address is once again
to be entered as the ‘remainder’ followed
by the *address/256.

_ The Basic equivalent of this instruction
is:

LET A=PEEK(lIst+2nd,*256)

The other instruction is for loading the
HL register pair, and the mnemonic is
‘LD HL,(addr.)." Again, this is a three
byte instruction. The first byte is decimal
42 (hex.2A), and the other two bytes are
the address again.

The Basic equivalent is:

LET HL=PEEK(1st+2nd*256)+256*
PEEK(lst+2nd*256)

or more simply:
LET L= PEEK(addr.)

and LET H=PEEK (addr.+1)
3) Three Further Instructions

It is beyond the scope of this article to
detail more than just a few of the instruc-
tions in the Z80 machine code instruction
set, but the following instructions will be
used in the game below,

a) The contents of most registers can
be copied into another register by using
the appropriate instruction.

E.g.. the instruction ‘LD E.A’ copies
the contents of the A register into the E
register. The instruction code is decimal
95 (hex.5F).

The Basic equivalent would be:

LET E=A

b} The contents of the DE register pair
can be added to the contents of the HL
register pair by using the instruction ‘ADD
HL.DE." This instruction has the code
decimal 25 (hex.19),

The Basic equivalent would be:

LET HL=HL+DE
or if preferred:

LET L=L+E
and LET H=H+D+ carry if present.

¢} The last instruction of any machine
code program must always act as a
‘RETURN." It is easy to understand that
this can be performed by the straightfor-
ward instruction ‘RET" whose code is
decimal 201 (hex.C9), but it is often found
that the ‘return’ is made by using a ‘stack-
handling” instruction instead.

The Basic equivalent of the ‘RET"
instruction is simply:

RETURN

Once the reader has understood just
how instructions are used. it is fairly easy
to gradually use the more complex instruc-

-

Get in
sync

You and your friend are both new owners of
a Sinclair ZX80 or ZX81. You bought your
computers together and marveled over the
low pfice you had to pay for the Sinclairs
innovative design and sound performance. With
visions of becoming computer experts, each
of you read your manuals from cover to cover,
discovering together the elementary functions,
routines, and capabilities of your new systems
Within no time you were both running your
computers with ease and confidence.

But soon your friend is expertly and efficiently
adapting new peripherals and software to the
maching —equipment that you didn't even know
existed, Every day yvour fellow Sinclair user is
showing you new and interesting programming
techniques, creating interesting graphics, chal-
lenging you to new games, and converting
programs from other computers to the Sinclair
Before you know it. you're friend has far sur-
passed you in computer aptitude and “know-
how." How did your friend get so far ahead of

-

Your friend reads SYNC—a Creative
Computing publication written solely for Sinclair
ZX80 and ZXB1 users. SYNC takes you far
beyond the limits of theory and practice as
described in the manual. Every issue is packed
with articles. tutonials, "how-to” material, reviews,
and evaluations that enable you to use your
Sinclair to its greatest potential. Hardware tips,
puzzles, problems, letter-to-the-editor —all the
information supplied in SYNC will keap you
up to date on new ways to do things with your
Sinclair that couldn't be done before

SYNC functions on many levels with tutorials
for beginners and concepts that will keep the
pros coming back for more. We'll show you
how to duplicate commands available in other
Basics and we'll even show you how to do
things on the Sinclair that can't be done on
other machines.

While applications and software are the meat
of SYNC. we recognize that along with useful,
pragmatic applications. like financial analysis

'\\

lenging and fun. We give you complete listings
and sample runs of new games like Widget,
Gauntlet, Forest Treasure, and Life as well as
old favorites like Tic Tac Toe and Mastermind
with a computer twist. All can be picked up
from the pages of SYNC.

Order SYNC Today

To order your subscription to SYNGC in
the USA, send $16 for one year (6 issues),
$30 for two years (12 issues), or $42 for
three years (18 issues). Send order and
payment to the address below or call our
toll-free number to charge your order to
your Mastercard, Visa, or American
Express.

Subscriptions in the UK are mailed by air
and cost £13 for one year, £25 for two years,
or £36 for three years. Send order and
payment to the UK address below,

Canada and other foreign surface subscrip-
tions cost $20 for one vear, $39 for two
years, and 556 for three years (US dollars)
and should be sent to the USA address

Subscribe to SYNC and get the most from
your Sinclair

39 East Hanover Avenue
Marris Plains, NJ 07950, USA

Toll free 800-631-8112
(In NJ 201-540-0445)

27 Andrew Close

you? The answer is simple, and graphing. you want games that are chal- Stoke Golding
Nuneaton CV13 6EL, England Y,
Movember/December 1981 17
e — — ——

tions. Suitable lists and tables of all the
instructions are to be found in all books
on machine code programming, or if the

The larger usable RAM and the compact
integer handling of the ZX80 with a 4K
ROM allows for a ‘more complicated’ game
than on a ZX80 with the 8K ROM or a
ZXEI1. Therefore, the 8K version is slightly
different overall but does use the identical

A First Machine Code Subroutine

The easiest Basic line to convert to
machine code is the line:
4K: 230 LET A=PEEK(16396)+PEEK
(16397%256
8K: 180 LET A=PEEK 16396+PEEK

reader prefers he can just take notes on
‘new’ instructions as he finds them in
different programs.

The Demonstration Game

The following Basic program includes
many features that can be easily ‘machine
coded.” However, as with many similar
programs, there is no genuine advantage
to replacing Basic lines with machine code
subroutines, except from the point of
interest.

If the reader wishes to try writing the
whole of a ‘Basic program’ in machine
code, then I very much suggest that he
use a ZX80 with the 8K ROM and a ‘slow
converter,’ or a ZX81, as machine code
programming in ‘slow’ mode is the easiest
for larger programs.

The Tower Game

There are two towers of ‘bricks’ and a
single brick is taken from one tower and
placed on the other tower. The choice of
the ‘declining’ tower is made at random.
The game is over when only a single tower
remains,

central algorithm.

16397+256

The Tower Game (8K ROM: 1K RAM)

20 RAND

30 DIM L2y

40 LET Lilr=h2

S0 LET L(2)=s9

&0 FOR A=1 TO 4

70 FRINT F—f; "#addEndaiaia”

BO MEXT A

90 FOR A=1 TO 4

100 PRINT S—fj " aheuanssnssn

110 NEAT A

FRINT "#WN77777H8TITIT"

130 LET C=0

PAUSE SO

150 POKE 146437,255

LET R=INT {RMD+1.5)

170 LET P=l+iR=1)

LET A=PEEE 1&394+FPEEK

204

FOKE A+L (R, O

LET LiR}=L{R)+14

210 LET LIPI=L{FP}-14

220 POKE A+L{(P),.B

230 LET C=C+1

240 IF LIR)I<11B THEN GOTO 140

250 PRINT "DID YOU GUESSH":Cs"#
MOVES?"

FAST

14397

Comment .
Differant sach time.
The two towersa.
The pointers to the tops of the

towers in the Display File.

12 Spaces.

fsp., graphic A, & sp.. grapg. A.

3 Sp., 3 grap. "7", 2 sp., S grap.m"7?"

Initi1alise the move counter.
or 140 FOR D=1 TO 20 Z
SLOW
150 MNEXT D B
Randaomly choose a tower.
If R=1 then FP=2, and vice versa.
Pick up the start of the D-File.

Remove a brick.

Faint to "new” kop of tower.
Point to space above the other
Fut the brick anto place.
Count the “"move."

1f two towers exist,
Did you do well?

tower .

then go back.

which picks up the address of the start of

The Tower Game (4K ROM: 1K RAM)

20 RANDOMISE
30 DIM L (2)

40 LET L{1)=42
S0 LET L(2)=4%
&0 FOR A=1 TO 4

7O FPRINT S=f: "aianshdsnaas 12

B0 NEXT A
F0 FOR A=1 TO 4

Commment .
Ditferent sach time.
The two towers,

The pointers
towers in the Display File.

to the tops of the

Spaces.

The towers.

the Display File.
In the 4K program one proceeds as
follows:
1) Replace line 230 by:
230 LET A=USR(16427)
2) Enter a line 10
10 REM 1234

that reserves 4 locations for a machine

100 PRINT ﬂ.—#\;"ﬂﬁ“h&#ﬂﬂ##ﬂﬁ‘ 4 spaces,shifted "A4",& spaces,shifted "A"
110 NEXT A
120 PRINT “#H#HEEEEEHIGEEEE" 3 spaces,S shifted "6G".2 apaces.S
130 PRINT ahifted "B" forms a base to the towers.
140 FOR G=RMD(235) +4 The computers guess.
150 PRINT "¥OUR GUESS(4-27)"; Make a guess for the number of
150 INFUT ¥ moves to eliminate a tower.
170 IF ¥<4 OR ¥>27 THEN GO TO 1 A suitable range. But not the

&0 actual range.
180 PRINT “=RA"g¥:" #MINE-#"3G," Watch the spacing!

FPRESS N/L"
190 LET C=0 Inttinlise the move counter
200 INFUT As Wait for a M/L, betore sach “"move".
210 LET R=RMND{Z) Randomly choose a tower.
220 LET Pmi-(R=1) I+ R=1 then P22, and vice versa.
230 LET A=PEEK {163%94) +FPEEK (14639 Pick up the start of the D-file.

71 RZ254
240 POEE A+L(R),0 Eemove & brick.
250 LET LtR)=L{R)+14 Paint to "new" top of towsr.
260 LET L(P)=L{P)-14 Foint to space above the other Lower.
270 POKE #+L(FP), % Fut the brick into place.
280 LET C=C+1 Count the “move."
290 IF LIRY<118 THEN GO0 TOD 200 I¥ two towera exist, then go back.
00 PRINT "IT WASH":C;"#MOVES A An end message.

DNy
=10 1F ABBAG-C)<ARE(Y-C) THEN G Whose guess wak the better?

O T 340
F20 PRINT "YOU WM Well done.
30 STOF
240 FPRINT "1 wde*™ Oh dear. Qut classed by the ZX00.
18

code routine. The address of the first of
these locations being 16427,

3) Remove line 10 from the listing by
using, for example:

LIST 250

and from now on do not use HOME or
LIST as this will cause problems. (The
problems can be solved by using after a
HOME, etc., Cursor down, cursor down
& POKE 16403,20 il needed)

4) Enter:

FOKE 1642742 (hex. 2A)
POKE 16428,12 (hex. OC)
POKE 16429,64 (hex. 40)
POKE 16430,201 (hex. C9)

which will enter a 4-byte machine code
routine into the 4 reserved bytes of line
10.

The ‘mnemonics’ for this program are:
LD HL (D-File)
RET
where the address of D-File is 16396 in
decimal, which splits into a remainder of
12, and 64*256.

SYNC Magazine

5) Run the program. The reason for
this routine working is that the expres-
sion:

USR(16427)
returns to the Basic program the curremt
value of the HL register pair,

In the 8K program one proceeds in a
similar manner.

1) Replace line 180 by:

180 LET A=USR 16514
2) Enter a line 10:
10 REM 123456
that reserves 6 locations for the machine
code. The starting address being 16514.
3) Enter:

POKE 16514.42 (hex. 2A)
POKE 16515,12 (hex. 0C)
POKE 16516,64 (hex. 40)
POKE 16517,68 (hex. 44)
POKE 1651877 (hex. 4D)
POKE 16519201 (hex. C9)

which will enter a 6-byte machine code
routine into line 10,

4) RUN the program.

The ‘mnemonics’ for this program are:

LD HL.(D-File)

LDRBH

LDC,L

RET
where as before the address of D-File has
to be split into ‘12" and ‘64",

The two new instructions ‘LD B.H
and LD C.L’ are needed as the 8K ROM
returns the value of the BC register pair
rather than the HL register pair.

A Second Machine Code Routine

If you have followed the article so far,
you might now like to try a longer machine
code routine. Several new instructions will
be introduced.

In the Tower Game the start of the
Display File is used as a base address to
which the variables L(R) and L(P) are
added in turn. The resultant address then
points to the location that is to be filled
with a specific value, All of this procedure
can be easily performed in machine code.

In the 4K program one proceeds as
follows:

1) Replace lines 230 and 240 by:

230 POKE 16431,L(R)

which transfers the current value of L(R)
to a suitable location for the machine
code routine and

240 LET A=USR(16427)

which runs the machine code routine.
Note how the variable A is just a dummy
variable, i.e., not used later.,

2) Replace line 270 by:

270 POKE 16441,L(P) and
275 LET A=USR(16437)

3) Replace line 10 by:

10 REM 12345678901234567890

4) And fill line 10 by using a loader
such as:

500 FOR A=16427 TO 16446
SI0INPUT B

520 POKE A B

530 NEXT A

RUN 500

November/December 1981

and enter the code:
42,12,64,17.0.0.25.54,0,201,42.12,64.17.0,
0,25,54,9,201

5) Now delete the loader in lines 500-
530 and RUN the whole program.

The machine code routine is given in
Figure 4.

16427 LD HL,(D-File) Pick-up D-File.

LD DEdddd The offset.

ADD HL.DE Form new
address.

LD (HL)+00 Blank out this
location.

RET Finished.

16437 LD HL.(D-File) Pick-Up D-File.

LD DE.dddd The offset.

ADD HL.DE Form new
address.

LD (HL),+09 Put a ‘brick’in
this location.

RET Finished.

Figure 4.

The instruction ‘LD DE.+dddd’ loads a
2-byte constant into the DE register pair.
In the routine the first byte is altered as
required whereas the second byte always
stays as zero. The instruction ‘LD
(HL}),+dd" is used to load a constant into
the location whose address is the current
value of the HL register pair.

In the 8K program one proceeds in a
similar manner.

1) Replace lines 10,180,190 and 220 by:

10 REM 12345678901234567890

180 POKE 16518,L(R)
190 LET A=USR 16514 or
190 RAND USR 16514 (which looks nice)
220 POKE 16528,L(P)
225 LET A=USR 16524 or
225 RAND USR 16524

2) Load line 10 by using:
500 FOR A=16514 TO 16533
510 INPUT B
520 POKE A B
530 NEXT A
RUN 500
and enter:
42,12,64,17,0,0,25,54,0,201 42,12,64,17.0.0,
25,54.8,201.
which is the same routine as given for the
4K version but with ‘graphic 8 instead of
‘graphic 9."

3) Delete lines 500-530 and RUN the
program.

The reader is now encouraged to try
his own hand. For example, the variable
C can be replaced entirely. This will,
however, probably require the use the
instructions in Figure 5.

A Bibliography

For those readers who wish 2 delve
further into machine code, the following
books are available (at least from UK.
suppliers).

Understanding Your ZX81 ROM by
lan Logan. £8.95. The Essential Software
Company (Visconti Ltd.), 47, Brunswick
Centre, London W1 CN IAF. and other
Melbourne House outlets. Need [say
anything more than that this book deals
extensively with the use of machine code
in the ZX80/81 systems.

Mastering Machine Code on Your ZX81
or ZX80 by Tony Baker. £5.95. Interface,
44, Earls Court Road, London W8 6EJ,
“Speak kindly of one’s rivals and they will
be kind to you.”

Machine Language Programming for
Your ZX80 & ZX8! £8.95. Melbourne
House Publishers, 131, Trafalgar Rd.,
London SE 10.

The currently available books about
the ZX81 are:

The ZX81 Campanion by Bob Maunder.
£7.95 Linsac, 68, Barker Road, Linthorpe,
Middlesborough Co. Cleveland TS5 5ES.
A very good book. Deals more with
‘computing theory’ and less with the
monitor than its predecessor.

The ZX81 Pocket Book by Trevor
Toms. £4.95. Phipps Associates, 3, Downs
Avenue, Epsom, Surrey KT 18 5HQ.

From Interface:

Getting Acquainted with your ZX81
by Tim Hartnell. £4.95,

30 Amazing Games for the ZX81 by
Alistair Gourlay. £3.95,

50 Rip-Roaring Games for the ZX80
and ZX81. £4.95,

Hints & Tips for the ZX81, £4.25. Hew-
son Consultants, 7, Grahame Close, Blew-
bury, Oxon. OX 11 9QE.

Not Only 30 Programs for the Sinclair
ZX81.£6.95. Essential Software Company
(Visconti Ltd.), 47, Brunswick Centre,
London W1 CN 1AF, and other Melbourne
House outlets.

Again I would welcome seeing any
programs written as a conseguence of
this article. '

dec. hex.
LD A,+dd 62 3E =LET A= _...
LD Aladdr) 58 3A = LET A=PEEK.....
LD (addr.),A 50 32 =POKE..., A
INC A 60 ac = LET A=A+1
Figure 5.

—

4K ROM
1K RAM

Introduction

I was pleasantly surprised to find that
the Sinclair ZX80 has both the software
and hardware facilities to expand memory
and /0 with relative ease. This conclusion
came after | had performed a few experi-
ments on the ZX80.

I would like to share with you these
experiments, their results, and my con-
clusions.

How the ZX80 Works

Before | could expand the memory or
add 1/0 to a ZX80, I had to know how it
worked.

The manual that comes with the ZX80
is of some help. There is also a hint into
the dynamic nature of the operating system
by virtue of the fact that system variables
are in RAM. This allows them to be altered
as needed by the operating system.

Though some may argue that the ZX80
is too simple to have an operating system,
it does have a central program that allocates
resources and passes control to the various
subprograms resident in the machine.

The important resource we are con-
cerned with here is memory, in particular
the user memory,

The book The ZX80 Companion, pub-
lished by Linsac, was most helpful in
supplying other good information, albeit
without an explanation of how RAMTOP
knows how to get to the top of RAM.

RAMTOP is the physical top, or highest
address of installed RAM. This top is
marked by the top-of-stack (TOS) marker
pair and 1095 (447h), the return address
for all Basic line executions. See Figure 1.

RAMTOP — e
TOS marker < _El‘jrﬂl_
] ot
poir [T A |
pointer to < __4_124_H_}_ ;
1095 (447H) 71 (4TH)
Figure 1.

The ZX80 has a very nice way of placing
RAMTOP and these four special bytes at
the top-of-stack.

Davad G, Sommers, 5155 Yarmouth Avenuee, Apart-
ment #9, Encino, CA 91316,

20

Experiments in Memory
and 1/0 Expansion

David G. Sommers

ADR DT New Comments
Q 21 LD HL, 7FFFh 3 TOFP RAM ADDRESS
1 FF
2 7F
3 3E LD A, 3Fh ; TERMINAL COUNT
4 3F
=1 C3 JF 02&61h 5 JUMP TO SEARCH FOR RAMTOFP
& &1
7 oz
261 3b LD{HL)Y, ©ih 5 STORE 01 IN ALL RAM
2462 o1 "
263 2B DEC HL 3 MEXT ADDRESSS DOWN
264 BC CP H 3 HAS 4000h BEEN FILLED?
265 20 JR NZ, s-4 ; LDOF CONTROL
28656 Fa
267 23 INC HL 3 INC FROM 3FFFh
2868 35 DEC{HL) ; DEC VALUE IN RAM LOCATION HL
2469 28 JR I, -2 ;3 LOOP CONTROL, IF O,
CONTINUE LODPIMG
268 FC
26B F9 LD 8P, HL ;3 LDAD SP WITH RAMTOF
26C FS PUSH AF ; START BUILDING TOP-OF-STACK
= i MAKER
Figure 2.

As part of the NEW command, which
is executed on power-up or from the
keyboard, the total amount of installed
RAM is size checked by the subprogram
I shall call NEW. See Figure 2. 1 dis-
assembled NEW by hand using the
PEEK(n) command to read the ROM.
This routine starts by filling all possible
16K of RAM with Olh. Then, starting at
location 16384 (4000h) (see Figure 3), each
location will be decremented in value.
Next, the Z flag in the CPU status register
is checked to see if that location has
become 00h in value. If it has. this is
assumed a good memory location and the
next location is tried. This continues until
this test for zero fails. In the standard
Z X80, this occurs at location 17408 (4400h).
Here the actual location being addressed

is 16384 (4000h). This is due to the simple
linear-select for RAMCS (RAM chip select)
explained in more detail later. What hap-
pens now is that this location, having been
made 00h previously, now becomes FFh.
This condition will cause the routine to
exit its loop and load the stack pointer
(SP) of the CPU with RAMTOP.

