The COMPLETE

Communications-
.\ how to get started

]
. 'l N
b .'-:.. K

AW -0 SeieiHla

Pl A A B el

| R

PECTRUM 48 In’rercc’rive‘bubbltz'spezch odds to the
drama of this true life detective movie

imagine Software is available from: 220 W 1IsMIH "SI WOOLWORTH . LASKYS Rumbelows Greens Spectrum Shops and all good dealers.

ln Part Five...

-I 4 6 Beginners
READ all about it. Everything you wanted to know about using DATA and handling arrays.

\ ’

i B

15 Communications

A gentle introduction to the exciting world of modems and electronic mail services.

16 How Basic Works

The first part of a detailed look at the inner workings of your Spectrum’s Basic.

1 62 Lightpens and Graphics Tablets W

What's the best way to draw on screen? This survey should help you to make up your mind.

9 »,

g 1

16 Machine Code Graphics

The series continues with a look at the attribute file and how it stores information.

L. 7

N

A structured approach to programming makes them much easier to write. Here’s how!

r 1 6 6 Program Style

>

170 Z80 Machine Code

Our fascinating exploration of assembler continues with a look at CALLSs, loops and jumps.

17 3 Logically speaking

If you thought EOR was a donkey read on. We reveal all about your micro’s logical operators.

176 The Newcomer

Our assessment of the 128k Spectrum concludes with a look at the extra features available.
i

17 Plotters

An insight into what they can do using one particular product from Penman Products.

-I 8 Ready Reference

Have your micro’s cassette commands at your fingertips with this handy reference chart.

)

is published by v Database Publicaiions Lid. No marerial Neivs trade disiribiation by
Database Publications Lid, £] Europress Sales & Distribution Lid,
Furopa House, 68 Chester Road, " Unit 1, Burgess Road, Ivyhouse Lane,

Hastings, Enst Sussex THN1S 4NR

Hazel Grove, Stockport SKT SNY. Tel: 0474 430422

A pony s krowy ol B weorich Dest-seling compuie Tel: 061-456 8383

r

The Complete Spectrum | 145

READ ali

about DAITA...

Fifth in the series that aims to
explain the elements of Basic for
absolute beginners

THERE’s a lot to do this time, so let’s get straight to
work.

Have a look at Program I which assigns values to
three numeric variables and then displays them.

10 REM Program I

20 LET first=1

30 LET second=2

40 LET third=3

50 PRINT first, second, third

Program |

Now compare that rather long-winded way of doing
things with Program IL You'll find READ and DATA
above the A and D keys respectively.

10 REM Program [I

20 READ first,second,third
30 PRINT first,second,third
40 DATA 1,23

Program II

This does exactly the same thing, giving values to
first, second, and third but it does it using two new
keywords, READ and DATA. Values have been given
to variables without a LET or INPUT in sight. How is
this done?

In many ways the READ command can be likened
to INPUT. If you come across a line like:

INPUT first,second,third

you know the Spectrum will look to the keyboard for
the values to be stored in first, second and third.
When the Spectrum comes across the line:

20 READ first,second,third

it knows it is to get values for the variables following
READ. This time, however, it doesn’t go to the
keyboard but to the program itself. The values for the
variables are tucked away in a program line.

There’s nothing all that odd about this. After all,
when Program I used LET, the values were tucked
away in three program lines. READ does the same
thing, but saves on the LETs.

The values for the variables are held in the data line,
line 40. Here the keyword DATA tells the Spectrum

146 / The Complete Spectrum

that what follows is data that at some point in the
program is to be read into variables by READ. The
DATA itself doesn’t do anything, it's just there to tell
the Spectrum where to look for values when it comes
across a READ statement.

As you'll see from line 40, the data items (1, 2 and 3)
are separated by commas. The READ takes the data
ore item at a time in the order in which they follow the
first DATA. So in this case the 1 is taken, then the 2
then the 3. The Spectrum remembers where it is by
means of a data pointer — a sort of electronic address
book. As a Basic programmer you don’t see this
pointer, but it’s there keeping track of all the READs
and DATAs. At the beginning of a program it points at
the first item after the first occurrence of the keyword
DATA in a program. When a READ grabs this value,
the pointer is moved so it points to the next item in the
line and so on until there’s no more data,

Because this elusive pointer is keeping tabs on the
data, you can split the item in the data list over several
lines. Try modifying Program II with:

40 DATA 1
50 DATA 2,3

and:

40 DATA 1
50 DATA 2
60 DATA 3

and you'll see that it makes no difference, the Spectrum
is up to it. As you use READ and DATA in your own
programs, you'll find that it pays to use short data lines.
This helps when it comes to spotting any errors you
may have made either programming or typing.

READ about strings

As you might guess, READ works with strings as well
as with numerics. Program III shows how it's done.

10 REM Program 111

20 READ a$,b$.cS

30 PRINT a$.,bS.c$

40 DATA “first”,*second”,“third"”

Program Il

The actual mechanics of the program are similar to
Program II, only now we're reading characters into
string variables rather than numbers into numeric
variables. Notice that the strings in the data line have to
be surrounded by inverted commas. Try:

40 DATA first,second,third

and see what happens.

From what was said about the pointer earlier, it
might have occurred to you that the data line doesn't
have to come at the end of a program. The pointer will
track it down wherever it is. This is true as you'll see if

yoI

stri
pr
Al
ne:

dai
fra
alt
amn

RESULTS
1st No B
Time 10.2
Age 22
2nd No 2

Time 104
Age 20
3rd No 1
Time 11.5
Age 24

you replace line 40 of Program III with:
15 DATA *“first”,“second”,“third™”

The program works just as well. However there is a
strong case for putting your data items at the end of
programs where you can find them easily.
Alternatively, in longer programs, you can keep them
near to the program lines that use them. Either way. it's
best to have some logic behind where you store your
data in a program. The Spectrum’s pointer can keep
track of it but you might not be able to if you have to
alter or correct the listing. A labelling REM doesn't go
amiss, either.