The search for RAMTOP has another
interesting feature. During one experiment,
that of adding 3K to the on-board 1K, |
discovered I had only a total of 3K, and
not the expected 4K. Alter many minutes
of sweating and cursing the ZX80, I found
that the very smart ZX80 had noticed
that one of my added 2114 RAM chips
was plugged in backwards, thus preventing
the top 1K from reading back 00h during
the search for RAMTOP. It is possible

SYMNC Magazine

for a ZX80 to operate with bad memory
chips as long as at least the first 1K or so
still functions.

The last operational feature we need
to know is how the chip selects are derived
for RAM and ROM and how this know-
ledge might be applied to expansion.

Consulting the ZXB0 circuit diagram
(SYNC 1:1, pp. 24-25) 1 noted that the
ZX80 uses linear-selection for RAM and
ROM. Al4 (address bit 14) is used to
divide the total address space in half, See
Figure 3. When AA14is true (high), RAM
is selected; when false (low), ROM is
selected. This works fine if there is only
one ROM and one RAM (the pair of 2114
chips act as one 1K X 8 RAM).

The weakness of this linear-selection is
that A10 through Al are don't-care bits
as far as RAM chip select is concerned.
The ROM ignores A13 only. Figure 4 will
help illustrate the problem.

BASE
SIZE AULRESS
18 168 (H000H)
I Lot 31784 (7C00H)
e | 1 30720 (7900H)
1% | § 29696 (740040
P 1 28672 (70000)
11K § ! 27648 16CO0H)
10 | | 26424 (6004}
R » ! USER | 23600 (44006)
3 o | nENKY | 24576 (6000K)
" ™ ARER | 23552 (SCOH)
o i 22528 (SB00H)
% E E 504 (S400H)
" ! | 20480 (S000H)
! 19456 (4COKH)
i {1442 (93000)
1 ; | 17408 (3400H)
* | 16380 (8000H)
i
Er——
L o |
] (UHISEABLE) '
| i.
R | :
] ! BIS2 (2000H}
" P EMSION R
T
i. §| R076 [1000H)
P aoie
SYSTEN MWD
INTERPRETER
! i 0 (00H)
Figure 3.

November/December 1981

Address hits

15 14 12 12 11 10 9 8

7 & 5 4 3 2 1 0

wlES] w0 5t S wmilooeo RAM _2addresses o e H

¥ICE] MY e ROM_addresses____ '
14254 ¢ 1 o0 0 0 0 C 0 0 0 0 0 O Q0 0 4000H
17408 ¢ 1 0 0 0 1 O 0 © 0 0 O 0 0O 0O O 4400H
17000 ¢ &1 0 0 0 0 1 ¢ 0 1 1 0 1 0 O 0 4268H
19043 a 1 ¢ o1 0 1 0o 0 1 1 O 1 0 0 O 4ALSH

'
RAM don t-care

x=don”t-care bit

Figure 4.

If the ZX80 reads memory address 16384
(4000h}, the address bus will have the bit
pattern in Figure 4. The four don't-care
bits (A10-A1J) are zeroes, so there is no
problem yet. Now the ZX80 tries to read
17408 (4400h). With A10 a don’t-care bit,
the RAM thinks | want 16384 again. The
same thing happens if non-boundary
addresses are tried. Figure 4 shows what
occurs with 17000 (4268h) and 19048
(4A68h). Note address bit 11,

The ROM address space below 16384
(4000h) has a similar condition. If you are
a sceptic, try this program:

10 FOR I=0TO 4096

20 IF NOT PEEK(I)=PEEK(I+8192)
THEN PRINT I;*AND™;1+8192;
“NOT EQUAL

30 NEXT I

This program will print any inequality
between ROM addresses 0 through 4096
and the redundant ROM space from 8192
through 12284,

I will be using A10 through Al13 to
decode which 1K section of RAM [want.

Expansion into the ROM area will not
be attempted here. It would require AND-
ing Al4 with A13 into IC13 pin 13 to
open up the address space from §192 to
16383. | have considered doing this, along
with adding an EPROM containing
machine code peripheral drivers. The
USR(n) command could then be used to
access these routines.

Experiment in Hardware

I now know enough to design some
expansion hardware. The first thing I need
is a chip select decoder. T will use a 74LS138
1-of-8 decoder. See Figure 5-1. Then two
2114AL4 RAM chips are added. This |
quickly lash together on a small general
purpose plug board. '

The connector into the ZX80 was a
little harder. It is necessary to make the
connector by cutting down a standard

1007 center P.C. card edge connector. A
key for the slot at location 3 will also
have to be labricated.

[started with a 50 contact dual-readout
connector for 1/16" board. The size of
the connector [started with was immaterial,
The larger versions of these connectors
are not usually marked with the same
alphanumeric numbering scheme as the
ZX80 circuit diagram, making hookup a
little harder.

I cut the connector with a hacksaw at
the points illustrated in Figure 6. It is
easier to cut the connector with the con-
tacts at location 24 removed. After cleaning
the cut areas with a file. | removed the
two contacts at location 3 to make room
for the key. On most connectors these
contacts can be removed by pushing on
them from the back until they start to
move, then pull from the front. A pair of
small needle-nose pliers will do the job. It
is a good idea to save these removed
contacts as spares. | managed to damage
a needed contact and was thankful for
my foresight. [made the key from a piece
of 1/16" expoxy-glass unclad circuit board.
I just snipped at it until it would foree-fit
in place. My ZX80 connector was now
ready.

I was now able to complete the wiring
of my first expansion board. I chose to
ignore the fact that Sinclair connected
data and address lines somewhat capri-
ciously. You will notice that the ZX80
circuit diagram shows D7, D1°, DO", and
D2 going to IC3, and D4, DY, D5, and
D6', going to IC4 in that order. | think
pins Sand 7 on IC3 and 1C4 being crossed
is a drafting error. Where is that famous
British precision and desire for order?
The reality is, of course, that it does not
matter; it is only a convention anyway.

After a few visual checks.......the juice
to it! I think so anyway. I quickly loaded
a program from tape that was pushing the
IK RAM to the point of shrinking the
display. I ran it.......no shrinking!

21

Ald 4
Al} g
MREQ 5.} .o sbie 11 - 1l , o D4
11_CS b A3 5 LK Dy’
ik R 12 THIT A2 b \ 1 Dy’
2 TSI 2 27
N |2 I——,
AlD 1 51,13 TS0 . Al 7 i 10 D1’
All 2 14 T59 Al 8 G DO
B 1 = AD L f——
B
Al2 L] c Y!Jo‘ll—'i o - Sy R dm, il
e e b e R
Ald L P b \1\
k] Ll r 5 WR A9 15 [W
:I : G2A hD-C—_si ; \-li—L\q v.-uu-ﬂ—l__g- e a0 WE JLI__E_:-J
——0lGE R : o L) i cslad U hoAR e 8 csp——>
L8138 # Il C54 b AT 17 . L. AT 17
e & . Ab i o A He 24
AlD i-,-!a 3 1 E b, AS 1 : 5 <
2 4GSl : " 7”
'—M: B l X A 4 Ui D-',
Al2 k1 vololi_RAMC A2 Al A L2 Dt
A2 i L2 D5"
AT >— R i | A | o L n4”
RO il me ™
R L i [0
Figure 5,)
1A >
KEY 5
In Basic
s 2
£y 100 LET F=17000
et] 1t n
— 1B 120 POKE F+1,115
130 POKE P+2,112 In assembly language:
140 POKE F+3,468
CUT HERE 150 POKE P+4,42 LD (17008), SP ;LDAD SFP INTO 17008
140 POKE P+5,112 LD HL, (17008) jLOAD 17008 INTO HL
170 POKE F+&, 586 RET jRETURN TO BASIC
Figure 6. 180 POKE P+7,201
190 LET SP=USR({F)

I now need a little more definite check
for the size of RAM, The program SIZER
in Figure 7 will read the stack pointer,
SP, in the CPU and print the number of
bytes of RAM below it. When SIZER is
run, the value returned to the screen is 14
bytes short of the total installed RAM.
This is due to the ZXB0 using the stack
during execution of the program, thus the
stack pointer is not pointing to the very
top RAM.

My first experiment was a success. |
now have the confidence to explore
further.

22

200 PRINT ,EP-14384; "#BYTES"

Figure 7. Sizer

1/0 Expansion

By now I/0 expansion seems (rivial;
however, it is not totally trivial. I decided
that using 1/0 mapped [/0 would be too
tricky due to the way the 1/O address
space is consumed with the keyboard.
Besides, the PEEK (n) and POKE n.n
commands operate in memory address
space. So memory mapped 1/0 will be
the way,

1/0 mapped 1/0 refers to an /0 archi-
tecture where the 1/0 device select lines
are decoded from IORQ (1/O request)
and the address bus. Thus, only instructions
from the CPU’s 1/0 group would be used
to service these devices.

Memory mapped 1/0 _refers 1o an 1/0
architecture where MREQ (memory
request) and the address bus are used to
decode the device selects. Here, the device

SYNC Magazine

appears as one or more memory locations
to the CPU, and is treated such. The full
array of memory instructions can be used
on these I/0 devices. In the ZX80, PEEK
(n} and POKE n.n are available.

One disadvantage with memory mapped
1/0 in general is that it consumes part of
the memory address space. This is 1K in
my design for the ZX80.

My first 1/0 device will be simple
enough. 1 have some Hewlett Packard
displays; HDSPO772 to be exact. These
hexadecimal LED displays have a built-in
latch memory, decoder driver, and run
from +5 VDC. They also can be spoken
to as if they were a memory chip with one
address. The only trick I need to play is
to buffer the data bus of the ZX80. The
group of resistors, R4 through R11, in the
ZX80, that presumably are in series with
the outgoing data lines to prevent a bus
crash, render the data bus rather puny. I
will use a CD4050B CMOS hex buffer.
See Figure 511,

NMOS and CMOS RAM chips require
no buffer because of their extremely low
input current requirement on the order
of 10 microamperes. The HP display
requires 1.6 milliamperes of sink current
on its data lines—a veritable short circuit
to a ZX80.

Figure 5111 shows a buffered display
configured at a memory address of 31744
(7C00R). The simple command POKE
31744,n will cause n to be displayed on
the LED readout. This Basic statement
can be imbedded in long running programs
as an activity monitor or possibly for games
as feedback.

The addresses of the 1/0 selects are:

Chip Select Address
CS1é 31744 (7CO0H)
cs17 31745 (7CO1H)
csis 31746 (7COZH)
C519 21747 (7C03H)
cs20 31748 (7C04H)
cs21 31749 (7COSH)
csz2 31750 (7CO6H)
cs23 31751 (7CO7H)

These chip-selects will be active for
both PEEK (n) and POKE n.n commands.
With the simple 1/0 device in my experi-
ment, only POKE 31744,n will do anything
noticeable.

Movember/December 1981

[have not yet tried configuring an input
device to the ZX80. | anticipate no serious
problems in using a tri-state bus driver,
such as a 74L5244, connected to CS17
and the unbuffered data bus. This is to be
used to talk to the ZX80 from switches or
other devices. I simply ran out of board
space on my little plug board.

Further Memory Expansion

I have come into possession of a pair of
Hitachi HM6116P-4 CMOS RAM chips.
These 2K X 8 monsters are ideal for further
expansion of the ZX80 memory. They
are full static; no clocks or strobes, Even
the slowest family member, the -4, is more
than fast enough at 200 nanoseconds max-
imum access time. What is most desirable
is their low power consumption: 100 micro-
watts deselected and 180 milliwatts oper-
ating. By contrast, the ubiquitous 21 14AL-
4 consumes 125 milliwats, selected or
not, and has 1/4 the bit capacity. The
beauty of the Hitachi CMOS grows pale
when the price and availablity of these
exotic parts are considered. | was lucky
to get two of them cheaply.

The chip-select scheme in Figure 5-I
and 511 allows for a mix of 1K X 4 and
2K X 8 parts, By using as many chip-
select lines as I have chips for, I can
configure any size memory | want. Please
note in Figure 5-I1 that two chip-select
lines are required for each 2K X 8 RAM
and that R19 in the ZX80 allows CSO to
override the chip select from IC12 pin 8.
At present I have 6K of memory operating;
the 1K inside, two HM6116P-4, and two
2114AL4.

Consideration of Power and Loading

Power consumption and circuit loading
are very important in general, and crucial
in a ZX80.

I have estimated that the reserve current
in the ZXB0 power system is about 100
miliamperes. At this level the wall unit
and the ZXB0 itsell gets toasty warm.
Even this moderate heating will cause
some strange actions to occur. | notice
the LOAD function failed to operate after
the ZX80 had cooked with a 100 milli-
ampere load.

So far [have been unsuccessful in inte-
grating an auxiliary power supply into my
expansion system. My problem seems to
be 60 Hertz line noise getting into the
video. Most annoying. I believe my problem
stems from the fact that I am using a TV
set with a hot chassis and a slightly leaky
power transformer in the auxiliary power
supply I was attempting to use. I will fight
this problem some other time.

Though auxiliary power would solve
the power problem, so would the careful
selection of parts. The 74LS138 1-of-8
decoder is fairly stingy at 6.3 milliamperes.
The Intel equivalent 8205 is an outrageous
hog at 70 milliamperes worst case, possibly
35 milliamperes typical. One must be
cautious of functionally equivalent parts.
Look hard at the specifications.

CMOS will solve the power and loading
problems. The only problem with CMOS,
especially RAMs, is cost and availability.
Time will cure this, but I want it now.

That beautiful HP LED display 1 used
is a terrible glutton for power. That par-
ticular display is only good for demon-
stration of the ZX80 output capability.
There is a low-power version of this display
available.

Circuit loading is most crucial with 1/0
expansion. As explained earlier, the Z X80
expansion data bus is quite puny. This
requires careful reading of chip specifica-
tions for input loading. A 7415244 part
has a special PNP input circuit that loads
its source much less than standard low-
power Schottky. This allows direct con-
nection to the ZX80 data bus without a
CMOS buffer. Though workable, this is
still marginal at best. More exotic parts,
such as the 8212 1/0 port, have even less
loading on their inputs. Again, the 8212,
though versatile, consumes 90 milliamperes
typically.

Conclusions

The ZX80 is definitely expandable with
ease. The operating system has been
designed with memory expansion in mind.
With the compromises that life presents
us daily, a very powerful version of the
ZX80 can be configured ar moderate
COSsL. .I

23

Introducing
the Sinclair ZX81

If you're ever going to buy
a personal computer, now is the
time to do it.

The new Sinclair ZX81 is the
most powerful, yet easy-to-use
computer ever offered for anywhere
near the price: only 5149.95* completely
assembled.

Don't let the price fool you. The
ZX81 has just about everything you
could ask for in a personal computer.

A breakthrough
in personal computers

The ZX81 is a major advance over
the original Sinclair ZX80—the world's
largest selling personal computer and
the first for under S200.

In fact, the ZX81's new 8K Extended
BASIC offers features found only on com-
puters costing two or three times as much,

Just look at what you get:

B Continuous display, including moving
graphics

B Multi-dimensional string and numerical
arrays

*Plus shipping and handling. Price includes connaciors
for TV and cassette, AC adapior, and FREE manual

B Mathematical and scientific functions

accurate to 8 decimal places

B Unique one-touch entry of key words

like PRINT, RUN and LIST

W Automatic syntax error detection and

easy editing

B Randomize function useful for both

games and serious applications

B Built-in interface for ZX Printer

B 1K of memory expandable to 16K
The ZX81 is also very convenient

to use. It hooks up to any television set

to produce a clear 32-column by 24-line

display. And you can use a regular

cassette recorder to store and recall

programs by name.

If you already own a ZXB0
The 8K Extended BASIC
chip used in the ZX81 is available
as a plug-in replacement for your
ZXB0 for only $39.95, plus shipping
and handling—complete with new key-
board overlay and the ZX81 manual.

S0 in just a few minutes, with no
special skills or tools required, you can
upgrade your ZX80 to have all the
powerful features of the ZX81. (You'll
have everything except conlinuous dis-
play, but you can still use the PAUSE
and SCROLL commands to get moving
graphics.)

With the 8K BASIC chip, your
ZX80 will also be equipped to use the
ZX Printer and Sinclair software.

Warranty and Service Program**
The Sinclair ZX81 is covered by a
10-day money-back guarantee and a
limited 90-day warranty that includes free
parts and labor through our national
service-by-mail facilities.
**Does not apply to ZXB1 kits

NEW SOFTWARE:Sinclair has ZX PRINTER: The Sinclair ZX
Printer will work with your ZX81,
or ZXB0 with BK BASIC. It will
be available in the near future
and will cost less than $100,

published pre-recorded pro-
grams on cassattes for your
ZXB1, or ZX80 with 8K BASIC
‘We're constantly coming out
with new programs, so we'll
send you our latest softwara
catalog with your computer,

and handling.

16K MEMORY MODULE:
Like any powerful, full fledged
computer, the ZX81 is expand-
able. Sinclair's 16K memory
module plugs right onto the
back of your ZXB1 (or ZX80,
with or without BK BASIC).
Cost is 59995, plus shipping

ZXB81 MANUAL: The ZX81
comes with a comprehensive
164-page programming guide
and operating manual de-
signed for both beginners and
experienced computer users.
A 510.95 value, it's yours free
with the ZXB1.

Introducing
the ZX81 kit

If you really want to
save money, and you enjoy
building electronic kits, you
can order the ZXB1 in kit form
for the incredible price of just
$99,95" It's the same, full-featured
computer, only you put it together
yourself, We'll send complete, easy-
to-follow instructions on how you can
assemble your ZX81 in just a few hours.
All you have to supply is the soldering iron?

How to order

Sinclair Research is the world's larg-
est manufacturer of personal computers

The ZXB1 represents the latast
technology in microelectronics, and it
picks up right where the ZX80 left off.
Thousands are selling every week.

We urge you to place your order
for the new ZX81 today. The sooner you
order, the sooner you can start enjoying
your own computer.

To order, simply call our toll free
number, and use your MasterCard or VISA.

To order by mail, please use the

oupon. And send your check or money
order. We regret that we cannot accept
purchase orders or C.O.D's,

CALL B00-543-3000. Ask for op-
erator #509. In Ohio call 800-582-1364.
In Canada call 513-729-4300. Ask for
operator #509. Phones open 24 hours
a day, 7 days a week, Have your Master-
Card or VISA ready. Fi
These numbers are for orders g
only. For information, you must write to
Sinclair Research Lid., One Sinclair Plaza,
Nashua, NH 03061.

SincCl=ir

[aDcODE SO] PRICEt QTY. AMOUNT

E4 Zx81 | $149.95

<7 ZX81Kit | 9995

8K BASIC chip (for ZX80) 3995 |

16K Memory Module (for ZXB81 or ZX80) 99.95

Shipping and Handling 4.95 5495

To ship outside USA add $10.00

TOTAL
MAIL TO: Sinclair Research Ltd., One Sinclair Plaza, Nashua, NH 03061.

NAME
ADDRESS el

CITY/STATE/ZIP_

tU.S. Dollars

8K ROM
16K RAM

An Inventory System

Dr. Stephen A. Justham

Mass data storage is accomplished more
efficiently by a disc system than by a
cassette recorder. However, until such a
system is available for the ZX80/1 com-
puters, Sinclair owners will have to rely
on the cassette system. This article offers
a program for a modest inventory system
based on the BK ROM and 16K RAM.

For the sake of illustration, a “pantry™
inventory is used, but the program can be
adapted to any inventory you might want
to use it for. The program will handle up
to 150 separate items (Figure 1), but it
can be easily modified for the individual
user (lines 305, 307, 3044, and all the “B=1
TO 150" statements).

One begins by selecting choice 1, indicat-
ing the total number of items to be entered
(Figure 2), and INPUTing the item name
and quantity in response to prompts
(Figures 3 and 4). Once an inventory list
is entered, the user has several options,

The search routine accepts a string input
(Figure 5) and searches the inventory to
ascertain if the item is in the listing. After
searching, the computer replies with either
a report on the item it has located (Figure
&) or a statement indicating that the item
is not in the inventory (Figure 7). A
complete inventory listing is available with
the third option. The program lists each
entry by item number, name, and quantity
(Figure 8). If the list is long, there is an
option at the end of the program to re-
check the listing.

New items are added to the inventory
by the fourth option. The current inventory
is listed and a prompt requesis the new
item name and quantity {Figure 9). When

Dr. Stephen AL Justham, 8300 N. Costa Mesa Dr,,
Muncie, IN 47302,

26

ENKREXERAENEAT
FANTRY IMVENTORY=10
KNS RRERRERRAY
THIE FROGRAM HANDLES 150 ITEMS
EEXFEENENNEXNNN

DO YOU WANT TO:
1)STRART A NEW INVENTORY LIST?
2)SEARCH FOR AN ITEM?
S3)CHECK INVENTORY?
4)yADD MEW ITEM TO LIST?
5)CHANGE QUANTITY OF AM ITEM?
&YDELETE AN ITEMT
7IEXIT PROGRAMT

ENTER YDUR CHODICE, 1-7.

1

IF "S/72%72" APPEARS IN THE LOWER
LEFT CORNER, TYFE"C"TO CONTINUE
LISTING

ITEM NO. ITEM NAME QUAMT .
1 FEAS 9
2 SUBLR s
3 BEANS 19
4 CREAMED CORN 5

END OF FILE.

TYFE "1" TO RE-DO THE INVENTORY
LIST, “2" TO RETURN TO START OF
FROGRAM.

=

Figure 4.

Figure 1.

START A MEM INVERNTORY L1357
LRSS R RS R R RS R R RS R R R R RS

HOW mMANY ITEM ARE TQ BE LISTED?

4

SEARCH FOR AN 1TEM
RS E RS EERER SRS SRR SRR RS

TYFE THE NAME OF THE ITEM YOU
ARE SEARCHING FOR IN THE PANTRY.

"SALT 5

Figure 5.

Figure 2.

ITEM
M.

1 ITEM NAME? FEAS
HOW MANY? 9

Z2 ITEM NAME? SUGAR
HOW MAaNY? 2
BEANS

= ITEM NAME?
HOW MANY? 19

4 ITEM MAME? CREAMED CORN
HOW MAENY 7

SEARCH FOR AN ITEM
AAERFER R RN NN RN AR RN R R kX

TYFE THE NAME OF THE ITEM YOU
ARE SEARCHING FOR IN THE PANTRY.

THERE ARE 19 UNITS OF
BEANS

LOCATED IN THE PANTRY.

TYFE "1" TO SEARCH FOR ANOTHER

ITEM, "2" TO RETURN TO START OF
FROGRAM.

Figure 3.

Figure 6.

SYNC Magazine

SEARCH FOR AN ITEM
AREAR R KRR ER SRR AR RN AR RN

TYFE THE NAME OF THE ITEM YOUu
ARE SEARCHING FOR IN THE PANTRY.

MO SUCH ITEM HAS BEEN FOUND IN

THE INVENTORY.

TYPE "1" TO SEARCH FOR ANOTHER
ITEM, "2" TO RETURN TO START OF
FROGRAM.

1

Figure 7.

CHAMNGE QUANTITY OF &N 1TEM
AARKRRKRRRK SRR AR SRR AAREA RN RN AR L

IF "Sy/727" AFPEARS IN THE LOWER
LEFT CORNER, TYFE"C"TO CONTINUE
LISTING.

INVENTORY LISTING
FERRMENRAN A NN AN AR RNk

IF "5/277" APPEARS IN THE LOWER
LEFT CORNER, TYPE"C"TO CONTINUE
LISTINMS.

ITEM NO. ITEM NAME CHLIAMT o
1 FEAS]
2 SUGAR A
I BEANS 19
& CREAMED CORNM o
END OF FILE.
TYFE"1"TO EXAMINE INVENTODRY, "2v

TO RETURN TO START OF PROGRAM.

2

Figure 8.

ADD ITEM TO INVENTORY
R R S E RS E e TS

WHEN Y0OU WISH TO END NEW ENTRIES
TYFE "RETURN."

1IF "S/7277" APPEARS IN THE LOWER
LEFT CORNER, TYFE"C"TO CONT INUE
LISTING.

SELECT ITEM TO BE CHANGED BY
"1ITEM MNO."
ITErM NO. ITEM MNAME CUANT .
1 PEAS g
2 SUGAR 2
3 BEANS 19
4 CREAMED CORN 5
= SaLT
END OF FILE:
SELECT ITEM TO BE CHANGED BY
“ITEM MO."
it
Figure 10.
ITEM NO. 4 18 CREAMED CORMN

WHICH CURRENTLY CONTAING 5
UNITS.

INFUT GUANTITY CHANGE.

USE A "MINUS"SIGN TO REDUCE THE
BUANTITY.

-3

“

Figure 11.

ITEM NO. 4,CREAMED CORN
HAS 3 UNITS.

» ML

TYFE"1"TO CHANGE ANOTHER 1TEM OR
H2" TO RETURN TO START OF PROGRAM
DR "3I"TO REVIEW THIS LISTING

Figure 12,

DELETE AN ITEM FROM INVENTORY
(SRS EE SRR E R R R R R RS RN R R RSN L

EACH ITEM WILL APPEAR ONMNE AT A&
TIME.

1}IF YOU DO NOT WANT TO DELETE

THE ITEM TYPE "S.*"
ITEM NO. ITEM NAME QUANT . 2)IF ¥OU WANT TO DELETE THE
ITEM TYPE "D.*"
1 FEAS 9 IVIF ¥OU WISH TO TERMINATE
2 SUGAR 2 “DELETE" TYPE "“T."
3 BEANS 19
4 CREAMED CORMN = EXENER R KRR
ITEM NAME
ITEM NO. & FEAS -]
ITEM NAME? SaLT SUGAR D
HOW MANY? BEANS
3 LD T "
Figure 9. Figure 13.

November/December 1981

YOU HAVE INDICATED YOU WISH TO
EXIT THIS PROGRAM.

IF ¥OU HAVE MADE ANY CHANGES
FAERKERERRRERRRREERERTRRRARARRR
300 MOT FORGET TO RE-LOAD TAPEX
(2SS RS RS R R SR R SRR R R LY
TO SAVE THIS PROGRAM AS CHANGED
FREFARE THE TAFE RECDRDER,BEGIN
RECORDING,AND TYFE “"C."2

/2020

Figure 14.

the addition of items is completed
“RETURN" is typed to send the program
back to the menu at the beginning of the
program.

Since an inventory must always accom-
modate changes in the guantity of the
items, the quantity change routine is very
important. Option five, which first prints
the complete inventory, asks for the item
number of the item to be changed (Figure
10). After the item is selected, it is detailed
and the change is requested (Figure 11).
Finally, the item number, name, and
quantity change are printed out. The user
can then return to the start of the routine
to change another item (Figure 12).

The last option, aside from exiting the
program, permits the deletion of an item
from the inventory list. An item is printed
and the user inputs one of three choices:
save, delete, or terminate the routine
(Figure 13).

Exiting from the program and SAVEing
the program are combined in the last
option. The prompts remind the user to
re-load the tape with the up-dated inventory
list (Figure 14).

Several minor problems were encoun-
tered in attempting to develop a workable
inventory-type program for the ZX80/1.
Most notable of the “minor” problems
involved the way the 8K ROM handles
string arrays. This problem can to light
when the “SEARCH" routine was first (and
second, and third, and ...) attempted.
Finally, the attempt to use a “SEARCH”
routine was set aside. The solution to the
problem, which involved INPUTing an
“ITEM NAME,” having the inventory
checked by the computer and then report-
ing whether or not the item appears in
the inventory came from a technique used
in another part of the program, lines 1080-
1084,

The difficulty involved in using the two-
dimension array is in the second dimension.
Once set (or simply using the 8K Basic
ROM’s own setting of 10 characters in
length) the ZX80 only recognizes an item
with the same number of second dimension
characters. For example, if an array state-
ment reads DIM (5,5), then five items,
five characters in length may be input. If
“PEAS" is typed in as an inventory item
the computer will store it as “PEAS blank
space.” In the search routine one must

27

try ERis

4K ROM users:

Enter the following program (this is
especially for ZX80 users in the US; other
national users are invited to contribute):

1@ LET na="[ENTEn
s SHIFT,H AND 15
SHIFT Wl*“

20 LE =" [ENTER
285 SHIFT u|

32 FOR BE=1 TO S

4@ PRINT A%

S@ NEXT B %

6@ FOR B=1 TO 7

70 FPRINT E%

5@ NEXT B

Qur thanks to:
Ted A. Pozyski
1215 Thompson St.
Houston, TX 77007

8K ROM users:
Enter the following program:

1@ LET L=USR 2193
28 FOR R=1 TO 1aa
38 NEXT B
+@ GOTO 1@

RUN the program. When the cursor
reappears enter the program again and
RUN. (ZX81: be sure to use fast mode.)
Now turn up the volume on your TV set
to give the best output. You can use the
BREAK key to escape from the loop.
This one might even have a practical appli-
cation.

Our thanks to:

L. Richardson

82 Elgar Cres.

Cardiff, CF3 9RW

United Kingdom "=

ZX81 MINI
INVADERS

ALL THE THRILLS OF ITS BIG
BROTHER ON A 24x16 DISPLAY ALL
IN 1K RAM. £4 for M/C CODE CASSETTE

ALSO TV GAMES (16K RAM)
ZX 81 INVADERS
ZX B1 GALAXY WARS

m/¢c code routines with continuous non-
flicker display & fast moving graphics £4
each cassette.

J EDMONDS, 29 Chestnut Ave. Grays, Essex

28

type “PEAS blank space” in order to find
the item in the inventory. Typing “PEAS”
will not be accepted as “PEAS blank space.”
Lines 3040-3068 overcome this problem,
mainly through the LEN function used in
conjunction with a string and the one-
time use of a string array.

The “DELETE" routine also proved o
be something of a programming challenge.
Originally an item could be deleted, but
the item number remained with a blank
for the item name and an “O” for the
quantity. An associated problem involved
the fact that the items were not moved 1,
2,..., or n places (depending upon the
number of items deleted), but were clipped
from the end of the list. These cumulative
difficulties were overcome by intrpducing
several variables, lines 1610-1618, and then
using them at appropriate places through-
out the routine; notably lines 1820, 1840,
and 1908. Other manipulations such as
found in lines 1830, 1835, 1900, 1909, and
1920 were employed to achieve the desired
deletion and renumbering results.

Program Notes:

57 “PANTRY" may be changed to
whatever inventory you want.
160 1f a number other than 1-7 is typed.

this sends the computer back to
90 to start over again.

J05 Sets the first dimension of the two
dimension array equal to one more
than necessary for the “DELETE"
routine to function properly. The
second dimension may be changed
to meet individual needs.

332 Starts a loop that continues until
told to leave—line 390—or the
maximum “B”—150—is reached.

370 X" equated to "B” in order to

375 evaluate "N" without involving “B"
directly.

400 This and similar lines may be
removed if the prompt is not
needed.

490 Any INPUT other than “P" starts
the program over.

960 These are necessary in order to

965 increase the number of items
INPUT at the start of the program
in line 310.

1040 Increases “B" by one each time a
new item is INPUT.

1080 C$ is used and handled in this

1081 manner; otherwise the ZX80/1 will

1082 not read the “RETURN" order in
line 1084, This involves the way in
which two dimension string arrays
are handled.

1125 This line removes the “ITEM NO.,”
“ITEM NAME,” and "QUANT."”
line on which "RETURN" is typed,

Many “frills” have been used in the
program and may be easily eliminated if
so desired. For instance, the asterisks and
many PRINT statemenis may be removed
without affecting the program. These [rill
lines are marked by an * in the program.
The total number of items may also be
reduced. (NOTE: be sure to keep the [irst
dimension of the two-dimension arrays one
more than the total number desired. other-
wise problems may occur in the deletion
routine if the total number of items possible
is used.) In all cases, it has been assumed
that the user will know when to hit NEW-
LINE, therefore, this does not appear in
any PRINT statement.

Other routines or data variables may
also be added to the program. If location
is important this variable may easily be
included possibly as a string variable. More
generally, this program may be readily
adapted to any type of inventory situa-
tion. "

otherwise “RETURN" shows up as
an item in the program.

1370 Increases or decreases (if minus
sign is used) the quantity of the
item.

1610 Used to accommodate the mani-

1615 pulations employed later to handle

1618 the “DELETE" aspects of this
routine.

1800 Removes the deleted item from the

1810 file then sets the guantity to (.

1830 Increments “B” by one to continue

1835 printing of the file after an item
has been deleted.

1900 Decrements "N by one for each
item deleted.

1908 Re-sets “B" equal to what it had
been originally. for renumbering
purposes following a deletion.

3040 Because of the manner in which

3042 the ZX80 handles two dimension

3044 string arrays the only way (at least

3048 to the author’s knowledge) to

3052 initiate a search is to INPUT a
simple string array—line 3040—
equate the array to its numerical
length—LEN in line 3042 —set up
a new two dimension array with a
variable second dimension—"1"in
line 344 —start a loop—line J48—
equate the new string to the item —
line 3052—and compare the
INPUT, C$, to M$(B) (which is the
same as [3(B)). If C5 is the same as
MS3(B), then the computer jumps
to line 3100 and reports that the
item is in the inventory and tells
how many units are present.

SYNC Magazine

D

¥
e i
.I I'"'_

'new friends

=L

-45.‘ _4.-'\:1 :

L

+ . for your child...

Fred D'lgnazio and Stan Gilliam have
created a delightful picture book adven-
ture that explains how a computer works
to a child, Katie “falls” into the imaginary
land of Cybernia inside her Daddy’s home
computer. Her journey parallels the path

of a simple command through the stages
of processing in a computer, thus

explaining the fundamentals of computer
operation to 4 to 10 year olds. Supple-
mental explanatory information on com-
puters, bytes, hardware and software is
back end

contained in the front and

papers.

-

%,
TeLyay SR
1 Lo T TR S
h R b g e e
St 1T 4

N hawi

Katie and the Computer

Thrill with your chidren as they join the
Flower Bytes on a bobsled race to the
CPU. Share Katie's excitement as she
encounters the multi-legged and mean
Bug who lassoes her plane and spins her
into a terrifying loop. Laugh at the
madcap race she takes with the Flower
Painters by bus to the CRT.

“Towards a higher goal, the book
teaches the rewards of absorbing the
carefully-written word and anticipating
the next page with enthusiasm...”

The Leader

“Children might not suspect at first
there's a method to all this madness—a
lesson about how computers work. [t
does its job well.”

The Charlotte Observer

" the book is both entertaining and
educational.”
Infosystems

.1

Order Today

Katie and the Computer is hardbound,
illustrated in full color throughout and costs
just $6.95. A T-Shirt picturing the program
bug in the story is also available (purple
bug on a beige shirt). Shirts are available
in adult S, M, L. XL, children's S. M and L
and cost just $6.00.

To order send payment plus $2.00 postage
and handling per order to the address
below.

creative
compating

39 E. Hanover Avenue

Maorris Plains, NJ 07950

Toll-free 800-831-8112
In NJ 201-540-0445

—

Do
Computer

Enthusiasts
Have
More
Fun?

insight.

The Colossal Computer Cartoon Book

The best collection of computer cartoons ever is now in
its second printing, and sports a bright new cover. The
fifteen chapters contain hundreds of cartoons about
robots, computer dating, computers in the office, home,
and lab, and much more. 36 cartoonists share their views of
man's ultimate machine.

Keep this book with your reference works. When
needed, the right cartoon can say it all for you. When you
need a break from debugging a good laugh can give you a
welcome lift. Recommended for hours of fun and comic

Edited by David Ahl, mastermind behind the April Fool's
issue of Dr. Kilobyte's Creative Popular Personal Re-
creational Micro Computer Data Interface World Journal,
this cartoon book contains much of that same incurable
zaniness. [Want this issue? It's April 1980 and only $2.50

postpaid].
L l—_h = n ey | "II i
~ 68 “JIGok.~ L
J5 + 7 eyl
O =
* (O g o

To order, send $4.95 plus $2.00
shipping and handling to Crea-
tive Computing Press, P.O. Box
789-M, Morristown, N.J. Or
call in your MasterCard, Visa,
or American Express order toll
free: 800-631-8112 (N.J.(201)-
540-0445).

S

A large 84 x 11" softbound collection of 120 pages, it still sells for only $4.95. (6G).

Listing:

2
o
£ 2]
7
)