Mixed data and expressions

If you look at the data lines in Programs II and III,
you'll see that they consist of lists of the same data
types. In Program [I, there are three numbers, in
Program 111 there are three strings. Does the data have
to be like this, of a uniform type? Can you mix strings
and numbers in a data line? The answer is yes, as
Program IV demonstrates.

10 REM Program 1V

20 READ number,a$,figure
30 PRINT number,a$,figure
40 DATA 1,“a string™,2

Program IV

Here the data items consist of a number, 1, a string a
string, and a second number, 2. If you lock at the
READ line, you'll see that the variables these values
are read into consist of a numeric, number, a string, a§,
and another numeric, figure. As the combination of
strings and numbers in the data items corresponds with
the variables awaiting them in the READ line the
program works correctly.

So, you can mix up strings and numbers but beware.
The receiving variables have to be exactly right or else
havoc ensues as you'll see when we come to some of the

10 REM Program V

20 LET a=l1

30 LET b$="“a string”

40 READ number,c8$,expression
50 PRINT number,c$,expression
60 DATA 1,b§,a*5

Program V'

problems that can arise when using READ and
DATA.

It’s not just numbers and strings that cau be used
after a DATA. There can be variables and expressions
(sums) as Program V shows,

Here lines 20 and 30 are used to set up two variables,
a and b§. Notice that these are used in the data line. b3
appears as itself, but @ appears in an expression, a*35.

The READ of line 40 takes all this in its stride, giving
c¥ the string it finds in 5% and working out a*5 and
storing the result in expression.

DATA on READing problems

Having waxed lyrical about the joys of using READ
and DATA we now come to some of the problems that
lie in wait for the unwary. READ and DATA are
extremely simple to use, provided they are used
properly. Sadly it’s also simple to make mistakes using
them. But don’t make a mistake when you enter and
run Program VL.

10 REM Program VI
20 READ a,b,ed
30 PRINT ab,c,d
40 DATA 1,1.5,2,3.5

Program V1

No prizes for understanding what it does, READing
four values into four numeric variables and displaying
them. However, suppose that by error you'd entered
line 40 as:

40 DATA 1,1,5,2,3.5

If you can't see the difference, it’s that the decimal
point in 1.5 has been made a comma giving 1.5. We
have two data items for the price of one. Can you guess
what effect this has on the program? Try to work out
what the output will be before you run it.

The answer is that you now get:

5 2
instead of:

1 1.5

2 35
as before.

This is because after the mistake the first four items
in the data list are 1,1,5,2. The pointer doesn’t know

The Complete Spectrum | 147

that the comma between | and 5 should be a decimal
point. It just takes the first four values and puts themin
the variables after the READ. The result of the typing
error is that the wrong values are stored in the
variables. In this case only the display is changed but
imagine what would happen if these numbers were
being used later on in the program for a series of
calculations! The errors would spread throughout the
whole listing. And all because of a comma instead of a
full stop.

Meanwhile, what about the data pointer? At the
moment it's pointing at 3.5. As it is, Program VI
doesn’t use this value. However, suppose that later on
in the listing there was another READ with its own set
of data such as:

200 DATA 1,2,3,4

Now instead of the second READ taking its first
item of data from line 200, as intended, it will look at
the data pointer and take the 3.5 from line 40. The
pointer will move to the 1 of line 200. In other words
the data will be out of step by one item.

The trouble with all this is that the program still
works, only the results are wrong. There are two
conclusions to be drawn. Firstly make sure that
everything after a DATA is typed correctly. Second,
check the results of your programs with known
answers. If the program works but gives the wrong
results, have a look at the data lines.

Having looked at the problems when an inadvertant
comma causes an additional item in a data list, let’s
look at the opposite. Suppose that the READ has more
variables after it than there are items in the data list.
Alter Program VI with:

40 DATA 1,1.5,2

Now there are only three numbers but there are still
four variables looking for values. The Spectrum has no
problems in giving a, b, and c, the values 1, 1.5 and 2
respectively, However when it goes to the data line for a
value for d the cupboard is bare. The Spectrum realises
what's wrong and tells you, giving the error message:

E Out of DATA, 20:1

This is an improvement on the previous case where
the program worked, only badly. Now you’re told that
there’s not enough data. The trouble is that it points out
line 20 as the culprit, not line 40. This is always the
case, the message pointing to the READ rather than
the data line. It can cause confusion until you're wise to
it. After all, line 20 is correct, it’s line 40 that’s wrong.
The lesson is, if you have a message pointing to a
READ line and can'’t find anything wrong, have a good
look at the data lines that the READ is trying to work
on.

There’s yet another thing that can go wrong with
READ and DATA if they're used carelessly. We've
shown that the data lines can hold both strings and
numbers. However, the type of the data must
correspond to the type of the variables after the READ.
Try altering our long-suffering Program VI with:

40 DATA “one™ 1.5,%two™,3.5
and when you run it you'll be rewarded with:
C Nonsense in BASIC, 20:1

for your pains.

The problem is caused when the micro tries to store
the string one in the numeric variable a. It can’t do it,
hence the message. It's the same if you try to take a
number from a data list and store it in a string variable.

148/ The Complete Spectrum

The Spectrum doesn’t like it and the program halts.
You can remedy it with:

20 PRINT a$,b,c$,d
30 DATA *“one”,1.5,%two"™,3.5

which produces:

one 1.5
two 35

To avoid this, remember — strings are strings and
numbers are numbers and where READ is involved the
twain never meet.

And as the final entry in this catalogue of woe have a
look at Program VII.

10 REM Program VII

20 READ a$,b$.c$

30 PRINT a$,b$.c$

40 DATA “one”,“two”,“three”

Pragram VII

Be careful with the punctuation of line 40. It’s all too
easy to mix up commas and quotes and end up with a
line like:

40 DATA *“one,™two”,“three”

If this happens the program crashes with the
message:

E Out of DATA, 20:1

It’s not surprising as there are now only two strings
in the data line, not three as the READ expects. You'll
see what’s happened if you tell the micro to:

PRINT a$

when:
one,*“two

is displayed.
Again, be careful when you type in data lines. They
have to be exact.

READ about DATA in action

At this stage in your programming career READ
and DATA may not seem all that useful. Most of the
earlier programs could be done just as well with LET or
INPUT. However as you get more experienced and
start using your knowledge of Basic to write your own
programs you'll see how useful they are. Have a look at
Program VIII.

10 REM Program VIII

20 LET total=0

30 FOR n=1TO 5

40 READ number

50 LET total=total+number
60 NEXT n

70 PRINT “The total is™;total
80 DATA 1,7,65,n4

Program VIIT

This uses the variable total to keep a running total of
the numbers in the data line. Notice that the loop
control variable n is used in the data line. As it’s the
fourth item in the line, it has a value of 4 when it’s read
into number. The result is the Spectrum tells you that:

The total is B1

bu
sal
ov

for

oE

fas

L_
Pri

vi

Position | Name Time Age
Y
1 PETE 20 35
2 MIKE 21 35
3 ALAN 25 55
4 KEVIN 27 20
8 ROLAND 30 27
6 ROBIN 33 24

Figure I: Runners, times and age

Try swapping n with one of the other items in the list
and see if you can understand what happens.

So far our invisible data pointer has been content to
work its way along a data list item by item. However it
often happens that we want to use the same item of data
over and over again. We could of course have lines like:

100 DATA 1,2,34,5
110 DATA 1,2,34,5
120 DATA 1,2,3.4,5

but it seems a waste of typing as they’re practically the
same. It would be nice if we could just use the data line
over and over as needed.

There is a way to do this — the keyword RESTORE
found above the S key. All this does is send the data
pointer back to the first item after the first DATA in the
program. Using this we could just have our one line:

100 DATA 1,2,3,4,5

and use it repeatedly by having a RESTORE send the
pointer back to 1 after the program has read all five
items in the list.

Program IX uses RESTORE in a rather sneaky
fashion to add up the numbers between 1 and whatever
whole number the user desires.

10 REM Program IX

20 PRINT “Sum from 1 to 77
30 INPUT number

40 LET total=0

50 FOR n=1 TO number
60 READ control

70 LET total=total+control
80 RESTORE

90 NEXT n

100 PRINT total

110 DATA n

Program IX

The sneaky part is the use of the loop control
variable n in the data line. This is constantly changing

in value as the loop cycles. Each time round the loop
the RESTORE of line 80 sees to it that the data pointer
is back pointing at n. The result is that each time the
program READs the value of n into control, n has
increased in value by one.

As we’ve seen, RESTORE sets the data pointer back
to the first item after the first DATA in the program.
Sometimes however we want the pointer to point to
another set of data items. This can be achieved by
putting the line number of the required DATA after the
RESTORE. Hence:

RESTORE 1000

will have the data pointer set to the first item after the
DATA of line 1000.

The elements of arrays

Have a look at Figure I which sums up the results of a
race. It gives the first six runners, their names, times
and ages. Now suppose you wanted to use the time
values in a program. You could have a set of numeric
variables such as:

LET PetesTime=20
LET MikesTime=21

and so on. The trouble is that they don't reflect the
information in the table, After all the times are in an
order and this is lost. A better way is:

LET firstiTime=20
LET secondTime=21

and so on. Here you know which was the first time,
which was the second and so on. An even better way is
to use an array.

An array is just a set of variables sharing a common
single-letter name or root. They are distinguished from
each other by a number in brackets at the end of the
root known as a subscript. To create an array, we use
the keyword DIM, found on the D key. So to set up the
array n() we use:

DIM n(10)

What this does is to create 10 elements of the array
ranging from n(1) to n(10). At first each element of the
array is 0 as:

PRINT n(l)

shows. Figure Il shows the 10 variables created and
their contents. Notice how the array has an implicit
order and also how we can get at or “access™ any of the
elements by changing the value of the subscript.

We can alter the value of an element using LET just

Subscript a2 |

n()
Value 7 10 | 17

Figure II: The array n{) after DIMn(10)

Element M | 8@ | nG) | n@) | a6 | o6 n | n(10)
Content 0 0 0 0 0 0 0 0
Figure ITT: New contents for n{)

The Complete Spectrum | T49

as normal. So:

LET n(1)=7
LET n(2)=10

stores 7 in the first element of the array n() and 10 in the
second. Now we can add the two together and store the
result in the third element of the array with:

LET n(3)=n(1)+n(2)

Figure I11 shows the results of the addition which
you can check with:

PRINT n(3)

Remember that our DIM only reserved memory space
for 10 elements. If you do something like:

PRINT n(l11)
you'll be rewarded with the message:

3 Subscript wrong, 0:1

Program X shows an array in action, holding the times
of the first six runners from Figure L

10 REM Program X

20 DIM t(6)

30 FOR n=1TO 6

40 READ t(n)

50 NEXT n

60 FOR m=6 TO 1 STEP -1
70 PRINT t(m)

80 NEXT m

90 DATA 20,21,25

100 DATA 27,30,33

Program X

Line 20 “sets up” the array, () setting aside memory
space for six numeric variables, 1(1), #(2), up to 6),
giving each the initial value 0. The program then enters
the FOR ... NEXT loop of lines 30 to 50.

It’s in this loop that the fact that the subscript of an
element can be a variable comes into play. Line 40
READs a value from the data into the array element
t(n). Now n is the control variable of the loop, so0 as the
loop cycles successive values from the data line are
stored in #(1), #(2), . . . up to #(6). Figure IV shows what
each element of the array holds once the first loop has
finished. Notice how the structure of the array reflects

e kil
L.