1C

KO
410

420
430
440

455
460

REM STEPHEM A. »
REM "FANTRY INVENMTORY-10"
FRINT TAEB 7i"#¥¥fepkkkaikdx

JUSTHAM, . 8-5-81

L 470 PRINT 1090 PRINT TAB 3; "HOW MANY? ;3
FRINT TaAB S; "PANTRY INVENTO 471 FPRINT "END OF FILE."™ 1100 INPUT 2(B)
RY—10" 472 PRINT 110% CLS
FRINT TAEB 7 "fxkkeinkieriiE 475 PRINT “"TYPE “*1*" TO RE-~DO 1100 GOTO 1040
= THE INVENTORY LIST, “n»2"s TO 1120 CLS =
FRIMNT "THIS FROGRAM HANDLES RETURN TO START OF PROGRAM. " 1125 LET N=B-1
150 ITEMS" ABO INFUT F 1130 BOTO &
FRINT TAB 73" RERRfiihkkrtdx 482 CLS 1200 PRINT TAB 33 "CHANGE QUANTIT
" 485 IF P=1 THEM GOTO 00 ¥ OF AN ITEM®
3 FRINT 490 IF P<>1 THENM GOTO & F1202 PRINT "Sfdsdfinsi s dRNnsas
FRINT DO YOU WANT TO:" 400 PRINT TAB 73" IMVENTORY LIST EREREAERRA R AR
PRINT ING™ 1210 PRINT
FRINT TaB 23 "1)8START A MNEUW F601 PRIMT “HEEEREREE KRR ERE R 1212 PRINT “IF “"S/777"" APPEARS
INVENTORY LIST?" FEFFAESAEFER" IN THE LOWER LEFT CORMER TYFE
FRINT TaB 23;"2)S5EARCH FOR A 602 FRIMI wepes TO CONTINUE LISTING.™
N OITEMZ® &0 PRINT “IF ""5/727"" APFEARS 1214 PRINT
FRINT TAH 25"3)CHECK 1MVENT IN THE LOWER LEFT CORMER 1220 PRINT “SELECT ITEM TO BE CH
oRy2" TYFE" “C""TO CUunMTINUEH## ANGED BY ""ITEM MO, """
PRINT TAB 2;"4)aDD NEW [TEM LISTING. " 1222 FPRINT
TO LIST?" 605 PRINT 1230 PRINT "ITEM NO."; TAB 10;"I
P PRIMT TREB 2; "S)ICHANGE BUANT 610 PRINT "ITEM ND."3; TAB 10:"I TEM NAME"; TABR 243 "RUANT."
ITY OF AN ITEM?" TEM MAME"; TAB 24:"QUANT." 1235 PRINT .
PRINT TAR 2;"&)DELETE AN IT 615 PRIMT 1240 FOR B=1 TO 150
EM?™ &20 FO B=1 TO 150 1260 LET X=E
PRINT Tak 2Z2;"TIEXIT PROGRAM 422 LET x=Ek 1270 PRINT TAE 3;:;B; TABR 11;I6(R)
e il &30 PRINT ThAB 3:3B:; ThB 113 1&(B: ; TAB 26;Q¢(B)
FRINWT 3 TAB 26;0Q(R) 1280 IF X<{>N THEN GOTO 1300
FRINT "EMTER YOUR CHOLICE, 1— 635 IF X<>N THEN GO0 &45 1785 PRINT
Fa® &38 FRINT 1290 PRINT "ENMD OF FILE.*
INPUT A H40 FRINT “EMD OF FlLe." 1292 BOTO 1310
cLa &a1 GOTO &50 1300 MEXT B
IF A=1 THEN GOTO 300 &45 NEXT B 1310 PRINT
IF A=2Z THEN GOTO 3000 &50 FRIMT 1320 PRINT "SELECT ITEM TO BE CH
IF THEN BOTO &00 660 PRINT “TYPEY""1""TO EXAMINE AMGED BY ""I1TEM NO."""
IF A=d4 THEMN GOTO 00 INVENTORY, *"2"“TO RETURN TQ 1330 INPUT B
IF A=5 THEW GOTO 1200 START OF PROGRAEM. " 1335 CLS
1IF A6 THEM GOTO 1500 &70 IMFUT D ¥1340 PRINT "ITEM NO.#":;B; "HI154";
IF A=7 THEN GOTO 2000 &72 CLS 1% (B) ; "#WHICH CURRENTLY
GOTO 20 680 1IF D=1 THEN GOTO &00 CONTAINS #";Q(E) 3 "H#HUNITS, *
FRINT TABE Z:"START & MEW IN 650 IF D<>t THEN GOTO & 1342 PRINT
VENTORY LIST™ 00 PRINT TAB &:"ADD 1TEM 10 IN 1350 PRINT "INFUT DUANTITY CHANG
FPRINT "E83 88 Ehnei e i nbes VEMTORY ™ E."
I SEES SRR N A ¥TOL FPRIMT "¥eXiaxsrendddbsends 1351 PRINT
PRINT KARRRRRRRR RN ¥1352 PRINT “"USE A “"MINUS""SIGN
FRIMT "HOW MaNY ITEMS ARE T FO0Z PRINT TO REDUCE THE QUANTITY. "
0O BE LISTED?" 06 PRINT “WHEM YOU W1SH TO END L340 INFUT K
DIM 154151, 15) NEW ENTRIESTYPE "“REIURN.""" {342 CLS
DIM Bii51) F10 PRINT 1370 LET Q{B)=QR(E)+K
INFUT N F20 PRINT “IF ""5/7297"" APPEARS %1380 PRINT "ITEM NO.#"jBs",#"; 1%
CLS IN THE LOWER LEFT CORNER TYFE (B3, " "NOW HASH" 30 (B) 3 "#U
FRINT THCEY OTO CONTIMUESHL IS ING. " NITS.
FRINT "ITEM" 925 PRINT "
FRINT TAB 13"NO." F3I0 PRINT “ITEM ND."3 Tal 1037 21382 PRINT
FRINT TEM MAME"™; TAB 2435 “0OU&AMT, " 13590 PRINT “TYPE""1""TD CHANGE A
FOR B=1 TO 130 935 PRINT NOTHER ITEM OR"“2"“TO RETUR
FRINT TAB 23B:"#"; P40 FOR B=1 TO 1%5u N TO START OF PROGRAM OR "
FRINMT "ITEM MaMEZ", FE0 PRINT TAE 2;B: 1AB Llz i8R} 3"" TO REVIEW THIS LISTING."
INPUT 1$iB) 1 TAB 2&:Q0(R) 1400 INPUT R
FPRINT I$(B) &0 LET X=E 1405 CLS
FRINT TAER 53 "HOW MENY?", F6S LET G=N 1410 IF R=1 THEN GOTO 1320
IMFUT G{B} S70 IF B=150 THEN BOTO 1000 1420 IF R=2 THEN GOTO &
FRINT @(B) FE0 IF Xm=h THEM GOTO 1040 1425 IF R=3 THEN GOTO 1200
LET X=H F90 NEXT B 1500 PRINT TAB 2; “DELETE AN ITEM
IF %=N THEN GOTO 390 1000 PRIMT YSORRY,FILE 1S FULL." FROM INVENTORY"
NEXT B OO FRINT “TYPE “"C"" 10 BETURH 1501 PRINT "SEssaasxskkxexseanss
ClLS TO START OF PROGRAM. ™ AAAERER R KL
FPRIMNT "“IF nngyoo0nn ApREaRS 1020 STOP 1510 PRINT
IN THE LOWER LEFT CORNER TY 1030 BOTOD & 1520 PRINT “"EACH ITEM WILL APFER
PE""C"" TO CONTINUE LISTING." 1040 LET B=B+1 R OME AT A TIME, "
Mote: ** 12 on shift 0] 1045 LET N=B 1530 PRINT
FRINT 1048 IF GE=B THEN GOTO 1900 1540 PRINT TAE 2;"1) IF YOU DO ND
FRINT "ITEM WNO."3;TAR 10;"1T 1050 FRINT T WANT TO DELETE THE ITEM
EM NAME"; TABR 24; "0OUANT." 1080 PRINT “ITEM NO.":E TYRE" g, nun
FUR B=1 TO 150 1070 PRINT TAB 3;"1TEM NAME? "3 1545 PRINT
FRINT TAE Z:B; TAB 11;(S(H) 1080 INPUT C% 1550 PRINT TAB 2:;"2) IF YOU WANT
3 TAB 246;Q(B) 1081 PRINT C& TO DELETE THE ITEM TYPE “"
LET X=B ; 1082 LET I%(B)=Cs b L
IF ¥=N THEN GOTO 470 1084 IF Cs="RETURN" THEN GOTO 11 1555 PRINT
NEXT B 20 1560 PRINT TAB 2;"3)IF vYOU WISH
SYNC Magazine

1740 INFUT W
1765 CLS
1770 IF W=1 THEM BOTO 1500
1780 IF<>»1 THEN GOTO &
1800 LET Is(B)=""
1810 LET Q{E}=0D EZOLO PRINT “SEfRERdseeaiinnnss
1815 IF N=B THEN BOTO 1920 EEEARLEERL "
1820 FOR B=Y TO 150 J020 PRINT
TD TERMIMNATE ""DELETE"" TY 1830 LET 1${B)=1(E+1) 330 PRINT “TYPE THE MAME OF THE
PE. BN i 1835 LET QUBI=E(B+1) ITEM YOUBHARE SEARCHING FOR
1562 PRINT 1840 IF I=B THEM GOTO 1900 IN THE PANTRY."
X1565 PRINT "kixdkkeisxg" 1850 NEXT B 2040 INFUT Cs
1967 FPRINT 1900 LET N=h-1 I042 LET J=LEN C%
%1570 FRINT "ITEM NAME" 1908 LET B=X 5084 DIM MBCLSL,d)
21575 PRINT 1709 IF N=BE THEN GOTO 1730 3048 FOR B=1 TO 150
1580 LET Xm1 1910 GOTO 1S90 3052 LET ME(E)=1%(E)
1590 FOR B=X TO 150 1920 LET N=N-1 3068 Ce=M$(EH) THEM GOTO 3100
1600 IF I$(BI="" THEN GOTO 1710 1350 GOTO 1730 3070 NEXT B
1610 LET ¥=R 2000 PRINT “"YOU HAVE INDICATED Y T075 PRINT
1615 LET X=E OU WISH TO#4EXIT THIS PROGR WOB0 PRINT "NO SUCH ITEM HAS BEE
1618 LET I=N A " N FOUND IN#HTHE INVENTORY.®
14620 PRINT TAB Z: 1% (E);"#": ¥2005 PRINT 090 GOTO 3120
1630 INFUT I% 2010 PRINT "IF YOU HAVE MADE ANY q;[uu FRINT
1635 PRINT ZI% CHANGES" FRIMT
1640 IF ZIs="S5" THEN GOTO 1710 2012 PRINT FRIMT
1650 IF Z&="D" THEN GOTO 1800 F20175 PRINT "Sedss e sd g siiisy PRINT "THERE AREH";Q(H):"#
1660 IF Z%="T" THEN GOTO 1475 ERAREALRE UNITS OF"
1665 CLS 2015 FPRINT "“xDD NOT FORGBET TO RE £7114 PRINT
1670 GOTOD 1520 -LOAD TAFEX" 115 PRINT TAB S:Cs
1675 CLS E2014 PRINT "SEXFEFRXXRTERIREREED £¥3119 PRINT “LOCATED IN THE PANTR
1680 GOTO & S ESEERSE R EE A s
1710 IF B=N THER BOTD 1730 F2017 PRINT ¥E3120 PRINT
1720 NEXT B 2018 PRINT "Td SAVE THIS PROGRAM £3122 PRINT
1725 PRINT AS CHANGED FREFARE THE TAPE ¥3128 PRINT
1730 PRINT RECORDER, BEGIN RECORDING, 3130 PRINT "TYPE ""1"" TD SEARCH
1735 FRINT "END OF FILE." AND TYPE ““C."=* FOR ANOTHER LITEM, L i
1740 FPRINT 2020 5TOP RETURN TO START OF PROGRAM. "
1730 PRINT “TYPE ""1"" 1IF YOU WI 2070 SAVE "PANTRY INVENTORY=L10" 3140 INPUT U
SH TQ DELETE OTHER ITEMS,TY 2040 GOTO & =145 CLS
FE “nZ T RETURKM TO 000 PRINT TABR 7:"SEARCH FDR AN 3130 IF U=1 THEM GOTO 3000
START OF PROGRAM. ™ ITEM" 3160 IF U<>1 THEN GOTO &
(NOW AVAILABLE

6!
AWHOUHEtE

against the warrior Lizardmen...

Encou

killed™!

ZETATREK"™

ADVENTURE SERIES (ZX80 8K/ 16K

In ZETATREK #1. you pilot a scout/flighter craflt out of Space Station
HEINLEIN patrolling the North Polar region of the Solar Sysiem
origin unknown.
#1 features launching, docking, and target practice. but when yvou
er enemy cralt, there is only ONE level of difficulty:

Tape and listing: $19.95
Tape only: $14.95

{Add 32 shipping & |

handling. User-entry

listing not available.

Orders paid by Money Order

. sent soonest: Please allow
4 weeks delivery if by check.)

"

“kill or be

L]

L]

TO ORDER ZETATREK #1

Send payment to;

ZETA Soliware ZT-1

P.O. Box 3522

Gru_nulh:, S5C 29608-3522

$10.00

WRITE for free catalog describing
more than 45 1K-titles in 4K or
BK. ROM and several BK/16K
scientific programs from
DELTASOFT Germany.

In Europe, send 51 bill

or DM2 in stamps Lo:
DELTASOFT

Dr. Walier Diembeck|
1Osterfeldstr. 79d
D-2000 Hamburg 54

November/December 1981

eyboard .
conversnons

Standard Computer Keyboard
* Type programs in half the time
Minimize errors

Wired keyboard hooks up in minutes

Plans for keyboard conversion with reverse video

Keyboard with complete parts and plans $45.00
Wired keyboard, complete with plans $65.00

Mail for information:

L.J.H. Enterprises
P.O. Box 6273, Orange, CA 92667

For information or Visa or MasterCard orders call
(714) T72-1595. Shipping charge for U.5. —$5.00.

31

4K ROM
1K RAM

In Part 1 (S¥NC 1:5) we saw what a
READ statement is, how it functions, how
to run a machine language subprogram
with the USR function, and how to get
your machine code into memory with Basic
loader program.

In this part I will give you the machine
language READ subroutine, present a few
tips on how to get it running, and describe
a couple of the features of the Sinclair
system that | made use of when [wrote it.
If you typed your loader program in last
time and SAVEd it. you should be ready
1o go.

The READ Subroutine

Listing 1a and 1b show you what your
TV will look like when you type the
subroutine in. Listing 2 has the same
information in the column headed
“Machine Language™ that listings la and
Ib have, but Listing 2 has much, much
more information for those who want to
see how this thing works. It has extensive
comments on the overall design, more
comments on the individual instructions,
and the assembly language. When I pro-
gram, 1 figure out what I want to do (the
overall design) and how to do it. Then 1
write that in assembly language, and only
as a last step do I convert the assembly
language to machine language. All of that
is in Listing 2,

A READ Revisited

I started this whole discussion in Part 1
by talking about the need for a method to
READ numbers out of special program
lines into array elements. In the first Listing
1 showed what a READ might look like if
we had one in this Basic. Now that we
have a subroutine that performs the same
function, [would like to come the full
circle and show how I would adapt that
hypothetical listing to function with this
subroutine. [think Listing 4 says it all,
Try adding these lines to your subroutine
and its supporting lines! Do not forget the
-comma in line 70!

I like this set-up because it looks and
functions a lot like the ideal that 1 am
trying to emulate. It does have a few
differences, however.

Numbers and Non-Numbers

1 said before that the subroutine will
not function il the word "DATA™ is
misspelled or if there are spaces between
the letters. READ statements in other
Basics are usually sensitive to spelling but
not to spacing.

Edward A. Kennedy, Jr.. 16 701 Red Oak Si..
Bensenville, 1L 60106,

32

Part 2

Machine Language Teaches
the ZX80 to READ

Edward A. Kennedy, Jr.

Listing lu. READ subroutine. machine language.
first par. When you press NEWLINE after typing
in the 25" in the bottom line. your screen will go
blank for o moment. Then vou will see the first
three lines shown in Listing Ib, and the 25 will be
the first number in the fourth line.

11 08 3F 14 1a F5 13
F5 D1 2F F5 E1 Fl1 06
OF CB 1B 10 FB 2F 06
1F CcB 1D 10 FB 23 13
D5 D5 1a F5 13 1A F5
F1 06 08 1F CB 1B 10
1L 03 03 OA OF 38 29
E5 19 E1 30 09 C1 01
3F Oh 3E 01 02 €9 1A
29 20 EC 13 1A FE 26 20
E6 13 1A FE 39 20 EO 13
14 FE 26 20 DA 3E 01 02
21 00 00 13 14 FE D8 28
IIEELII

B 8LERLESE

Listing 1b. A continuation of Listing la. Note that
the first three lines across the page arz the last
three lines from Listing la. Continue typing with
the second number in the fourth line of this list-
ing.

ES 13 1A FE 39 20 EO 13
1A FE 26 20 DA 3E 01 02
21 00 00 15 1A FE D8 28
25 06 3B CE 00 BR 28 18
D6 1c 38 EF FE OA 30 EB
29 E5 29 29 Cl1 09 06 08
1F .CB 19 10 FB 09 18 DB
CL CS5 03 03 AF 02 E3 EB
E5 ClL €5 06 08 CB 19 1F
10 FB 12 F1 13 12 €9

Listing 3. Seven lines that can be added to the
loader program (Listing 4 in Part 1) o check out
the READ subroutine after it has been stored at
line 1.

10 REM DATA 1,2,3,4,5,6,7,8,9,
10,11,12

15 FOR J=1 TO 23

20 LET L=USR(16427)

25 PRINT L,U(0),U(1)

20 NEXT J

35 STOP

1200 REM DATA 101,102,103,,

Listing 4, Using a subroutine (located at 16,427 in
RAM) o simulate 3 READ on the Sinclair with a
4K Basic. Notice that line 50 is a REMark, Also,
line 30 does not "READ AUV but LETs Ail)
equal the value returned by the machine routine.

10 DIM A(50)

20 FOR J=0 TO 50

30 LET A(J)=USR(16427)

Lo NEXT J

50 REM DATA 174,39,317,255,78,
131,286,228,224,152,158,186,247,
241,85,161,24,145,50,271,38,106,
165,95,313,206,95,261,80,58,259,
296,24,1,178,133,268,41,249,250,
279,294,66,32%,179,115,81,66,93,
200,281 [

60 FOR Z=0 TO 50

70 PRINT A(Z),

80 NEXT 2

SYNC Magazine

This one is like the others in that it
ignores spaces between numbers,

*e50sREMeDATA®179e40e 3080 3017,
2000005005 aeT008 o(ctc.)
This works fine. In fact, it does not even
care if the spaces are turned into letters.
Even this:
se5(sREM*DATA«ITWH4AT 3A#9,
317,
2ZBUNCHS50F5,JU7TNKS s(etc.)

does not bother it. You will not find another
READ statement anywhere that will READ
that line.

Negative Numbers
Just for a test, you might want to add a
few minus signs in front of your numbers.
50 REM DATA -174,-39,-317,255,
78, (etc.)
Shucks! When this is RUN, the subroutine
ignores the minus signs just like it ignores
the other junk we gave it, and we still get
positive numbers. But if we try subtracting
each of these numbers from 65.536:

65,536 - 174 = 65,362
65,536 - 39 = 65497
65,536 - 317 = 65,219
65,536 - 255 = 65,281

and place the results in our line of DATA
where the negative numbers were:

50 REM DATA 65362,65497,65219,
65218,78, (etc.)
Eureka! It works! But why does it work?

The answer to that lies in the way a
computer handles positive and negative
numbers. It uses a system called “two’s
complement representation.” If you want
to know more, I suggest that you pick up
a good book on Z-80 microprocessor
programming and look up two's comple-
ment. The first of the two books by Nichals,
Nichols and Rony (see References in Part
1) has an excellent six-page discussion of
two's complement.

System Features That the READ Subrou-
tine Uses

In this project, I made use of two system
features, which I will describe.
Finding a Variable

You cannot use the READ subroutine
without including the following line in
your Basic program:

2DIM U(1)

Getting It to Work

1. LOAD the loader program from Part 1.

a. The REMark line has been numbered line 1 to make
sure it stays in the same location in RAM,

b. There need to be as many minus signs in line 1 as
there are bytes in the program plus maybe one or two
extra for safety. This program is 159 bytes long.

c. SAVE the loader for your own experiments in pro-
gramming,

2. Now, RUN it. Your screen will go blank except for the
cursor in quotation marks in the upper left corner.

a. It is looking for a hexadecimal number (0 thru 9 or A
thru F) or for the command to stop which is an “S”.

b. Always give it two numbers! If you want to enter “8"
type “08" and not “8"! Press NEWLINE when you are
satisfied with your entry.

c. After you enter the 105th byte, the program will lake
a moment to erase the top ten lines, and will reprint bytes
numbered 81 thru 105. After the 159th byte, the program
will automatically stop.

d. To correct an error (ten bytes back for example):

1) Stop the program by typing “S” and NEWLINE:

2) Change the address by typing LET 1=I-10 and
NEWLINE;

3) Press CONTinue and NEWLINE:

4) When the error has been corrected, you can get
back to where you were by using a similar procedure to
add nine to 1.

3. Now enter the subroutine shown in Listing la, and in the
bottom seven lines of Listing Ib. The top three lines shown in
Listing 1b repeat the bottom three in Listing la. This will be
helpful if you write your own machine programs,

a. Check your code carefully against the listings. The
Sinclair system will not check for errors in machine code
like it does in Basic. One error could cause you to bomb
and lose the whole program.

b. SAVE a copy right now. If it does bomb because of
an error that you misssed, you will not have 1o start all
Over.

November/December 1981

4. Now it is time 10 make sure it works,
a. The lines in Listing 3 can be added to test it.

1) The keyword REM in lines 10 and 1200 allows us
to type the word DATA, which the subroutine needs.

2) DATA lines have no comma at the end. | put two
at the end of line 1200 to show how that messes things
up.

b. When you RUN it, check the display as follows:

I) The numbers in the left column are the DATA
that was just READ out of lines 10 and 1200. Note the
extra zeros at the bottom. These are caused by the
commas at the end of line 1200,

2) Each number in the middle column is the address
of the comma or EOL (End-Of-Line) marker following
the piece of DATA to the left of it in the same row. If
your addresses are not the same as mine, do not WOrTy
about it.

3) The numbers in the right column are the flags. A
one says it came back because it found a comma and
there are more numbers in the line. A zero says the
subroutine found an EOL and must look for another
line of DATA if it is called again.

4) The “2:20" in the lower corner of the screen says
that the subroutine ran out of DATA. We asked it to
do twenty-three READ operations, but only gave it
eighteen numbers to READ.

¢. Did your display do all that? If it did not function
properly, the problem could be with the Basic or with the

machine code. :
1) In the Basic the word “DATA" must be spelled

correctly with no spaces between the letters. Also,
commas between the numbers must be commas and
not periods.

2) If that is not the problem problem, check the
machine code again,

5. If it works right, you can take out all the lines numbered
ten and higher.

a. What you will be left with is the bar subroutine in line
1, the next two lines which it needs to function properly
(line 2 and line 3), and line 5, which is not essential but will
help to remind you where to find the start of subroutine.

b. If you SAVE a copy or two of this, you will have it
ready when you want to convert a program that needs a
READ.

a3

Listing 2. The READ subroutine —assembly and machine languages with |
addresses and comments. (Only relative jumps are used, so addresses are |

re-locatable).

34

Listing of a subroutine that simulates 8 READ statement with the Sinelair M e e Commacnts
4K Basic. Prepared June 7, 1981, from a hand-assembled source by Edward
A. Kennedy. 16500 / 8078 20 T FAICH » =2G0) and go back if =ct
18502 / MOFE. 1 £ " 5)
. 16 & 1 1Else look mext Tor A"
Liscaiden Muchine Labed Assslady Lommenss]E;e ﬁ gg;‘? F: 26 i
sl 1y Langusge language 16506 / b0TR 20 BB ILEEH = =26D) snd o Bsek AF mot
16508 / 4oy 3
. % " 1509 £ OROTD A iElse look next for "TT
Paint the DE register-pair to 4008 hex (16392 decimal), The 16-bit 16010 / 4O7E FE 39 ;
2 vin 0 H . AN i 15512 / oo 20 B0 (B & =53D) asd 35 Eask 4F mot
number stored there at the next location is the vector pointing 1o the 16814 / kB2 13
beginning of the user's variable file. Copy it into the DE pair and put its 6515 / L08Y fa 1£1ne next lock For 4%
twos-complement into HL, ::gig ﬁ m‘““ :E H C{DAE = -
16520 3E o tFaund? BC
27 / hOIM 11 o8 3 D DE,2F0AH jRat AOCBH ez / boBa o2 B Emer ey
1630/ hOZE 16 INC D i into DE. ;
B4 Loy 1] . s ja s
:1&.33 j'«nx‘r i:' Pus;'i?" 1M t:sb:::.oftfum Come here (from either of two places) after deciding that we have a line 1
1643L / kO3] 1% IRC DIE of DATA. Put zero in sum— the HL register pair,
164 / Lipsa 14 LD A, (DEY ilet hi bybe g
16435 / 4033 FS FUSH AR i and transfes it ;
16456 / Wo34 D1 POP K i D, 16523 / 4OBB 21 0000 JUMFY Lb ML,OOOOE giepe sus 1
16457 / hoks 2F CFL sAnd Lts omes complesent
16438 / hoBE ¥y PUSH AP i goen L
::':53 '1: 1'3352 ;} P“g; ﬁ 12 e '-m St Get next character. Jump to return routine when comma or End-Of- ;
eirieve " ! E 3 &
417 4% 05 oA LD B,08H i retats it ereular Line is found. IT it is a number, multiply sum by ten. add number to it, and .
o s Looe RECA b beck into Staelf come back for next character, I
164&Lh / Soap =% | kR E 13 and dnte E d
1EkLG J 400 140 FB DINZ LOOF +{FBH « -5 deciml)
16%h8 / Aoko . CPL jAzd Lkn enes-cosplessnt 16536 S LOBE 13 SO NS DE
163 / b ok o8 L0 B 0R 16527 / LOBF 1k LD A, (D) sload cext character
1450 / bOhy k. LOGPD RRA 1 retats that 16528 / hooo ¥E 08 cr ofm iCheck for comsa s
16452 7 hobh £B W R L i imts L 16530 / Loba 28 3% JR G UM p(25H = #37 decimal)
16454 / BobEé 10 ¥R DUNZ LOOPD 3(FB = -5 deci=al) ks 7 Logk of 1B Lo B.38H (Elme put Bid-Of-Lis d
165k / BOLR 23 ING HL 14dd one to get twos-complesent 165, / Logk £B DO Ee oA b tats B
16457 £ Boky 13 IR: OE 1Hore DE past Koo Lesder 16585 f Lpad) cr B : and check far it r
16458 f Loki 11 ING DE 3 of the firot variable (tke U nrray) 16837 bpoa 28 18 IR oS ;.1EH = a2k decima?) 0
e FUSIl BE #5d save two coples 16539 /LR D6 1g 08 icH iConvert it to a susher (S8 280)
wo 7 ok e oot i Bor luber. b 16501 / soan 38 uF JE C,JU0N (5 « ~17D) Lasn thas zero? Oo back I
i / 15543 7 Loy FE Oi CF 0, ila Lt o letter? (Oreater than sine?)
This should be an array element, and the 16-bit value stored here mhsfg.u 0 B JR NC,JUMEY {(EBE = 21 decimal) Them go back P
: i L al
shoulfl point o the next location where we want to look for DATA. We lgg‘;; § pecens g 400 1.1 !"“15;11:::’21122.“4, F
copy it into the DE pair., 16548 / oy 2= ADD ML, ML !
16550 / hoak 33 ADD HL,HL
16551 / By POF B
1EBEL / bOkD 14 LD 2, {DE) ilaad lo byte 185652 F sl o9 ADD ML, BC
16462 / hOAE 18 PUSE AF i and shove it 16553 / foas o6 B LD B,06W thas Fatate
16hE3 # LOME 13 ING DE 16555 / GOAR IF LoGEe RRA $ Istent susber iste © P
1gheh £ Losd 14 1D 4,(DE) jlead 1 byte 16556 / oG OB 19 - 3 (B will be zerc when losgs donel a
I6HES / Lom) s PUSE AF ¥ and mowe it 16558 £ 10 ¥B BINZ LoOPe JVBEE = -5 decieal)
Whed 4 bose M FOP DE i taD 15560 / boBo 09 AL HL,BC $Add 1t in them g8 got nest charseiss fi
s L FOF AF iketrleve 1o byte 16561 / %0B1 18 De JH s 1(D0BE = -37 decimal}
WG S hOEL 56 oA L B0l a
LT S Lo iF Lo, ERA i nmd rotate it ﬂ
164TE F kDET o (I 1 RR E i inta £ a H > . . i g i 1 - I -
1647 / L% 10 FB DIME 100F1 j(FEH = -5 decimal) I subroutine comes here, DATA is already in HI: revister pair, The
return has two parts. The first part changes the flag in the second array W
> . y - g - ne o -Line wg . al.

Retrieve the array pointer from the stack, add two 1o it so that it points element when an End-Of-Line was found (not a comma) a
to the next element (the flag), copy that into A, and test it. A one indicates fl
we are ina line of DATA, 56D / homy o1 Jims poR RS iTep stock entry poimts at first array a

16888 # tIIBi =4 PUSH BC | wlesent. lncrement it twice
1 . o
Ay [/ Gose [} Fob B iTep jolnter :Eﬁj & g: i::h : 1 to palet at secomd. ﬂ
iAo T T iPotnt it to second 16567 / hOH? AT 108 A Put 2erw dn A P
1687/ Losp o3 IKS BC q mreay olesent £ ot
16478 7 hosE oy 19 a,0801 slest fing byre 16568 / bo8d o2 L0 ()4 i and them i flag th
12& A uosr oF RETA iRotste flag fnto oarry—if o
1 - 52 <8 C,JUMP3 R = +h] Jicims}) te ¢ 4 . . .
: b i | L Second part of return puts address of the End-Of-Line or comma into
first array element and then returns. The triple swap in the first three lines e
1Ty was zero. search for sequence of letters D-A-T-A. Also test 1o see that moves the address of the comma or EOL from DE 1o the ‘stack and the tk
the search has not wone beyond the end of the program. If pastend. leave an address of the first array element from the stck to DE while leaving the
error message and return. If DATA found. change flag 10 one. DATA in HL intact. i
16565 / Womy £3 SRS EX(BF)E GDARA, DATA, cl
1% JINEL illiove to next lssitles 16570 / WOmA s .} EX DE, t who's got
EY soubtract addresse ef e=d of program 1 ! E3 EX (SF).HL s the DATA? L
13 H by ndding its twepsecosplesent 16572 f hosC el FOP BE tCapy lo byte of cosma or HOL m
[} 1 i L 16573 / haBD o5 PUSH BC i sddress irte C,
%09 : 16570 / WOBE 06 OB LD B,ofE p]
e . 16576 / LoD ©R 13 LoOPS REC 1 save it
ol 16578 / soc2 p REA L & il
Lo 1570 S hogd 10 rm DJNG LGy FUFRE = =50)
i 16581 / hoos 12 LD (BE),4 i asd store §t. th
0z 0582 S 4006 11 FOP AF ihetriove hi byte
¢z 16583 / Looy - 1% e OE ar
s s 1G58k / Loch a2 LD (BE), & i and atore it b
FE 29 16585 / W03 C9 RET iMeturn to the BASEC with DATA f
m
Lo
SYNC Magazine M

This line creates an array with two elements
in it, U(0) and U(1). The READ sub uses
both these elements. But there must first
be an array where it expects to find one.
It does not matter what letter the array is
identified by (it does not have to be “UI™),
nor does it matter if it has more than two
elements (the extra ones will not be used).
But there must be an array starting at the
very first locations of the space used to
store variables,

Once a variable is created, it will reside
in the user-variables section of RAM until
it is erased by a CLEAR or a RUN. The
rule, except for string variables, is that
the first variable created is in the first
locations of that section. (Strings are erased
from earlier locations and moved to the
end every time they are changed.) The
newest variable always goes to the end of
the file.

Now the user-variables section begins
where the program ends. This means that
the whole section is going to get moved
around. That's right! When you add a
line to your program, it gets longer, and
the Sinclair system knows that it must
move the variables to make room. Likewise,
it moves everything together again, to fill
the gap, when you take a line out.

But do not think that it does all this
blindly. It does not. In fact, it keeps
accurate track of where everything is. It
reserves ten locations, in the lower part
of RAM, to help it do that. Two of these
locations store the low part and the high
part of the address of the beginning of
the first byte OF THE FIRST USER
VARIABLE.

My READ subroutine finds that address,
presumes the first variable is going to be
an array, and goes to the place where the
first element would be (if it actually were
an array). It expects to find an address
there pointing to the place in the program
where it has to look for more DATA. It
also expects a second element to hold a
flag telling it whether that address is inside
a line of DATA or not. If not, it knows
that it will have to initiate a search for a
place farther down in the program where
the word “DATA™ has been typed.

Then, before it returns to execute the
rest of the Basic line, it updates those two
things that it thinks are array elements.

As I said, it only thinks that the array is
in the right spot. It does not do any
checking. The programmer who wants to
use this subroutine is going to have to
make sure that a two-element array gets
placed at the very beginning of the variable
file. This is easy to do. Just make sure
that the first variable created is the needed
array. Then you will know it is in the
beginning. Even though the system will
move the file around as you make your
program larger or smaller, there will always
be a pointer (at locations 16392 and 16393)
to the beginning of the file and thus to the
special array.

November/December 1981

DIMension statements create array type
variables. LET and FOR statements also
create variables some of the time. LET
opens space for simple variables when
they do not already exist, FOR does the
same for the type of variable that controls
a FOR-NEXT loop—it creates one when
it did not exist before.

Thus, if, when the computer is RUN, it
finds the DIMension statement before it
finds any FORs or LETs, I know things
will function correctly. This means that |
make line 2 a DIMension. I could have
added some sort of checking routine, but
that would have lengthened the subroutine.
I would rather put up with the quirk of
having to place the thing properly than to
make it any bigger than it is.

Error Messages

One added feature is a subroutine to
stop the Basic program with an error
message when it runs out of DATA.

The first location in RAM is used as a
mail box for error messages. Each time it
executes 4 line, the system checks its “mail”
to see if any mistakes were made. If it
finds the number 255 there, it knows
everything is OK and keeps going. If it
finds a number from zero through eight,
however, there was an error. So it stops
the program, adds one to that number,
and displays it, together with the line
number where the error was found, in the
lower left corner of your TV screen.

The location of the mail box is 4000
hex (or 16384 decimal—see Appendix:
System Memory Locations in your manual
for more details). If you do not type in
enough DATA, the subroutine will signal
you when it runs out. It will put a 1 in the
mail box and the system will stop the
Basic. That means you will usually see a 2
followed by a colon and the line number
where you were trying to use the USR
function. (I have seen it change to a three
when | was printing an array element in
the same line. For some reason, the system
changed it.)

Getting by Without the “Forbidden
Codes™

The remainder of the article presumes
a knowledge of machine language pro-
gramming, preferably on the Z80.

As noted Part 1, there are many numbers
that cannot be POKEd into line 1 without
messing things up. Those are the numbers
from 40 hex through 7F hex. This restriction
takes certain instructions away from us
outright, and places severe limitations on
our use of other ones. The instructions
that are totally forbidden are the ones
whose machine code number falls in the
forbidden group. The ones that it restricts
are those that sometimes require data in
that range.

1) Forbidden Instructions (Single Op
Code)

The single byte instructions that cannot
be used in this system are transfers from
one register to another within the CPU,
and the transfers between a register and a
memory location when using the HL
register pair as the pointer to that location.
Fortunately, the accumulator (the A
register) can transfer to or from memory
using either the BC pair or the DE pair as
pointers. Those op codes (operation codes)
are not forbidden. They are:

02 for LD (BD),A copy accumulator
into memory at
address in BC;

0A for LD A(BC) copy memory at

address in BC into
accumulator;
copy accumulator
into memory at
address in DE; and
copy memory at
address in DE into
accumulator.,

12 for LD (DE),A

1A for LD A ,(DE)

They work fine. We can use them to get
information between the accumulator and
any memory location in the computer. If
we could find a way to transfer it between
the accumulator and the register that is
to be its destination (or soure), then we
would have it.

We have two ways of working this. If
we want to transfer a value between the
accumulator and the high byte of a register-
pair, we can put it on the stack and take it
off again. For instance, to transfer a value
from A to D, we can put the accumulator
and flags onto the stack and take it off
again into DE.

Example 1.
ssssss[SessssssssennnsPUSH AF
DI POP DE

This copies the accumulator into the D
register and the flags into the E register.
Going the other way:

Example 2.
sssess[)SennsssnsnssesePISH DE
F1 POP AF

copies the D register into the accumulator,
but you should remember that it also
changes the flags. Normal register transfers
do not change the flags.

For other moves we can use the rotate
instructions. One rotate will move a single
bit from one register into the carry flag,
and another rotate will get that bit from
the flag into the other register. Then we

35

repeat that operation seven more times
on the next seven bits, and we have moved
the contents of one register into the other.
Each of the following three examples puts
a copy of the accumulator into the E
register:

Example 3.
sessssSFensssnnssnsnss] [JafF A
Example 4.
ssssse(|Fasssnnssnsssss RRCA

CB 1B RRE
OF RRCA
CB IB RRE
OF RRCA
CB 1B RRE
OF RRCA
CB 1B RRE
OF RRCA
CB 1B RRE
QF RRCA
CB IB RRE
OF RRCA
CB IB RRE
OF RRCA
CB 1B RRE

Example 5.
06 08 LD B,O8H
OF LOOP RRCA
CB IB RRE
10FB DINZ LOOP

The first example is the most straight
forward. It takes up only one byte of
memory, but its op code could mess us
up.

Example 4, the second one, gets around
that problem, but it requires twenty-four
bytes of storage.

The final example requires only seven
bytes and uses no objectionable op codes.
It uses the DINZ (Decrement and Jump if
Not Zero) instruction to repeat the instruc-
tions that move the data, one bit at a
time, from the A register, through the
carry, and into the E register. In order to
make the DNJZ instruction work, we must
load the B register with the number eight.
DNJZ decrements B, checks to see if it is
zero, and jumps if it is not. So the loop
will be done eight times. Note that this
method changes both the B register and
the carry flag, so if either holds important
information, you will have to save it and
restore it afterwards.

2) Forbidden Instructions (Multiple Op
Code)

The same restrictions apply to the IX
and 1Y registers as to the HL pair. You
cannot use them to load the other CPU
registers from memory or vice versa without
using one of these numbers. In fact, the
second op code in an IX or 1Y instruction
is always the same as the first op code in
the similar HL instruction.

The BIT test instructions are all lost
because of these restrictions, and so are

38

the INput and OUTput instructions that
are distinctive to the Z80. The original
8080 style IN A,(N) and OUT (N).A can
still be used.

The only way that I see to replace the
BIT test is to rotate the bit to be tested
into the carry flag and test the flag. This
changes the register or the memory location
that you rotate, so you may need to copy
the byte into the accumulator and rotate
it instead.

To NEG (negate the accumulator two's
complement style) you must CPL (one’s
complement) and then add one:

Example 6.
ssesseEDeddevennnnsens NEG

is replaced by:
Example 7,

2F CPL
C601 ADD 01H

These two examples leave the same num-
bers in the accumulator, although the flags
will usually be different.

Sixteen-bit subtraction is lost, so when
I needed to do one to find out if the
search for a line of DATA had taken us
beyond the end of the program, I did it
the same way that early programmers had
to do their subtracts. I took the two's
complement of the subtrahend (the number
with the minus in front of it) and 1 added
that to the minuend (the other one).

There are a few other instructions that
cannot be used, but I had no need for
them, so I did not investigate them. These
include rotates that move a whole digit
(four bits) at a time and transfers to and
from the interrupt (I) register or the refresh
(R) register,
3) Forbidden Data

Early in the subroutine, I wanted to
load 4008 hex into the DE pair. 1 could
not do that because it would have put a
“40" into my REMark line. I had to put
JF08 hex into DE and increment D.

Later, I wanted to test to see if the
subroutine had just loaded an EOL marker.
That would have meant that it had come
to the end of the line of DATA in the
Basic program. But the Sinclair uses 76
hex {or 118 decimal) as EOL signals and [
could not just write:

Example §.
seneseFEeTenssnsnnnesCP 76 H

because that would have scrambled things.
So first I figured out that half of 76 hex is
3B hex. I loaded 3B hex into B, I doubled
it by rotating it to the left, and I compared
the contents of the accumulator to it.

Example 9.

06 3B LD B,3BH
CB 00 RLCB
B8 CFB

I cannot call a subroutine that I have
stored somewhere in RAM, and I cannot
jump absolute to any location in RAM
without writing one of these numbers,
RAM begins at 4000 hex and ends at
43FF hex if you have 1K. So the high-
order byte of any address in RAM will be
from 40 hex through 43 hex. When I tell it
to jump absolute or to call, I must give it
an address and that high byte is forbidden.
That will not change if I get 16K because
it will go from 4000 hex through 7FFF
hex. If I find some useful subroutines in
the system ROM (Read Only Memory), |
can call them as long as the low-order
byte is not forbidden. But within any
program that [intend to store in a REMark
ling, I am otherwise limited to the relative
style of jump.

The relative jumps are the ones in which
you do not tell it what exact address to go
to, but how many spaces to forward or
backward. The machine takes that number
and the present value of the program
counter, then generates a computed
address, and finally goes to the computed
address. Those of us who learned to write
machine programs on the 6502 or the
6800 had to learn this relative type of
addressing. We could not call if carry or
jump if zero or return if parity odd. We
had a single, unconditional jump, and a
single, unconditional jump to subroutine,
and a single, unconditional return. If we
did not want the instruction to execute
under certain conditions, we would have
to put a branching test ahead of it. Then
we would avoid the instruction entirely
when the conditions were not fulfilled.
We were forced to learn how to compute
a relative jump. Those of you who have
never learned that, can consider this your
big headache or your big opportunity!

4) Computing a Relative Jump.

None of the books listed at the end of
Part 1 really tells you how to figure a
relative jump. So, here goes!

A relative jump can go forward 127
locations or backward 128 locations from
the first byte of the first instruction after
the jump instruction.