0

W,

LE S
e !

the order of the times. We know that the first element
holds Pete’s time, the second Mike’s and so on.

Once we've got the data in an array we can
manipulate it as we wish. Program X just prints the
times out in reverse order using another loop. Can you
alter it so that it works out the average time?

Figure I also gives us information about the ages of
the runners. This, too, can be stored in an array as
Program XI shows.

10 REM Program XI

20 DIM a(6)

30 FOR n=1 TO 6

40 READ a(n)

50 NEXT n

60 FOR m=2 TO 6 STEP 2
70 PRINT a(m)

80 NEXT m

90 DATA 35,35,55

100 DATA 20,27,24

Program XTI

The first FOR ... NEXT loop puts the values into
the array elements while the second displays the ages of
the runners in the even positions. Again notice how the
array order reflects the order of the runners. Figure v
shows the values of the elements of a().

If you look closely at Figures IV and V you'll see
that they are very similar. a(7) refers to Pete’s age, i1
to Pete’s time. Similarly a(3) refers to Alan’s age, i(3)
to his time. As you can see, in each array the same
subscript points to information about the same person.
If the subscript is 5 it's talking about Roland, if it's 6 it’s
pointing to Robin. Cases like these where two arrays
are in the same order are called parallel arrays and the
subscript is referred to as a pointer. Figure VI shows
the two arrays in parallel.
® Have a good look at them, we'll be coming back to
them next time as we deal with two dimensional arrays.

Subscript 2| 3) 4

t) = -
Value 20 21 25 27

Figure I'V: Times held in ¢}
4
a0
| Value 35 35 33 20 27 24

Figure V: Ages held in a()

Value

) | 20| 21| 25 | 27 30 | 33
a) | 35| 35 55 20 | 27| 24

5

Figure V1: Parallel arrays

150/ The Complete Spectrum

indi
link
plac
shai

cou

at t
nati

a ti

e L | L S A

e, e L

B im0 | peci Ry i S

Communications

Log-on to the exciting world
of modems, bulletin boards
and electronic mailboxes

TO get into computer communications you need a few
pieces of hardware and software for your computer, a
telephone, and one more essential item — a computer
with something to communicate at the other end of the
line.

British Telecom runs a number of services for micro
users to connect to over the telephone network, but
the most popular and most interesting to home
computer users is Prestel.

Prestel is a huge database which runs simultaneously
on a number of mainframe computers operated by BT,
These large computers can each handle hundreds of
individual callers at once, and they are themselves all
linked together so that new information and messages
placed on one of the Prestel computers is quickly
shared with all the others.

These large computers are spread around the
country and this, combined with special arrangements
at telephone exchanges, means that you can get into the
national Prestel system at local call rates from almost
anywhere in the UK,

Originally used almost exclusively by travel agents —
a tiny if vociferous fraction of the population — Prestel
has blossomed forth as a general leisure interest
pastime.

New ways to have fun

The microcomputing section, which includes Micronet,
has been bringing in a constant stream of new

. subscribers who are looking for new ways to have fun

with their computers. Micronet is just one part of
Prestel, specialising in home computer subjects and
software, and making up approximately 50,000 pages
out of Prestel’s 300,000,

Prestel is page-based, and you can find your way
from page to page either by directly entering a page
number (assuming you know it) or by swimming
through a hierarchy of menus with single key presses.
This last is much easier than it sounds and is the
preferred method used by most newcomers to find their
way around. It works like this. The first page might
say:

Do you want —

1. To go to Micronet?

2. To go to Prestel Main Menu?
3. To look in your Mailbox?

Press 1, and a new menu comes up offering a choice
of sections within Micronet. Usually you only need
three or four menus to get exactly where you want to
go, provided you have a good idea of how to get there.

The problem with menus is that it can take a lot of
looking in the wrong places before you find what you
are after, especially if you haven't been there before, as

you are bound to take a few wrong turnings. Prestel
says it is working on a keyword searching facility that
will allow you to simply enter the subject you are
interested in and get a choice of pages on which this
subject appears.

Besides the microcomputing section, other services
on Prestel offer information on the stock market
(updated daily, hourly, or constantly, depending how
much you pay), theatre guides, home banking, travel
information and booking services (for the travel
agents), and endless leisure pursuits.

Some of the pages are free, some have a small charge
for each page, and some are available only to people
who have paid an extra subscription to belong to a
closed user group (CUG). Very few of the pages are
provided by BT — almost all are rented by them to
information providers (IPs), who can then advertise or
provide information on a pay-by-the-page or
subscription basis. Micronet is one of these information
providers.

Electronic mailbox
)

- r:if;f affr; m;st interesting and useful services
ed by Prestel is the ele i i
_ clronic mailh
which allows you f b
0 send messages to an
: 2 v other
c.’f’ar;s{ef s;jbscrzber Jor delivery the next time they
o in. Ou can even send q message into the
. ernational telex system — Some small
usinessmen are actually buying home com-
puters and Prestel modems as a cheap way to
access to this. S
Electronic mailboxe

§ can only be sent fg
Peaple who are themselves Prestel users and they

;::'H only get them if and when they call in to
;'esrel. but the telex service has been in use
aimost as long as the telegraph, and most large

businesses already have telex in some form

This section of Prestel is where most computer buffs
spend their time, and it is a good place to mix with users
of other computers, like the BBC Micro, without any
possibility of violence breaking out.

There is & conversational message service called
Chatline which allows almost instant communication
between users who are online at the same time. Thisisa
lot like CB radio, with no privacy and a lot of mixing in
by all and sundry, so it is great fun. Special celebrity
nights bring people like Patrick Moore from The Sky at
Night online to field questions from subscribers.

More formal public contact can be made via
Micronet's bulletin board services, which allow you to
advertise equipment to swap or for penpals with similar
interests. Once you have made contact and exchanged
mailbox numbers with the person you want to talk to,
you can send each other private messages on the
electronic mail service.

Micronet’s own news service, with a bias towards
the computing world, is days — sometimes weeks —
ahead of any paper-based news media.

Their news has on occasion been so instant and
outspoken as to evoke startled cries of outrage from

The Complete Spectrum [151

3 Top Ten Charts
Spectrum Micro

P Spectrum Main Fenu

those whose activities are reported. Even more
controversy then results when an offending story is
wiped from the archives, proving that electronic media
are easy to censor!

The Micronet software pages provide downloadable
software for many computers and the Spectrum is well
supported. Prices vary from near the full shop price for
well known names to very little indeed for programs
sent in by amateurs. Send in your own programs for
sale and you might break into software publishing.

Some of this software is actually free and you may
suppose that it is worth roughly what you pay for it.
This is bit more than the free label would lead you to
believe, as you ought to figure in the telephone call
charges and the cost of your Micronet subscription —
but it is still pretty cheap, and the cost is reflected
inevitably in the quality. Still, much of it is worth
having and some is even better than certain stinkers
that have been sold in the shops.

There are a number of other systems that can be
accessed with the same equipment you use Jor
Prestel. These are certain to be a great deal
smaller than Prestel and Micronet but they have
the advantage of being free. Some are run by
amateurs and have only a single telephone line
whereas others are run by local authorities or
educational bodies. A few are actually run on
Spectrums!

For the benefit of those who have equipment,
here is a list of some of the systems you can (ry.

Aberdeen Itec 0224 641585
Basildon Itec 026822177
Brixton Itec 01-7356153
C-View 0702 546373
Cardiff Itec 0222464725
*CBBSSW 039253116
Communitel 01-968 7402
Cymrutel 049249194
Gnome at Home 01-888 8894
Hackney BB 01-985 3322
Metrotel 01-941 4285
Norview 0604 20441
Owltel 01-927 5820
RSGB 0707 52242
Stoke Itec 0782 265078
Swafax 0622 850440
Swafax II 0440 820002
System Aid 01-5710026

* Nor viewdata, but will work

152 / The Complate Spectrum

MORE HEL
GOTO 1-H

BARGAHL
BESEME
SECOHD

ROS

First th mputina CUG
CROYDOM ke 4
ked 5

User aroups

FARES IHDEX
3 PANTHER IHFO
S LIGHT RELIEF
7 FLY ORIVE

¢l

S

,s°*°

This is the package that broke all
records! More than a game — it's a
brilliantly written collection of
ELEVEN great track and field events!

Ever imagined yourself as another Seb
Coe? Then try to run against the world
record holder at 1500 metres. And if that
distance is too much for you then there's
always the 100, 200, 400 and 800 metres
to have a go at.

Not much good at running? Don't worry,
MICRO OLYMPICS has many more
challenges for you. Why not try your skill at
the high jump or the long jump?

And if you can't beat the computer at ._3-"
running or jumping then you can always P

throw things around in frustration! The
trouble is that it's just as hard to be a
champion at the discus, the hammer or the
javelin.

And the pole vault takes the event to
new heights! 5

Yes, it's fast, furious fun, pitting
yourself against the world's best times and
distances on your micro.

You may not be another Steve Ovett or
Alan Wells, but with practice you COULD
become the Micro Olympics Champion!

Play Micro Olympics ™
— and let your fingers

do the running!

s> YOU can go for gold
...With the

Send for it today

i
.

l Please send me co| [

k ne____ copyfcopies of
B Micro Olympics Spactl'llm 43'(
B O 1 enclose cheque made payable to
J Dstabase Publications Lt £5.95

for £ :

. | wish to pay by
| O Access [Visa No. Expiry date
l Signed
I Name
= Address
1 Past to: Micro Olympics offer, Database Publications,
| 68 Chester Road, Hazs! Grove, Stockport SK7 SNY V]
B o e e o e e e e e e e e e e e o e o e

F

UICK TO LEARP

THAT’S...

JUST LOOK WHAT THIS === -_.

y R
o pAMET 7 MES
BRst ware: JETEE o

PACKAGECANDO! |-~ =+

WORD PROCESSOR — Ideal for writing
letters or reports! Features: Constant time

display @ Constant word count (even
shows words per minute) @ Normal or
double-height text on screen or printout.

SPREADSHEET — Use your micro to
manage your money! Features: Number
display in rows and columns @ Continuous
updating @ Update instantly reflected
throughout spreadsheet @ Save results for
future amendments.

GRAPHICS — Turn those numbers into
an exciting visual display! Features: 3D
bar chart @ Pie chart @ Graph.

DATABASE — Use it like an office filing

cabinet! Features: Retrieve files at a e and it’s all at

keystroke @ Sort @ Replace ® Save

th
® Print ® Search. price of just £ E

ruwmmmmmmmnntmm-nsmwﬂnwu
frovn GEMEr computers and prinders msy wary sighnly depending on eguismEnt used

_

RN, EASY TOUSE

" ' o7

.I....;--“lt'l- e CEMFER

A _J : . a“ “ a ‘ : ' i Spectrum 4 8 k
3 T L : I . 'l:,'j;-é) ﬁ = “ a”d Spectr”m+

SRAPHICS
TOTAL spgyy

N of ¢t
d PFOCESSO[‘ hE_"

= Uat‘iUUS <
- P
lable Intout

- = e
ICE L LT =T S
L ey Wora o ©3 0 e O — ' e +
18 oy g e sl P rqg
L S T S e ..I'n“_,.r._” M. T
T Cawy ey LE 3

|

~!I)]..‘

This 3 -
Processor

avallaple,

demonst e a
Shaming eh

Please send me _________ copy/copies of
Mini Office for Spectrum 48k/Spectrum+
O | enclose cheque made payable o
Database Publications Lid.
for £
I | wish to pay by
O Access O VisaMNo. Expiry date

Signed . = as— -

Mame .
l Addrass S

|
it 95 I
L] Past to: Mini Office Offer, Database Publications,
3 £5 CASSETTE DATABASE SOFTWARE | 68 Chester Road, Hazel Grove, Stockport SK7 5NY.

althe unbelievable

Little Brothers should
be seen but not heard

A maxim which eloquently describes the
Brother HR-5.