When I compute the displacement for
a relative jump, I first leave the space of
one byte after the jump instruction. This
is where the displacement will go. I put
my finger on the byte after that. This is
the first instruction after the jump, and 1
call it byte number zero. A common
mistake is to use the jump itsell as byte
zero and that will get you in trouble.

SYNC Magazine

. p—— e e

B . - ——

Oy s S

=/ P ey pee ey e - sl el

L == S WY, =]

Ll e = B e]

-

The second step is to count the number
of memory locations from there that 1
want it to jump when it does jump. (If
that is more than 127 forward or 128
backward, 1 quit and look for another
method.)

Third, if the jump is forward, [convert
it to hex and that is my relative displace-
ment.

Fourth, if the jump is backward, 1
subtract the number I got in the second
step from 256. My displacement will be
the hex version of that difference.

Fifth, | double-check my work by count-
ing the bytes again, usually in hexadecimal
this time. I may also check it by putting
the segment of code into the computer
and running it.

Let’s look at a couple of displacements
calculated for the READ subroutine
presented earlier in this article. The first
is a backward jump {(Example 10) and the
second is a forward jump (Example 11).

Example 10: Backward Jump
ssssa()fy (JResssesessss] [B (I8H

OF RRCA

CB 1B RRE

10 77 DINZ LOOP
2F CPL

In example 10, when the B register
finally decrements to zero, there will be
no more jumps and the next instruction
will be CPL. S0 I put my finger on the
“2F" and say that it is byte zero.

Second, I count back. The space I have
left for the displacement byte (the “?7") is
number one, “10" is number two, “1B” is
three, “CB" is four, and “OF" is number
five. That is the byte which I want it ta do
next when it does jump, so I am done
with step two.

It is a backward jump so step three
does not apply.

Step four is to subtract the number 1
got in step two from 256. That leaves me
251. Then I convert it to hex (see below).
That gives me FB. So I take the question
marks out of the displacement byte and
put in “FB™.

Fifth, I put my finger back on the “2F”
which I called byte zero before. This time
I call it byte number FB. Then the dis-
placement byte that I just put in will be
number FC, the *10" is FD, the “1B"” is
FE, the “CB" is FF, and the destination
(the “OF") is byte number 100. That is
what 1 wanted to see, because | know
that the Z80 CPU is going to do something

November/December 1981

similar and come to the conclusion that it
must execute the "OF" next when it
jumps.
Example 11: Forward Jump

sssss]l() "essssssssss]R NC JUMP2

Cl1 POF BC
0100 3F LD BC,3F00H
04 INCB

JEO1 LD A01H

02 LD (BC),A
c9 RET

1A JUMP2 1D A,(DE)

In this case, the ZX80 is to go to the
line marked with the label “JUMP2"
whenever it does jump. How far is that?

Well, for the first step, I know that the
“C1" following the “?7" is byte zero. | also
know that the “IA" in the bottom line is
the destination.

So for the second step. we count. “01”
is byte one, “00" is two, “3F” is three,
“04" is four, “3E" is five, “01” is six, “02"
is seven, “C9" is eight, and “1A" is nine.
Nine is the number.

Step three, since nine is the same in
hex as it is in decimal (no conversion is
needed until the number is ten or larger),
I just plug “09" in where I have the “?7".

Step four does not apply, so | check my
work and | am done.

5) Converting Decimal to Hexidecimal

I showed you, in Part 1, that it is easy
to convert from hex to decimal. This time
I need to show you how to go the other
way. But in order to tie it all together, |
will review briefly.

First, remember that there are sixteen
numbers in the hex system:
= 0,1,2,3,4,56,7,8,9,A,B,C,D,E, &

Let's take the number FB in hex and
find out what it is in decimal. We see that
an F is equal to our number fifteen. Since
every increment in that column is equal
to sixteen in the decimal system, an F
there equals fifteen times sixteen, or 240,
Now the B in the right column is equal to
our eleven, and each increment in that
column is worth only one, so that is eleven
times one, or eleven. Add them together
and we have 251.
(Fx16)+(Bx1)=(15x16)+(11x1)=251

End of review. Now let's go the other
way—from decimal to hex. If 1 have a
number small enough to fit into a two
digit hex number after conversion, then I
can make the switch with a single division
by sixteen. (255 is the largest decimal
number that will work.) In example 10, 1
ended up needing to convert 251. So |
divided:

251/16 = quotient of 15 and remainder
of 11
Then, if the quotient or the remainder is
ten or more, | substitute the number

between A and F that it corresponds to.
15 is the Fth number in the hex sequence,
and 11 is the Bth one. The remainder
goes in the ones column and the quotient
goes in the next (the “sixteens” column,
Therefore, the hex equivalent of 251 will
be FB.

If you want to practice doing a few
jump displacements, you will notice that
in the comments column in Listing 2 [
give every displacement I computed both
in the positive or negative numbers from
the steps two, and in the final hexidecimal
number.

This explanation goes deep enough to
help you convert your jump displacements.
The programming texts that I already
recommended explain the conversion
process in more detail. They will help
you convert larger numbers, like addresses,
if you need to.

Conclusion

This article has covered a lot of ground.
I have given you an implementation of
the standard Basic statement “READ" for
your Sinclair or MicroAce. Part of my
reason for writing this article was to give
you an idea of what it is like to program
in machine language on these machines. 1
mainly concentrated on the special tech-
niques needed for that task, and I left
alone the information that is already well
covered in the programming texts.

I hope you have enjoyed it. Good
READing! Good programming. .

(" Blank Cassettes)

The guality of cassette lape used to
save and load programs is an important
factor in getting the programs lo run
Tape quality for computers is measured
dilferently from quality for audio tape
The tape must be capable of sending to
the computer the electronic signals of
the program without transmitling extra-
neous noises (hal could interfere with the
ability of the computer to load the tape

Our blank cassetles are tested and
recommended for compulter use. C-10
cassette, 5 min. per side, blank label on
each side in a Norelco hard plastic box.
[0010] $1.25 each

Head Cleaner

After hours of use, the read/write head in
a casselte recorder will pick up minute
particles of tape oxide. This dirt will hardly
be noticable in dictation or music Butitis
very noticable in computer use One dropped
bitin 16.000, and the program won't load

Help keep your recorder in top shape
with our non-abirasive head cleaner Itconsists
of 18 inches of stff cleansing fabric-in a
standard cassette shelli One 10-second pass
every 40 hours of use will keep your heads
asgood as new. [0011] $2 00. Send pay-
ment plus $1.00 Shipping per order to

Peripherals Plus

39 East Hanover Avenue
L Marris Plains, NJ 07950 J

a7

=

+2

+++++++++++ 4+ +
+++++++++++++
+++++++++++++
++++++++++++ +
++++++++++++ +
++++++ +R+++ + 4+

=
>
=

++++++ + + + + et

++++++++++ +

Rubik's Cube has presented puzzle
solvers a most challenging puzzle, and it
raised for me the further question: Was it
possible to simulate on the ZX80 at least
some of the features of the cube? In the
first place we have only two dimensions
to work with., We have the limitation of a
4K ROM, a 1K RAM. and a TV screen
for display.

The program below is my attempt. after
many hours of work, to translate the three
dimensional Rubik's Cube to the two
dimensional TV screen via the ZX80. The
result, at the editor's sugpestion, is
“Hampson's Plane.”

After entering the program. which is
rather short, you must take care of a bug
in this way: Press RUN and NEWLINE.
The prompt will call for a skill level entry:
enter | and NEWLINE. Wait for the screen
display to appear. Press NEWLINE. The
prompt will ask for a numerical input;
however, enter END and NEWLINE. An
error code will appear. Press NEWLINE
again to get back 1o program and you are
now ready to start playing. The first thing
to do is save the program. From now on
you must always start with GOTO 1. Never
use RUN or CLEAR.

The gaming board will appear on the
screen, It consists of a board 21 x 15 with
video and inverse video crosses. These
are identified by the use of the coordinates:
letters across the top and numbers down
the left side. Type in the coordinates of
any cross on the board: enter the letter,

M. Hampson, 7 Hereford Drive, Clitheroe, Lanes
BET IJP, United Kingdom.

38

+ + + + +
+ + + + +

L]

¥+ ++ + +
@
»

5 ++++ +

s
O
=

<Y

+ + 4+ + 4+ +§+
18+ my + + + + +

+ + + + + +3+

+++++++8 +++++
+++++++@ A+
+ 4+ ++++F+ A+t
+++++++++++++
+4+++ A+t
+++++++++++++
++++++F+++++++

++ + + + + +
+ 4+ + + + +zt
+ + + + +

NEWLINE, the number, NEWLINE. The
video display changes, i.e.. from normal
to inverse or inverse to normal. That may
sound easy, but there is more. Not only
does that pariicular cross change, but so
do the surrounding 8 crosses. See Figure
1. The object of the game is to clear the
board completely to normal video crosses.
While that may sound hard, it is possible.
You have your choice of 100 skill levels.

The computer sets out the gaming board
and then sets up the problem by choosing
some random coordinates according to
your skill level. This ensures two things:
first, it is always possible 1o complete the

DEFG DEFG
S+H+4++ 5%+ + +
6 +[+ +F] 6 +[F + +
T ++4++ 7++++
8 +i+ + 8 +l+ + +

Figure 1.

puzzle, and, second, it is only as hard as
you want it to be. While skill level 100 is
very, very hard and can take the best part
of an hour to work out, you always know
that it is possible because the computer
and you got into that mess simply by
typing coordinates. But be warned! It takes
the computer a long time to set up the
board on a high skill level, e.g., allow 1
min. and 45 sec. on level 100,

+++++++++++++
+++++++++++++

2 RANDOMISE
3 PRINT "HAMPSON'S PLANE"
4 PRINT "ENTER SKILL LEVEL"
5 INPUT SK
6 CLS
10 PRINT "##ABCDEFGHLJKLMNO"
15 FOR Z=1 TO 22
20 IF Z<10 THEN PRINT "¢":
21 PRINT Z 3"+ttt
22 IF Z<22 THEN PRINT
30 NEXT Z
40 FOR L=1 TO SK
50 LET X=RND(13)+3
60 LET Y=RND(20)+1
70 GO SUB 1000
80 NEXT L
100 INPUT K$
110 LET X=CODE(K$)-35
120 INPUT Y
170 GO SUB 1000
180 GO TO 100
1010 FOR T=1 TO 9
1020 IF T=1 THEN LET P=0
1021 IF T=2 THEN LET P=1
1022 IF T=3 THEN LET P=-1
1023 IF T=4 THEN LET P=-18
1024 IF T=5 THEN LET P=-17
1025 IF T=6 THEN LET P=-19
1026 IF T=7 THEN LET P=18
1027 IF T=8 THEN LET P=19
1028 IF T=9 THEN LET P=17
1033 LET V=PEEK(16396)+256*PEEK(
16397)
1035 LET N=V4Y¥18+X+P
1040 POKE N, PEEK(N)+128
1045 NEXT T
1050 RETURN

SYNC Magazine

If you have expansion memory, you
can do the de-bugging in this way: Set up
a flag F thus:

1 LET F=1
Then insert the program alteration which

ABCDEFGHIJELMND is only required once before the display ABCDEFGHIJEKLM

file has adjusted its position:
1+ ++++++++4++++4 1(L1ﬁlFF!rHFNLEP1('N:N+h 1++4+4+4+++ +EEEEEs
2ET R ARt T And finally reset the fag F: SIS
3+ +++++++++++ 4+ 1(_:]"-?LET}F“iI AR I+++++++++EEA+GE
G 4+ R R e L = ; b+ ++++++++++++
S L bbbt You can now use RUN instead of GOTO PRI R EN r
b+ +++++FF+ 4+ L. b+++++++++++++
T+++++++++++++++ T+++++++++++4++
B4+ +++4+4+++++++44 SampleRun B R E B O T i
d++++E e+ ++++2e s TypeGOTO1 . G+ 4+ +++++FF L
0+ ++++++++++++++ HAMPSON'S PLANE 10 ++ + ++ 4+ + + 4+ + 4+ + +
Il 4 + & & + 4+ &+ + 4+ + + + + + + ENTERSKILL_LEVEL‘ 1l +++++++++++ + +
O S T el e e E.Iller?i_mdwullfnrthed]spluy, bk A B e o
CTE) A L G S e G R (O e The obvious moves are B.5; F.8; N9 and T iR S e
Th b4 fd e J.2I.Bul“'earequlwi|humu:.l(lll:atlhu P S U A R D
Gt T ST W Wi o v 8 e top. The solution is 1.3, K.2, M 3. Now 1o FR e b R P
T N S R S R return to command mode, type NEWLINE, R e e e
17+++++++++++++++ END, NEWLINE. Now try a high skill 174+4++++++++++++
TH b b R Qe o o level. This may keep you going as long as T R e e e
ST S LS S i S e e A 0 the original cube! So | suggest building e S R
0+ 4+ F ot L L oo up slowly. learning the tricks as you go Do L R S
21+ ++++++++++++++ along. A good plan is to raise your skill R i (R O e
P9 bbb b R L L level by fives each time you run the pro- S G N e R

gram,

The best of British luck! -

+t++++++++ bR A+ =
i i o I S e S o S e S S S S S S S S

MX16-16K RAM ZX80 — ZX81

FOR USE WITH THE HARDWARE
SINCLAIR ZX80®

Keyboard Sounders
Every keyboard entry gives
you a short audible bleep.

KS1forZX80......... £15
2:3 MODULE _ KS2forZXel......... £16
Tape Recorder Interface.
POWER SUPRLY ‘ Gives adequate level for
$89_95 PLUS ! | loading from cassette
X [machines.
$3.00 SHIPPING | T.R.l. for ZX80/81.....£12
AND HANDLING Video Amplifier Unit
. Will drive standard 1 volt
| monitors.
V.A.U. for ZX80/81.£12
|NS|GHT Complete with leads and diagrams.
1889 LEWIS DRIVE Connections only take a few minutes. p-p. sop
NILES, MICHIGAN 49120 D. BRUCE ELECTRONICS
o {GHE?:}GS;?EE?SMG 2 THE BEACON BLACKHALL ROCKS
Al e sidiLls | CLEVELAND TS27 4BH

Tel: 0783-863612

November/December 1981

8K ROM
1K RAM

Ever since seeing the Artillery game in the March/April
issue of SYNC, I have been interested in devising a way for
the player to see the projectile on its flight to the target, using
the 8K ROM, of course. It would be an easy project with lots
of RAM, but it was not that easy when limited to 1K RAM.
After rewriting much of the program to save space and
eliminating a few features such as keeping track of the number
of shells fired, T was finally able to make it work.

To play the game, RUN the program. Make your first shot
by ENTERing any angle of elevation between 0 and 90 degrees.
At the higher angles, you will see the shell arch way up before
falling back to the ground, much like a mortar shell being
“lobbed” toward its target. Continue firing until you get a
direct hit. Then the game is over. You can count your shots
from the shell holes in the display. Hit RUN to starl over.

A few notes will make the program clearer:

1) Listing 2: 1. 12, INPUT is a key word.
2) Listing 2: If you encounter memory problems, omit lines 1,
2, 12, 38, but you must remember what the game calls for
without the screen prompts.
3) Listing 2: 1. 38, Direct hit must be followed by 5 spaces and
the * mark.
4) Both versions: 8, inverse 0, 30 graphic D

J2, asterisk

36, inverse asterisk is a hit.
5) Both versions show the projectile; the ZX80 by a PAUSE
routine, and the ZX81 by the SLOW mode. "

Artillery with Motion

Chuck Dawson

Listing 1. ZX80 8K ROM

1 REM ZXg8@

2 REM "RARTILLERY""™

4 LET R=18+INT {(RNDz=z@) %
& PRINT "RANGE=";8;: "28a YDS
8 PRINT RT 17.,8&; :.' e

16 LET B=N

18 IF MN>45S THEN LET N=2@-=-N
28 LET L=INT (MN3.881

22 FOR I=1 TO 23 -1

24 LET J=1@3+B,/3%SIN (1.S7%I.,L)
25 PLOT I.J

26 PRAUSE 2@

27 PDOKE 16437,25S

28 UNPLOT I, J

3@ NEXT I

32 PRINT AT 17,L; "%

34 IF R4O>L THEN GOTO 14

36 PRINT AT 17.,L;"H"

Listing 2. ZX81 SLOW Mode

Chuck Dawson, 6520 Victoria, Fort Worth, TX 761185, Program adapted
o ZXEI by David Grosjean.,

ZX81 owners

have you seen
Vhe Cambnidge Pollection
A book of

30 PROGRAMS

For Only £4.95
NO MEMORY EXPANSION NEEDED

Each program has been designed to fit into 1K of RAM

TEACH YOURSELF PROGRAMMING

Comprehensive explanations of each listing will teach
you many techniques of ZX81 programming.

HOURS OF AMUSEMENT
With titles such as FORTRESS, BALLOON, and ODD MAN
OUT, you could easily become a ZX81 addict, Plus,
entirely new implementations of well-known favourites:
LUNAR LANDING, MASTER CODE, ORBITAL INVADERS,
and many others.

CASSETTE AVAILABLE TOO!

If you order the book you can also buy the
programs on a quality cassette for only
£4.95 extra.

- Ref. 1
Please send me: Please send your ord:ers

with cheques/P0O's to:
Richard Francis,

22 Foxhollow, Barhill,
Cambridge, CB3 BEP,

copies of the book at
£4.95 each

copies of the book and
cassettz at £9.90 pair

1 REM ZX381
2 REM "RRTILLERY""
4 LET R=1@+INT i{RNDz28)
65 PRINT "RANGE=";8:
8 PRINT RAT 17.,0; "Bl
1@ PRINT AT 17.,A;"T"
12 PRINT " INPUT ELEUVATION"

N
16 LET B=N
18 IF N»45 THEN LET N=9@-N
20 LET L=INT (Nx.68)
22 FOR I=1 TO 2:xL-1
24 LET J=1@+B-3%5IN (1.57%I-L}
25 PLOT I,
28 UNPLOT I,u
3@ NEXT I
32 PRINT RT 17,L; %"
34 IF RA<>L THEN GOTO 14
36 PRINT AT 17.L; "B"
38 PRINT "DIRECT HIT 2

Sample Run

M*W*T F i
NPUT ELEVATION

RANGE=11008 ¥YDS

FY FY P Y MY

ry *y r.y

4K ROM
1K RAM

“You Are in a Maze...”
Gary McGath

“..of twisty little passages, all alike.”
This message, in Adventure of Zork, tells
you that you have embarked on one of
the most challenging phases of the game:
mapping the maze and finding your way
out. Even without the rest of the dungeon,
a maze can make an exciting puzzle in
itself —especially if there is a hungry dragon
wandering through the maze looking for
you.

The "Maze"” program runs on the min-
imal ZX80 with 1K RAM. Each room of
the maze has three doors leading to other
rooms, or to freedom. The rooms are
numbered, and you know which room
you are in by the number that is displayed
on the screen. You start off in room 1,
just as the dragon is coming in through
the exit. If the dragon is in an adjacent
room, you can hear it.

You move by entering a 1, 2, or 3 to
pick one of the doors, or you can stay
where you are by typing a zero. The dragon
always moves after you. If you should
meet the dragon, you become his dinner.

5 RANDOMISE
DIM Al(l&)
DIM B(1&)
DIiM C(1&)
FOR
LET
LET

14

FOR I =1 70 1&

IF A(I)>0 THEN GD TO 140
GOSUB BOO

IF NOT N=I THEN

LET A(I)=N

IF B(I)>0 THEN GD TO 170
G0sUB 800

IF NOT N=1 THEN
LET B(T)=N

IF C(I)>0 THEN GO
GOSUB BOO

IF NOT N=I THEN LET
CiIY=N

NEXT 1

LET U=l

LET Z=RND(15)+]

LET D=IZ

CLS

PRINT U

IF NOT(D=A(U) OR D=R{U)

110
130

140
150
160
170 TO 200
180
120

200
300
1%
314
320
a3n
350

OR D=C(U))THEN GO TO 380 940

November/December 1981

To win, you must find an exit before the
dragon finds you.