Less than a foot across, it's nonetheless loaded
with features.

But there’s one thing the HR-5 won't give you,

Earache.

For the anno)]}ilndf ‘clickety clack’ many printers
produce is mercifully absent from the HR-5.

Quietly efficient, it delivers high definition dot
matrix text over 80 columns at 30 cps.

The HR-5 also has something of an artistic bent.

REGULAR, CONDENSED, OR
EXTENDED FACES.

CUT SHEET A4 OR ROLLER
PAPER.

BATTERY OR MAINS
OPERATED:

Being capable of producing uni-directional
graph and chart images together with bi-directional
text

It will also hone down characters into a
condensed face, or extend them for added emphasis.

Incorporating either a Centronics parallel
or RS-232C interface, the HR-5 is compatible with
most home computers and popular software.

Perfectly portable, the battery or mains operated
HR-5 weighs less than 4lbs.

Which is really something to shout about.

The future at your ﬁngertips.

DEPARTMENT F, BROTHER OFFICE EQUIPMENT DIVISION, JONES + BROTHER, SHEPLEY STREET, AUDENSHAW, MANCHESTER M34 5D TELEPHONE: 061-330 6531
TELEX: 66909072 BROTHER SHOWROOM: 83 EUSTON ROAD, LONDON NW1 TELECOM GOLD: 83; JBC00Z BROTHER INDUSTRIES LIMITED, NAGOYA, JAPAN

How to choose the ideal
communications package to
suit your personal needs

WITH most home computers, getting into modem
communications means buying an add-on RS232 port
plus 2 modem and software package to go with it. If
you are fond of a good struggle and take pleasure in
fighting against the odds, then you can take this route
with the Spectrum too. But if you just want to get
connected up quickly and with a minimum of fuss,
there is only one way to go — the VTX5000.

The Prism VTX5000 Prestel modem is a complete
package, with all the hardware and software you need
for Prestel, Micronet — and a lot of other services — all
in one neat box. Chosen as “Peripheral of the Year” in
the 1984 British microcomputing awards, it is now
being sold very cheaply — the company who made them
did not survive for long. Some 10,000 VTX5000s
passed through the hands of the receivers and have
been on offer at decreasing prices ever since.

The VTX 5000 will only operate at the 1200/75 baud
split speed mode used by Prestel and other viewdata
type databases. This is something of a drawback as
most amateur bulletin boards operate at 300/300 baud.

However the Prestel speeds are becoming so widely
used that some bulletin boards are offering them as an
option to attract people who have come on to the scene
with dedicated Prestel terminals. There are also a lot of
other online services that use the Prestel system, like
local authority information databases.

The VTXS5000 connects to the Spectrum edge
connector via its own ribbon cable and it has a carry
through extension to take other add-ons. It is powered
from the edge connector, so the only other lead is the

Which modem?

one that plugs into your telephone socket. If you don't
have a socket, you will have to get BT to fit one. The
telephone itself then plugs into a socket on the
VTX5000 and is used for dialing up Prestel or
whatever.

The unit will work with the original Spectrum or the
Spectrum Plus, but not with the new 128. Owners with
microdrives sometimes have problems at power-up,
indicated by a screen full of coloured stripes. This can
be circumvented by turning the power on at the mains
socket rather than by inserting the 9 volt plug at the
computer.

The VTX 5000 has its software in ROM, which takes
control at power-up and transfers its contents into
RAM. If you want to access Prestel or Micronet you
have a menu of functions to do just that.

However you can also break in and rewrite the Basic
portion of the software to use microdrives instead of
tape, for instance. Or you can load one of the special
communications programs that allows you to access
scrolling type bulletin boards and databases like
MicroLink — provided they use 1200/75 baud — rather
than the paging Prestel types. These communications
software add-ons can be bought from the modem
suppliers or downloaded from Micronet.

DIY and why not

There are a number of problems to watch out for if you
contemplate buying a modem set up in bits and pieces.
This is particularly difficult on the Spectrum because of
the lack of a standard serial port. The key to successful
DIY Spectrum modem communications is the imple-
mentation of a proper RS232 serial interface and the
software to drive it. Once you have achieved that, you
can use almost any modem.

A lot of the add-on RS8232 ports available for home
computers, and the Spectrum in particular, are meant
merely for driving printers and don’t work properly in
the full duplex mode needed for modems. The RS232

The Prism VTXS000

The Compilete Spectrum [153

port on the Sinclair Interface 1 is a case in point. This
port will allow both output and input, but it lacks a
proper RS232 chip, and the job of this chip is actually
done by the CPU. Unfortunately the CPU cannot be in
two places at once, so it can send or receive but not do
both at the same time, which is what is required for full
duplex working.

Once you have found a serial interface which will
work in full duplex and at the required baud rates (the
split speed 1200/75 is often left out), then you need
some kind of software to drive it. This will have to be
written with the right port addresses incorporated to
drive the serial interface you have chosen. As there is
no standard interface, software writers are put off and
there is very little communications software available
for the Spectrum. What is available will usually have
been written for a specific piece of hardware, which
may well not be the piece of equipment you have
chosen — so be wary. Ideally the interface and the
software should be offered together as a package.

If you cannot buy software to suit your interface the
only solution would be to write it yourself. This is a big
job, and it really has to be done in machine code. A

simple terminal program which lets you type in
messages to the remote computer and see its reply on
your screen is easy enough, but when it comes to
downloading software or saving your electronic mail
on tape or disc, then things get complicated. Making
provision for all the special Prestel graphics characters
and the fact that there are 40 columns on a Prestel page
and only 32 on the Spectrum screen is another rather
intricate area. This probably puts Prestel outside the
DIY sphere.

Maplin Electronics supply a Spectrum RS232
interface in kit form which might suit the more
accomplished DIY enthusiast. This has an eprom
socket and suitable driving software available in eprom
to give easy access to the port, although it is not a
complete communications program. More details are
available in Maplin’s projects book number 8. You can
order this from Maplin (see addresses) but don’t expect
them to give you any information about it over the
phone — even if you are a journalist writing an article
about their product!

Once you have sorted out the above, you can use
any normal modem with an RS232 connection. There

On the left is the Maplin modem kit, while on the right is Maplin's interface kit

154 / The Complete Spectrum

I_ Numbers and terms

When bu ving a modem, You will find the adverts
peppered with a Jor of different numbers and
;‘f;;m. Here is a quick guide:

— Another designation
.;tsp!ex, CCITT tones, b ol
2 — 1200/1200 full le.

users except Telecom Ga?f i
V23 — The Prestel/viewdata
ga;d ;pf:‘r speed duplex.

el — Indicates USA tones, nog
gmtess calling USA). i

CITT—-E
Sl uropean tone standards, such as V2i
Call - Also called “Origi; i

: nar
right tones for your end.g e

standard, 1200/75

is a large range of these, made for no specific computer,
some offering a choice of baud rates and other extra
features like autodialling. You can pay anything from
£30 to more than £500, but where the Spectrum is
concerned you probably won’t need (or be able to use)
the features of the more expensive models.
Unfortunately, the cheaper makes have not been
advertised much recently, and some may have become
victims of last year's economic shakeout.

Since you are unlikely to be able to get software to
cope with Prestel, there is little point in paying £100
extra for 1200/75 baud capability. Even faster speeds
are becoming available at even greater prices, but few
of the dial-up services use them yet, so why pay a high
price to be a lonely pioneer? This leaves 300 baud.
Modems limited to this speed are quite cheap and will
get you on to everything except Prestel. Maplin, again,
have a suitable modem in kit form. BT surplus units are
also available fairly cheaply from Display Electronics.

At this end of the market, there should be no
temptation to accept a unit that is not BT approved. I
have not heard of anyone actually being prosecuted for
using an unapproved modem (or telephone), but BT
might well use the threat of prosecution to stop you
from using your equipment if they should find out. The
VTXS5000 is approved, naturally, The Maplin model
cannot be approved, as it is supplied as a kit which

Sinclair Interface I

Am'-wer — These tones only
je:.‘mg up your own bulletin board.

utoAnswer — As apove, answers phone when
;ammne calls your computer.

utodial — What it says, bufe.
software to run i, . e e
Smart modem — Has built i

n e i
of extra_functions, i
fayes compatible — Exira functions are accessed
: ifp:fja}?darf commands available in very
sive bj [
-— 1§ computer communications
.: ;n;sar coupler > Talks through telephone
2 naset, 50 you don't need a socke— less reliable
ata transfer than plug in types.

useful if you are

makes it a homemade item in the eyes of BT, but it uses
an approved line transformer.

It is important to remember that the modem only
supplies the appropriate audio tones for transmission
down the telephone lines and it does not govern the
baud rates themselves. The baud rate timing of the
transmission must be done by the R5232 interface.
This means that a modem with a 1200/75 setting will
not work at that setting unless the RS232 interface also
has a 1200/75 setting. Unless, that is, you pay
enormously (£500) for an intelligent modem that will
shift baud rates for you.

DIY can be very rewarding, and you learn a great deal,
but don’t expect to get set up without going through a
purgatory of circuit diagrams, solder burns, and wrong
connections. Great fun, but is it computing?

Maplin Electroni i
i ¢ Supplies,

Rayleigh,

sex,
586 8LR.
Telephone: 0702 552911
Also shops around
the country,

Modem House,

70 Longbrook Street,
Exeter,

Devon,

EX4 7AP,

Telephone: 0392 213355

Display Electronics,

32 Biggin Way,

Upper Norwood,
London,

SE19 3XF,

Telephone: 01-679 4414

The Complete Spectrum | 155

Electronic mail

We examine what happens on
MicroLink — and why it may well
appeal to Spectrum owners

WHAT do television magician Paul Daniels, Japanese
journalist Yuichi Ishikawa, Icelandic fisherman
Ingebar Oskarsson and Band Aid’s Bob Geldof have in
common?

Not a lot apart from the fact that they all subscribe
to MicroLink, the UK’s fastest growing electronic mail
and information service.

The first impression MicroLink leaves you with is
that it could turn out to be very bad news for Britain’s
postmen. For if this latest form of two way electronic
communications takes off in a big way — as it now
seems certain it will — they will have a lot more to worry
about than the occasional mongrel snapping at their
heels.

Even now the signs are there that conventional mail
is on its way out in favour of its contemporary cousin.
True, electronic mail has been available for about five
years. But in the last 18 months it has really come into
its own due to the now widespread use of micros.

And MicroLink, which started life as part of
Telecom Gold — the national computer network — is the
fastest growing of all electronic mail services. But all
this is jumping the gun for readers who by now will be
scratching their heads and asking: “What IS electronic
mail ?"

The key to understanding it is to know about
modems, the low-cost devices which enable computers
to communicate with one another over telephone lines.
Don't worry about how they achieve this, just accept
the fact they can.

So with a modem connecting your Spectrum to a
telephone, you simply type out your messages on the
keyboard and transmit them — or alternatively receive
ones already electronically despatched to you.