A couple of pointers: (1) Since the
dragon moves after you, you may both
walk into the same room without your
having previously heard the dragon. Thus,
you can get eaten without warning. (2) It
is not cheating to study the maze generation

HAVEN HARDWARE
ZX80 & ZX81 ADD ONS

PROGRAMMABLE CHARACTER
GENERATOR, KIT £22.50
BUILT £29.95

(SUPERBOARD/U.K.10£39.95)

1-3K MEMORY EXPANSION
(INCLUDES 1K) KIT £9.95

REPEATING KEY-MODULE
KIT £1.85 BUILT£2.50

KEY BOARD KIT £17.50

COLOR BOARD APPROX £40
PRICE IN $ = 1.5 XPRICE IN £ SAE
FORDETAILS SHEET
HAVEN HARDWARE
4 ASBY ROAD
ASBY WORKINGTON
CUMBRIA ENGLAND

part of the program for any peculiarities
that might help you. For example, it turns
out that lower numbered doors tend to
lead to lower numbered rooms. (3) Col-
lectors of programming tricks should note
the use of the “computed GO TO" in
statement 450, in which the next statement
executed is determined by a random
number. This capability is a feature of
ZX80 Basic and does not exist on many
other Basics.

May you always elude the dragon in
your wanderings.

Gary McGath, 5 Ames Rd., RFD #3. Milford, NH
03055,

ZX80/81 DATABASE
A A AAAAAAAAAANY

For serious BK ROMNE RAM usars,
DATABASE blends Basic menus with over
1K mic logic to give dymamic file of
name/address/interest codes/text. Selget
able display formats include address labels
for printing. Search any element type by
any key. Beautiful to use, and very fast.
ANl file data is packed into a single string
whose length is automatically altered for Q
1o 500+ entries. Tape and full decument-
ation ., . £10.

SAE for full catalogue of Action games,
Magie Cube, Disassemblars. . for 4K or BK
ROM,Sinclairs.

CAMPBELL SYSTEMS dept 5y, 15
Rous Rd, Buckhurst Hill, Essex 1G8 6BL,

3460 PRINT “YOU HEAR THE
DRAGOM"

380 INPUT X

400 IF ¥=1 THEN LET Us=A(U)

410 IF X=2 THEN LET U=i(U)

420 IF X=3 THEN LET W CL)

430 IF U=D THEN GO TO &00

440 1IF u={ THEN G0 TO 700

450 G0 TO 4BOH(20#RNDI3))

200 LET DR=AL(D)

910 &0 TO 550

920 LET D=B{(D)

Y30 GO0 TO 550

240 LET D=C{(D)

950 IF NOT U=D THEMN &D TO 320

400 PRINT "THE DRACON CAUGH1
YDLJIL

&10 STOP

700 PRINT "YOU GOT AWAY"

710 STOP

800 LET N=RND{1&)

IF A(N)=0 THEN GO TO
IF B(MN)=0 THEN G0 TO
IF CI{N)=0 THEN €0 TOD
G0 TO BOO

LET Ai{M)=I

RETURN

LET B{N)=I

RETURN

LET Ci{MN)=I

8460
870
30

810
830
B840
850
B&O
870
890
00
930

RETURN

4)

FREE
48-Page
Catalog

A new, free 48-page catalog is free
from Creative Computing and Periph-
erals Plus. To help buyers make intelli-
gent purchasing decisions, the product
descriptions are exceptionally compre-
hensive and include sereen photos in the
software section.

The catalog describes 20 books on pro-
gramming, games, and educational appli-
cations; 160 softwara packages for
Apple, Atari, TRS-80, PET, CP/M, TI, Sor-
cerer and Sol computers; 3 magazines
(Creative Computing, Microsystems, and
SYNC); 5graphics and music peripherals;
an LP record; board game; B T-shirts and
an eclectic assoriment of other products
for the personal computer user.

To get your free copy, simply drop a
card or note to the address below.

creative
compating

39 East Hanover Avenue
_ Morris Plains, MJ 07260 J

41

4K ROM
1K RAM

The Hidden Chessmen is a search and
find game like Hurkle (SYNC 1:1, p. 12).
A knight, a bishop, and a rook are hidden
on a chessboard by the computer. You
begin the play by guessing a square on
the chessboard. The computer tells you if
you have found a chess piece and/or what
pieces are attacking the square. From
this information you deduce your next
guess, and eventually the locations of the
three pieces.

In this game no two pieces can be on
the same square. The pieces attack in the
normal chess fashion, except that an
intervening piece does not block the attack
of the bishop or rook.

You enter your guess by entering the
square’s coordinates consecutively without
a space, comma, or NEWLINE between
them. The first number is across, the second
down. This means that the upper left square
is 11 (one across, one down), the upper
right is 81, the lower left is 18, and the
lower right is 8. Pressing NEWLINE enters
the guess. Guesses off the chessboard are
rejected (so you would get no response
for a guess such as 03) but they are tallied
in the running total of the number of
guesses made.

Each individual square of the chessboard
is made up of four character display
squares. For the purpose of explanation
these numbered 1-4 in the diagram.

If no chess piece is at the position guessed,
a 0 will appear in square 1 of that position.

The Hidden Chessmen

Roger and Susan Haar

But if a piece is at the guessed position a
B, K, or R will appear in square | repre-
senting the bishop, knight, or rook respec-
tively. In display squares 2, 3, and 4 a B,
K., or R will appear if the corresponding
piece is attacking the chosen square.

For example, if you had entered 46, the
square 4 across and 6 down on the chess-
board might appear as:

The 0 means that no piece is on square
46, but the B and R mean that both the
bishop and the rook are attacking square
46.

A guess of 35 might give:

No piece is attacking the square, but you
have found the bishop!

After four guesses—46, 35, 16, 7T8—the
screen might show a display such as Figure

Roger and Susan Haar, 19372 Holis East Rd.,
Martin, OH 43445,

42

Figure 1.

The program does not tell you when
you have found all three pieces. When
you believe you have found all the chess-
men or have given up, you can enter () as
your guess. The location of the pieces
and the number of guesses you made will
appear below the normal display. If after
the four moves made in the above example
you entered a zero, the following would
be added to the display:

B35 K81 RI16

4 Guess

The program uses all of the 1K ZX80
memory. To conserve memory. we used
all the one digit line numbers (1-9) and
then only the two digit line numbers (10-
99). This does not save in the line number-
ing, but in the GOTO lines we save 5
bytes.

More memory space was saved by
switching from two character variable
names like Bl and B2 to one character
names such as B and C. This saved another
40 bytes.

The computer saves the value of vari-
ables in the variable section of its memory.
To save more space, we reused the names
of some variables: X and Y from the
PRINTing routing, and Q) from the INPUT-
ting routine. This lets the computer forget
information no longer useful and remember
new data in its place.

When a variable is first used, it is given
a spot in the variable storage and this
moves the memory location of the display
file. A problem would occur if Q had not
been used before line 50 where the start
of the display file is found by PEEKing. A
memory location for Q would have been
made after the PEEKing. The display file
is not where your program thinks it is.
This would mess up the information
POKEGd onto the board by the first guess
(and could be a problem in similar pro-
grams).

POKEing into the display file creates
one other problem: it is easy 1o remove a
line delimiter (code 118). This can produce
lines longer than 32 characters which crash
the program. Unplugging the computer
seems to be the only solution. Before
running a new program which includes
POKEing into the display file, you should
save it. This avoids retyping all of the
program should it crash. Also beware of a
POKEing mistake that changes the pro-
gram.

SYMNC Magazine

B s B M s A Td A R RT R e e b e

n

'R en

il

'R

<M

The Hidden Chessmen
Program Listing

LRl S

10
14
16
18
20
21
22
20
32
440
42
473
44

48

al

[=3

a4

bé
S0

LET B=RNMND{gG)
LET C=RHD(8)
» LET E=RND{B)
LET L=RNL{8)
IF k=B ANMD L=C THEM GOTO 3
LET R=RMND (&)
LET S=RMD(8)
IF R=B AND S=C 0OR (R=K AND S

=L} THEM GOTO &
LET N=0

FOR %=1 TO 4
FOR ¥=1 TO 2

FRINT "Af##oadsoissanis
NEXT ¥

FOR ¥=1 TO 2

FRINT "##ab##oolsanticn”
NEXT ¥

NEXT X

FRINT

FRINT "ACR; DN?"

FRINT

INFUT &

IF B=0 THEN GOTO 90O

LET Me=n+1

LET X=@/10

LET Y=RQ-10%x%

IF X<1 DR ¥<1 OR X>B OR Y3

B THEN GOTO 40
LET O=FPEEK{1939&) +254%FPEEK (
193970 +28X-1+34% (¥=-1)

FOKE @,28

IF X=E AMD ¥=C THEN POKE @,
a9

IF X=kK AND Y=L THEM POKE G,
48

IF X=R AMD ¥=S5 THEN FOKE &,
s

IF ABS{(X-B)=ABS(Y~-C)} AND NOD

T (X¥=B) THEN FOKE G+1,39

IF ABS(X-K)=1 AND ABS(Y-L)=

2 DR (ABS(X-K)=2 AND
ARBS(Y-L)=1) THEN FOKE 0O+17, 48
IF (X=R OR Y=8) AND NOT (X=
R AND ¥Y=5) THEN POKE Q+18, 55
GOTO 40

PRINT “"EBE#"sBs"#";0C, "K#" K"
B3, "R#"sRs"#": 5

2 FRINT N3 “#GUESS"

Variables List

B.C: KL; RS — Chess piece coordi-

nates

X.Y — FOR NEXT variables: later

coordinates of guess,

Q — INPUT variable; later location of

the guessed chess square in the display
file.

N — number of guesses.

Program Summary

Lines 1-8 place the chess pieces.

Line 9 sets guess counter to zero.
Lines 10-34 print the chess board.
Lines 40-48 input guess and process it.
Lines 50-64 put information about

guessed square onto the displayed chess-
board.

Line 66 returns to input.
Lines 90-92 print the piece location and

number of guesses. "

November/December 1981

The “penny switch.”
But it's not.

Joe Weisbecker, the designer of the RCA
1802 microcomputer, was trying to explain
to some children just how a computer works.
He wasn't having much success.

It sounds strange.

Computers Aren't Magic

Joe's hobby is magic. He thought, “maybe
| can use some kind of illusion to show how
acomputer works.” But he didn't really want
to use an illusion. He didn't want the chil-
dren to think of a computer as magic.

So he hit upon the idea of a simple flip-
flop switch (the most common circuit in a
computer) represented by the head or tail
of a penny. This flip-flop circuit uses just
one penny. Every time it receives an impulse
it changes from head to tail or tail to head.
Simple.

But then Joe went on and put two of
these simple flip flops together to make a
circuit that adds two numbers together. And
another that subtracts numbers. Kids loved
these circuits and played with them like
games.

Games With Pennies

Before long, Joe devised circuits to play
more complicated games like Tic Tac Toe,

—~_ 7

J

STOP

"Heads Up Game.” Starting with tails in all
positions, how many times through to get

% all four pennies heads up?

The most complex computer circuit can be
explained with just nine cents

Guess A Number and Create A Pattern.
Pretty soon he had 30 circuits (or games)
that explained everything about computers
from a basic adder to complex error correc-
tion. The most complex circuit uses just
nine pennies (or dimes for the big spender).

These circuits, each one with a full size
playing diagram, have been collected to-
gether in a book called Computer Coin
Games. With this book children or adults
can easily understand the workings of even
the most complex computer circuits.

Games Magazine said, "whether or not
you have any experience with computer
technology, you'll be both amazed and de-
lighted with the simplicity of the format and
the complexity of the play. All you need is
some common cents.”

Dr. Dobbs Journal agreed, saying, “Com-
puter Coin Games isa simple approach toa
complicated concept. The book is liberally
sprinkled with clever illustrations and dia-
grams, and provides a relatively painless
route to understanding how computer cir-
cuits function.”

Money back Guarantee

We're convinced that you'll understand
the inner workings of a computer after playing
these 30 games. If you don't, send the book
back and we'll refund the complete price
plus your postage to send it back.

To order your copy of Computer Coin
Games, just send $3.95 plus $2.00 for one,
$3.00 for two or more for shipping and
handling to Creative Computing Press,
Morris Plains, NJ 07950. Visa, MasterCard
and American Expess orders may be
called toll free to BDD-831-8112 (in MJ,
201-540-0445).

With its wonderful illustrations by Sunstone
Graphics, Computer Coin Games makes an
ideal gift. The Association for Educational
Data Systems calls the book “anideal intro-
duction to the concepts of computer

circuitry.”

Order your copy today.

creative
compating

Marris Plains, NJ 07950
Toll-free B0OO-631-8112
(In NJ 201-540-0445) J

43

4K ROM
IK RAM

Judging from the many books on word
search (or “find a word”) puzzles available
at any newsstand, these puzzles must be
popular. To save some money, you can
create your own puzzles rather than buy
the puzzle books. But, if you create your
own manually, you know where the words
are 5o it is not much fun. There is another
way. By using this program in the ZX80
or MicroAce, you can create your own
15 by 11-character word puzzles and have
fun solving them or give them to your
friends to solve.

The program requires 2K of memory
to run and just barely fits into that. So
changes to the program that you may
want to make must not increase its size if
you have only 2K.

When the program is run, the following
is displayed.

CREATE A WORD SEARCH
PUZZLE

ENTER WORDS OF UP TO 11
LETTERS EACH

FIRST WORD? NULL ENTRY TO
END.

The first word is keyed in, followed by
NEWLINE. The program responds in one
of four ways 10 each word entered.

Bill McCray. 577 Bellcastle Road. Lexington, KY
40505,

keoshyeluncgjhpwsmxreoap
ahtyvpkwqhdxmzpruekfnhw

(Create a Word Search Puzzle)

aewpnfywvisyeondqixhurpm
idgaewmbpjdzaugofnepkuyt

Bill McCray

1. “word entered”
NEXT WORD? NULL ENTRY TO
END,
The program has successfully embedded
the word and wants another.
2. “word entered”
WORD DOES NOT FIT
NEXT WORD? NULL ENTRY TO
END.

The program was unable to embed the
word. Although the puzzle is getting full,
another word may fit.
J. “word entered”
TOO MANY LETTERS
REENTER

The word entered is longer than 11 letters.
Try another.
4. “word entered”
INVALID CHARACTER
REENTER
Entering E and NEWLINE ends the pro-
gram and returns to the Basic mode.
Entering § and NEWLINE prints the
solution to the puzzle. P and NEWLINE
or any other entry prints the puzzle
As an example, the following Basic words
were entered into the program.

The word entered contains a character
other than a letter. Reenter it correctly.

After all words have been entered or
the program appears to be unable to embed
any more words, a null entry (NEWLINE
only) ends the entry and puzzle-construe-
tion phase.

The output phase asks the user to select
among three options by printing

(S)JOLUTION, (PYUZZLE, OR (E)ND?

CLEAR NEW

CLS NEXT
CONTINUE POKE
DIM PRINT
FOR RANDOMISE
GOSUB REMARK
GOTO RETURN
IFTHEN RUN
INPUT SAVE
LET STOP
LIST

LOAD

The puzzle listing generated by P and
NEWLINE is seen in Figure 1.

The listing contains the embedded letters
and randomly-generated letters in all
unused positions.

L I -] H x E N Q E E Z H x ¥ Q L I 5 T X E N E
D A B K B E K u N G G R I W c E u N W
T ¥ P O T 8§ N P U P © K E D J T F O T 58 N P U P O K E
B O B s A] g o:R H T N B L B . ZEeh A 1 G R N B
ho] C P v T M R o ¥ 1 Q E u D H D . P v T M R (s} F 1 E u
Z A E N M O R A T RE N H =S o X A.E N M 0O R T R N H 8
G N O 1 I oD K E E O 8 T & C B 0o 1 1 D E E O S8 T © g
E G D L B N I T M L L F G D G o D L N L 7 M L F G
I H 1 G L A O F A C 1 O K N A U cC A C 1
U 1 L g € R ¥ BE H R R K U L © R . R
Q T M 5 | Y [35 G F P K F Q w N K
{S)JOLUTION, [P)UZZLE, OR [E)ND?
Figure 1. Figure 2.

44

SYNC Magazine

At this point the user can copy the
puzzle onto paper. The output options
are listed at the bottom for selection. The
selected letter does not show on the display
when it is entered, but it is still input.

If SOLUTION is selected, the same
listing is generated, but periods are sub-
stituted for the randomly-generated letters
in the unused positions. The solution listing
for the puzzle in Figure I is shown in
Figure 2.

The solution and puzzle may be listed
as many times as desired until E is selected.
Each time P is selected, the randomly-
generated letters change. The embedded
letters, of course, are unchanged.

Hints for Users

Long words should be entered first. Since
more of the spaces are unoccupied, the
chances of successful embedding are
improved.

If the program is able to embed all but
a small number of the words desired,
running the program again may allow the
entire list to be embedded, since random-
ness is used in the embedding process.

Algorithm

A word may be embedded in any of
eight orientations, corresponding to the
eight points of the compass. One of these
directions is chosen randomly. All possible
locations for the word in that orientation
are checked. The location giving the
greatest degree of overlap with the pre-
viously positioned words is chosen. If no
overlap is possible, the word may be
embedded without overlap, if there is space
open yet. If the word cannot be placed in
the selected orientation, the other seven
orientations are investigated in turn in
the same manner until embedding is
accomplished or is found to be impos-
sible.

Variables

Aarray Contents of the puzzle locations.

B array Letters of the word to be embedded.

AS General character variable, many uses.

A Overlap level attained.

B Overlap counter for position being investigated.

C Length - 1 of the word to be embedded.

D-G Horizontal and vertical limits of the possible starting positions
for the orientation being investigated.

[-M General and loop variables.

P Starting location for the word position giving the overlap
level given in A.

Q Letter displacement for the word position starting in P,

U-v Horizontal and vertical displacements for the orientation
being investigated.

W Sum of U and V; the total displacement.

X-Y

Horizontal and vertical position of the starting position
being investigated.

Program Notes

Initialize the program and give the first output.

Calculate the X and Y limits for the orientation.
Select a location within the limits randomly.

Increment overlap counter if a matching letter is found.
If greater overlapping found, save the level and position.

10-130
140-180 Get a word and output it.
200-300 Test the word for validity.
310-350 Select an orientation randomly.
J60-670 Test a possible embedding position.
360 Initializes the overlap level attained.
380 Changes the orientation.
390-420
430-440
460-500 Move to the next location.
520-590 See if the word fits here.
580
600-640
655 Embedding possible in this orientation?
T00-760 Embed word.
TRO-T90 Go to get another word.
800-940 Output results.
950-990

Subroutine to change orientation.

Movember/December 1981

Program Listing

10
20
40
S0
&0
T0
=l

FO
LOO

110
120
130

140

180
160
170
180

410
420
A0
340
A5
A&
&70
480
490
SO0
=)
315
S20
S30
sS40
=TT]
570
580
S50
[-1e2e]
&10
&0
&a0
S&HO

Y]
SEQ
&0
T
TS0
755
70
Ta0
750
B00

Blo
B15
|20
=]
aao0
850
B&0
B&2
a4
B70

880
a%0
FO0
10
20
30
a0
S0
Fail
JF70

FE
FH0

DIM ACl&ad)

DIN Bi10)
RANDOMISE

FOR I=0 TO 1&4
LET A(I})=(

NEXT I

FRINT * CREATE A WORD SEARCH
FUZILE

FRINT

FRINT “"ENTER WORDS OF uF 10
11 LETTERS"

FRINT “"EACH"

FRINT

LET As="FIRST"

PRIMT A%;" WORD? NULL
ENTRY TO END. "

INFUT As

CLS

IF AS="" THEM GO TO B0
FRINT as

FOR C=0 TO 10

LET BI(C)=CODE (&%)

IF BI(C)<38 THEN GO TO 290
LET At=TLS (4%

IF As="" THEM GO TO 310

NEXT C

FRINT “TOD MaMY LETTERS®
FRINT “REENTER"

GO TO 150

PRINT “INVALID CHARACTER®
60 TO Z70

LET uU=1

LET y=o

FOR I=1 TO RHD(B)

G0 SUB 50

MEXT 1

LET #A=-1

FOR I=1 TO 8

B0 SUB 930

dLET D==Cril o)

LET E=1S+C® (U0}

LET F==Cxavg)

LET G=11+Cs(Vi0)

LET X=RMD{E-D)+D=1
LET Y=RND(G-F)+F~-1
FOR J=l TO (E-D) kiG=F)
LET x=x+1

IF x<E THEN GO
LET x=D

LET ¥=¥+1

IF ¥=6 THEM LET v=F

LET BE=d0

LET HM=X+15ay

FOR k=0 TO C

LET L=alr)

LET Me=p+W

IF L=0 THEN GO TO 550

IF NOT LeBi(k) THEN GO 1O &&0
LET B=B+1

MEXT K

IF NOT B:A THEN GO TO &&0
LET a=R

LET F=X+l1Z5kY

LET Q=W

NEXT J

IF A>=1 THEN GO TO 740

NEXT 1

FPRINT “WORD DOES NOT FIT®
GO To 780

FOR K=d TO C

LET AtFImBik)

LET F=F+Q

NEXT K

LET Ass"NEXT="

GO TO 140

FRINT *(S5)0LUTION,
OR (EiNDT

INFPUT A%

IF As="E" THEN LIS1
CLS

LET [=0

FOR k=0 TO 10

FOR J=0 1O 14

LET L=A(l)

IF L THEN GO TO &80
LET L=27

1IF NOT As="5"
L=RND (26 +37
FRINT CHR®LIg" "3

LET I=1=+1

NEXT J

PRINT

BPRINT

MNEXT K

GO TO 800

LET WeiUr-10s(vr—1)=(Uc1)ivil)
LET Vwi1Sa{{Uciis(Vi=1)=(Ur=1)
BIVILD)

LET U=l

LET W=+

RETURN

" Si0

(FIUZILE.

THEM LET

45

4K ROM
1K RAM

Two Ch

Taxman has been my favorite mathe-
matical computer game since 1 first dis-
covered it in the Apple Pi program library
more than two years ago. (Apple Pi is the
Denver area Apple users group.) Taxman
is a challenging game to play. With the
advent of the ZX80 came a further chal-
lenge: could Taxman be adapted from a
“large™ computer (Apple I} to a really
small computer, the Sinclair ZX807

Was the second challenge met? The
answer is a qualified “Yes". Here is a
complete program for Taxman, reduced
in size from 50 maximum to 30 maximum.
Some of the nicities of user interaction
are gone, but I believe that ZX80 Taxman
still is an interesting, challenging game.

Before looking at the program and its
lessons in compacting large programs for
the ZX80, let's play the game.

The Game

The computer will lay out the integers
from 1 to a maximum which you have
entered. You pick one of these numbers;
Taxman gets all the remaining factors of
that number. If there are no remaining
factors of the number chosen, you cannot
have it. When there are no remaining
factors of any unchosen number, the game
is over; and Taxman gets the remaining
numbers. If the sum of your chosen
numbers is greater than the sum of Taxman,
you win,

Let's play a simple game. First enter or
LOAD the program, then RUN.

TAXMAN
YOU GET NUMBER: l GET FACTORS

Austin R, Brown, Ir., 407 Peery Parkway, Golden,
CO RM01.

46

Austin R. Brown, Jr.

This is the abbreviated introductory
message,

HOW MANY (30 MAX)?

Here you choose the size of the game;
let’s choose 12

1234567891011 12

PICK A NUMBER

Let’s pick 12.

YOU GET 12

IGET 12346

SCORE- YOU:12 ME:16

57891011

PICK A NUMBER

Taxman took all the factors of 12, which
added up to 16. Now from the remaining
numbers let’s pick 11.

NO FACTOR FOR ME,
TRY AGAIN,
57891011

PICK A NUMBER

The only factor of 11 is 1. It is already
gone. Since Taxman must always get some-
thing, we cannot choose 11. Let’s try 10.

YOU GET 10

I GET 5

SCORE- YOU:22 ME:21
78911

DONE

IGET 78911

FINAL SCORE- YOU:22 ME:56

Since no factors remained for any remain-
ing numbers, the game is over and the
Taxman gets the balance, and Taxman
wins.

alleng; of Taxman

Can Taxman be beaten? Play again with
12. This time start by picking 11, then 4,
etc. It is not easy. but you can beat the
Taxman.

The Program

Among the factors involved in writing
an interactive program are personalization,
on-line documentation, and interaction.
What does Taxman teach us about these
factors in the severely restricted environ-
ment of the 1K Sinclair ZX807?

Personalization is that aspect of an
interactive program which starts with
WHAT IS YOUR NAME?, then goes on
to PICK A NUMBER, BOB, encourages
with TERRIFIC, BOB!, chastises with
COME NOW, BOB, etc. In many programs
it is a frill rather than a part of the essence
of the program. Out it goes! With less
than 1024 bytes at our disposal, we cannot
afford the space. But wait until 16K
memory arrives; personalization will be
back.

On-line documentation consists of the
information the program gives us about
itself while it is running. Ideally, this should
include everything we need to know to
run the program; no external manual or
other printed instructions should be needed.
The realities of a 1K byte machine take
us a long way from the ideal. Sometimes,
as in Acey Ducey (SYNC 1:16), no instrue-
tions are given. If possible, a program
should at least include its name and one
line of description or instruction (lines
20-20 of the program).

However, adding text to a ZX80 program
can cause additional complications. Most
videc-oriented personal computers reserve
a fixed block of memory for display: the
ZXB0 does not (ZX80 Operating Manual,

SYNC Magazine

p. 108). Therefore, if text is added which
increases the maximum size of the display
of a ZX80 program. the program may
bomb with error code 4, even though the
program itself will fit in memory. For
example. run Taxman with 30 numbers,
picking successively 24, 30, 14, 27, 26, 22.
Now add line 605 PRINT and rerun with
the same pattern. There is no longer room
for the last few characters in the final
display. hence the error ending.

Most interesting or useful programs for
personal computers are interactive; they
require some response from the user,
whether data or decisions. The user must
know what is expected when it is time for
input; there is nothing as frustrating as an
isolated question mark, much less only
the cursor leaving you to wonder, “What
do 1 do now?” Give as much information
in the questions as possible. Lines 110
and 200 are much clearer than they would
be if they said, “SIZE?" and “PICK."

Ideally, any interactive program should
maintain complete control over input, so
that it is impossible to make an incorrect
response. There is not much room for
input control in 1K machine. The ZX80
helps us with the LS cursor when a number
is expected. We can also check for range,
as in lines 130 and 230, But what happens
if zero or a negative number had been
given for the game size? Would it have
been better to cut the maximum size of
the game in order to have more complete
error checking”

Every program should have good logic
and be written in an understandable way.
One of the virtues of a tiny computer is
that it forces the programmer to learn to

. write efficient programs if the program is

to do anything significant. Efficient logic
is not always clear logic. REMarks are
important for clarity. However, REMarks
take up space. One common solution is
to have two versions of a program, one
with REMarks for the human and one
without for the computer. Note in the
listing that all REMarks have line numbers
ending in 5, These can be eliminated from
the running version of the program if you
have a IK RAM or if you do not want to
enter them,

Novernber/December 1981

Lines 240-350 give another lesson from
Taxman about ZX80 programming. The
ZX80 displays output on the TV screen
only when all computation is completed.
This is usually considered a disadvantage:
it can be turned to an advantage when a
given display may or may not be wanted.
The display of the division of the spoils is
always started. If there are no factors for
Taxman. line 350 sends control to line
800, where the display is cleared before it
is ever seen.

5 REM taxman for ZX80

10 DIM F(30)

15 REM introduction

PRINT "TAXMANT"

PRINT "YOU GET MUMBER; I

T FACTORS"

REM initiate

LET B=0

90 LET T=0

PRINT

PRINT "HOW MANY(30 MAX)?"
INPUT N

IF N>30 THEN GO TO
CLS

FOR I=1 TO N

LET F(I)=1

PRINT I;"ad"m;

NEXT I

PRINT

REM procesas choice
PRINT "PICK A NUMBER"™

INPUT K

CcLS

IF F(K)=0 OR K>N OR K<2 THE
H GO TO 850

PRINT "YOU GETE";K

REM look for factors

PRINT "I GET#";

LET C=0

FOR I=1 TO K/2

IF F(I}=0 OR (K/I)®I<K THEN
GO TO 330

LET C=1

LET F(I)=0

LET T=T+1

PRINT I;:"j";

HEXT I

PRINT

IF C=0 THEN GO ToO 800

LET B=zEBE+K

GE

110

180
190
195
200
210
220
230

240
250
255
260
270
280

290

310
3j2o0
330
juo
350
360

Program Listing

None of the REMarks are to be entered
into the ZX80; they are included to show
you the logic of the program.

IT you use the Syntactic Sum <TM >
method to verify that you have entered
the program correctly, you must SAVE
the program, then NEW, then LOAD
before running. Taxman is too large to
run with the Syntactic Sum program in
memory. f

370
4hg

LET F({K)=0

PRINT

PRINT "SCORE- YOU:";B;"EME
S

PRINT

FOR I=1 TO W

IF F(I)=0 THEN GO TO 500
PRINT I:"&";:

NEXT I

PRINT

REM check for no more factors
FOR I=4 TO N
IF F(I)=0 THEN
FOR K=2 TO I/2
IF NOT F(K)=0 AND
THEN GO TO 200
NEXT K

HEXT 1

REM wrapup

PRINT "DOME®
FRINT "I GET#";
FOR I=U4 TO N

IF F(I)=0 THEN GO TO 670
LET T=T+I

FRINT L;"#";

NEXT I

PRINT

PRINT

GOTO 999

REM ne factor found

CLS

FRINT "NO FACTOR FOR ME,"
PRINT "TRY AGAIN."

GO TO &7O

REM illegal choice

PRINT "WRONG,"

GOTO 820

PRINT "FIMAL SCORE-&8YOU:™:
B;PdME:";T

Syntactiec Sum=1418

450
470
480
4go
500
510
515
520
530
S0
550

GO TO 590
(I/K)*K=1I

580
590
595
600
610
630
610
650
660
670
680
690
750
795
800
B10
820
830
Bis
850
860
999

47

rEsOouunrcEes

Software

48

S L S L A SO R

Name change:
The ZX-GROUP to:
Heuristics
25 Shute Path
Newton, MA 02159

Personal Banking System keeps track
of your personal finance and check
your bank statements also. £9.95 for
cassette and users manual; manual only
£2.00. Specify ZX80 or ZX81.

J. P. Gibbons AIB

14, Avalon Road,

Orpington, Kent, BR6 9AX

United Kingdom

Hints and Tips for the ZX8!, £4.95
(plus 75p overseas); ZX&! Programmers
Toolkit for the 16K machine to do the
donkey work when writing your own
software, £8.50; Space Intruders for
16K, £6.50,

Hewson Consultants

T Grahame Close,

Blewbury, Oxon OX11 9QE

United Kingdom

Print N'Plotter, a tear-off pad of 100
sheets, 11 3/4 x 8 1/4, general planner
for ZX Graphics with 2 grids (704
character positions on 1; 2816 pixel
coordinates on 2); £3.50 incl. VAT,
post, & packing; large orders dis-
counted.

Dennis Hook

Butler, Currie & Hook,

19 Borough High Street,

London SEI1 9SE

United Kingdom

ZX81 Chess, mec, 6 levels of play,
graphic display, 16K, £15.
A Lawrie (Software)
68 Bingley Road
Sunbury-on-Thames
Middlesex TW16 7TRB
United Kingdom

ZX80 Cosmic Dog Fight, fast action
space game for 4K/1K and 16K (8K
available Dec, 1), $1.50 pp.

MATTEX

P.O. Box 4644

Shreveport, LA 71104-0644

Software Wanted: How and Where to
Sell Your Program, a new guide for
those who want to sell programs they
have written, intends to bring software
authors and marketers together, $25,
sold on money-back guarantee basis.

Battery Lane Publications
P.O. Box 30214
J01/770-2726

Air Traffic Control, Invaders, Phone
Book, Date 81 for ZX81 with 16K RAM.
Pack 16/81/1 £4.95.

Control Technology

39 Gloucester Road

Gee Cross, Hyde,

Cheshire SK14 51G

Unided Kingdom

061-368-7558

ZXB1 Software. Send SAE for color
catalog.
CDS Micro Systems
10 Westfield Close, Tickhill
Concaster DN11 9LA
United Kingdom

Sixtyfive ZX8! Programs, 65 1K
programs for £4.95. Beginners Basic
Course, sell teach, £10.95,

Sussex Software

Wallsend House

Pevensey Bay

Sussex

United Kingdom

Hardware

Self-Reset Power Line Interrupter,
disconnects AC power from controlled
apparatus, 4 minute time delay, auto-
matic self-reset, helps avoid wide voltage
fluctuations, intended for installations
unattended for long periods. $185.95.

Electronic Specialists, Inc.

171 S. Main St.

Natick, MA 01760

617/655-1532

RAM Packs: 16K, £42.95; 2K, £15.95:
4K, £22.95; 8K, £34.95; Keyboard (13
solder connections to PCB), £27.95.
Add £1.00 pp. Specify ZX80 or ZX81.

dK'tronics

23 Sussex Road

Gorleston on Sea

Great Yarmouth

Norfolk

United Kingdom

(0493) 602453

24 Line 1/O port, controlled using Basic,
with suitable interface circuits will
control LEDs, motors, relays, lights,
sound generators, etc., kit for £14.50,
built for £15.95. Add 40p for orders
under £10.00; 80p, over £10.00.

Redditch Electronics

21 Ferney Hill Avenue

Redditch

Worcestershire B97 4RU

United Kingdom

(0527) 61240

Full animated graphics for the ZX80
(no screen flicker); kit form, £12.95
plus VAT: for 8K ROM only.

Comp Shop, Ltd.

14 Station Road

New Barnet

Hertfordshire, EN5 10W

United Kingdom

FD 81 Keyboard, kit form, £18.95 plus
80p pp: built £24.95

Fuller Designs, Ltd.

Sandfield Park East

Liverpool L12 9HP

United Kingdom "

SYNC Magazine

craative
compaking

Plotter display of Pl to 625 Places in
dark brown on a tan shirt.

Creative's own outrageous Bionic Toad
in dark blue on a light blue shirt for
kids and adults.

. Creative Computing-- Albert Einstein in
black on a red denim-look shirt with red
neckband and cuffs.

I'd rather
Jbe playing

I'd rather be playing spacewar-- black
with white spaceships and lettering.

Computer Bum-- black design by car-

toonist Monte Wolverton on gray
denim-look shirt with black neckband
and cuffs.

P e

Give your
tie a rest!

All T-shirts are available in adult sizes
S.M.L XL. Bionic Toad, Program Bug and
Spacewar also available in children's sizes
5(6-8), M{10-12) and L{14-16). Made in USA,
$6.00 each plus 75¢ shipping.

Specify design and size and send payment
to Creative Computing, 39 E. Hanover Ave.,
Marris Plains, NJ 07950, Orders for two cr
more shirts may be charged to Visa, Master-
Card or American Express. Save time and
call toll-free 800-631-8112 (in NJ 201-540-
0445)

Beware the
Program BUG!

S A p—

The Program Bug that terrorized Cyber-
nia in Katie and the Computer is back
on this beige t-shirt with purple design.
You can share the little monster with
your favorite kid.

Crash Cursor and Sync from the comic strip
in SYNC magazine emblazoned in white on
this black shirt.

the block with this little
black Robot Rabbit (on a bright orange

Roll down

t-shirt) on your back and you can
intimidate every carrot, radish or cuke
in your way.

(" Plain Talk About Business Computers

Can a Small Computer
Really Save You Time?

Time is Money

Theophrastus said time was the most
valuable thing a man could spend. Fifteen
centuries later Haliburton agreed saying,
“we reckon hours and minutes to be dollars
and cents.” Today, time is more valuable
than ever—and more fleeting.

About the only way to gain time is to use
it more efficiently and effectively. That's
where we come in.

Small Business Computers—by the way,
the “small" refers to computers, not to busi-
ness—will dramatically increase your effec-
tiveness and help save you time and money.
How so?

You get flagrantly honest evaluations and
reviews of computers and software. We
don't just tell you what a program can do:
we tell you what it doesn't do, what it does
poorly, and what it should do for the price.
If advertisers don't like that, we don't want
their business, and you're better off without
them. Fortunately, most companies appre-
ciate our honesty. In fact, one of our
reviewers has gained a reputation because
of the many software houses that have
incorporated his suggestions into their
products. We re proud of that.

Plain Talk

Small Business Computers explains the
complexity of today’s computerized business
world without the technical jargon and
doubletalk that may have held you back
before. In its easily comprehensible "how-
to” style, Small Business Computers answers
your questions while providing the infor-
mation you need to make some tough
decisions. As you select, purchase, and
install your computer system, Small Business
Computers will guide you through each
step calmly and comfortably—helping you
to evaluate your computer needs and avoid
unnecessary pitfalls, As you use your
computer, be it mini or micro, Small Business
Computers will be there to help you do so
efficiently and with confidence while inform-
ing you of the latest developments and
future possibilities of computers in busi-
ness.

For Example

You have just purchased a mailing list
program. Everything is fine until the file
has to be sorted by zip code. If the program
has that capability, all is well. If not, you
have a big problem. If you had just invested
a few hours reading Small Business Com-
puters, you would have known what func-
tions to lock for before buying the program;
you would have known how to plan for
future needs, That's just one example.
Expand this concept into other areas, other
programs and systems, and you can see
what you get for your investment.

e B35 0 L L b

-

Added Expertisa

As the newest member of the Creative
Computing family of fine computer publi-
cations, Small Business Computers will be
expanding to offer subscribers more valuable
information than ever before. Creative
Computing editors and contributors will be
unleashing their business expertise in Small
Business Computers through articles, eval-
uations and applications of particular interest
to the business person. Creative Computing
has a reputation of editorial excellence and
integrity built on unbiased, in-depth product
evaluations; articles by top thinkers in the
field; and pragmatic. innovative applica-
tions

One management consulting firm, for
example, used the Shell-Metzner sort
described in Creative, and saved $3000 a
month, and we still receive letters thanking
us for the hardhitting. candid, evaluation
of word processing printers we published
over a year ago, and which, incidentally,
cost us several advertisers.

All this knowledge and experience will
now be available to business people in
Small Business Computers.

So, don't let anyone give you that ald
story about how complicated and difficult
computers are. We don't buy that. Qur
magazine —our whole philosophy—revolves
around the sharing of honest information.
If you don't know where to start, we'll put
you on the right track. If you're already on
the road, we'll show you the best route

Photo courtesy of Alanthus Dot Commurications Corp.

For Any Size Business

Whatever your business—manufacturing
or banking, retail or research—Small Busi-
ness Computers will increase your efficiency
and help save you time and money.

Subscribe today; Small Business Com-
puters is the best consultant your business
will ever have.

Order Today

To order your subscription to Small Business
Computers send $12.00 for 1 year (6 issues)
If you prefer, call our toll free number 800-
631-8112 (in N.J. 201-540-0445) to put
your subscription on your Master Card, Visa,
or American Express card. Canadian and
other foreign surface subscriptions are
$18.00 per year and must be pre-paid. We
guarantee that you will be completely
satistied or we will refund the remaining
portion of your subscription.

Send orders to:

Small

Business Gomputers

Magazine

39 E. Hanover Ave.
Morris Plains, NJ 07950
B800-631-8112

[In NJ 201-540-0445)