To achieve this you need to belong to a service such
as MicroLink which, as the name implies, effectively

The definitive Who's Who . . . can be updated in seconds

156/ The Compiete Specirum

keeps you posted

links micro users together over the phone. The way it
does this is through its £500,000 central computer in
London which acts as a giant clearing house for
messages.

Each subscriber is automatically given a mailbox, in
essence a tiny electronic letterbox of his own within the
mainframe. So when Paul Daniels wants to get in touch
with Bob Geldof, he simply types out his message at
home, then transmits it over the phone to the Band Aid
mailbox. And to get the reply all he needs to do is

Send a letter . .. and the postman will deliver

access his own mailbox number via his micro and
messages waiting for him appear on his monitor screen.
These can subsequently be printed out if the nature of
the correspondence dictates a copy is required.
With electronic mail capable of being sent or picked
up 24 hours a day, the Post Office could never hope to
compete with the service. But what about other people
reading your personal mail? The answer is they can’t.
It may as well be dropping through your own front
door because you need a special password key to get it.

More than mail

Nor is MicroLink confined to electronic mail on the
communications front. It also offers a telex facility,

That's why Tokyo magazine editor Yuichi Ishikawa
can send a request to Iceland fisherman Ingebar
Oskarsson asking for the latest price of cod should he
so wish. In fact Yuichi is one of a growing number of
Japanese users of MicroLink. This is because they have
discovered it is cheaper to send a telex to contacts in
Japan via MicroLink than it is to use the Japanese telex
service. And even though it means the message
bounces via satellite from Tokyo to London and back
to Tokyo again there is no appreciable delay in getting
it through.

MicroLink subscribers a little closer to home are
also discovering they are being offered a bargain with
its Telemessage service. With British Telecom having
recently put up the price of its Telemessages — the
modern equivalent of the old telegram — from £3.50 to
£4 for up to 50 words, an almost identical service on

—

Microlink

MicroLink — the
Jastest growing
of all electronic
mail services

| TELECOM GOLD

MicroLink has become even more attractive.

For just £1.45 users can send Telemessages of up to
350 words — and the only difference is that one is
dictated over the phone while the other is sent by micro.

Yet MicroLink is more than just a new way of
sending and receiving messages. The brainchild of the
publisher of many of the UK’s leading computer
magazines, it also offers an ever increasing range of
both information and entertainment services.

“We feel that to stand head and shoulders above the
other electronic mail services, we have to offer that
much more”, says Derek Meakin, head of Database
Publications, and the driving force behind MicroLink.

The end result is that MicroLink comes across like
an all singing, all dancing electronic postman.

Its latest service is to make airline travel easier — and
cheaper — for its subscribers, The reason for this is that
it is offering instant round the clock information from
the bible of globetrotters, the international Official
Airlines Guide (OAG).

At the touch of a micro key, users are linked by
satellite within seconds to the OAG computer in Oak
Brook, Illinois, USA, which monitors the 38,000
changes of fares which take place daily and the 30,000
weekly schedule revisions. It proves to be a real money
saver in that fares for all airlines on any given route are
made available — from the lowest to the highest.

Say it with flowers

Additional user friendly facilities such as this are
helping MicroLink set the pace in this highly
competitive field — as it has since the day it was
launched. Subscribers can say it with flowers at
whatever hour of the day or night the mood strikes
them — and their floral gift will be delivered anywhere in
the British Isles. This is due to MicroLink having joined
forces with the world famous flower delivery service
Interflora to create FloraLink, which for the first time
ever enables people to send flowers and plants by way
of their computer.

And it has already saved one marriage. Every year

No excuse nmow for forgetting that anniversary

since his wedding Paul Watson had forgotten his wife’s
birthday, their wedding anniversary, even her
Christmas present.

“So you can imagine what 1 had to suffer as a
result”, said the 40-year-old Hull accountant and
Spectrum owner.

But now Paul will never be confined to the doghouse
again for missing those special occasions. As a
MicroLink subscriber he became one of the first people
to take advantage of the FloraLink service,

“My wife Pauline loves flowers, and suddenly I
realised here was the answer. So now it will be flowers
for every occasion — birthdays, anniversaries, the lot —
all pre-booked to be delivered annually via FloraLink™.

And the train standing on Platform 4 can now be
caught courtesy of MicroLink’s British Rail
telebooking service. It helps subscribers choose their
trains by carrying constantly updated timetables,

AEEEEEEAEEEESESS

British
Tickets

A ticket to ride ... British Rail's information pages

together with fares between London and 20 major
cities. Should their destination be London then
MicroLink people can even book a ticket for the latest
show — after reading all the up to the minute reviews —
on TheatreLink.

Weather or not...

A recent dramatic breakthrough on the computer front
now allows people to discover what the weather holds
in store with WeatherLink. Whether they live in
Torquay or Turkey, the service means they can tap into
the same information from outer space as used by the
boffins from the Met Office. Exclusive to MicroLink, it
enables subscribers to see the very latest pictures being
transmitted by the European weather satellite,
NOAA9. ;

Launched on February 12, 1986, WeatherLink
generated such excitement that a team from Thames
Television was on hand to cover the event. At exactly
3.05pm, subscriber John Wallbridge achieved a world
first by displaying the first weather satellite picture on
his micro in his London home.

Should subscribers who use WeatherLink find out
it's going to rain, then there’s always Who's Who in
Microcomputing to entertain them while they are stuck
indoors or the opportunity to catch up on the latest
happenings in the computer world with MicroNews.

Yet for all these diverse services, MicroLink only
charges an initial registration fee of £5, plus a monthly
standing charge of £3.

But why provide such a range of other services when
MicroLink's prime purpose is electronic mail?

“We believe that apart from being useful, electronic
communications using micros should also be
entertaining and fun™, says Derek Meakin.

The Complete Spectrum /| 157

Hacking

Is it illegal or can anyone join in?
Find out once and for all

IT’s a bit difficult to pin down exactly what is meant by
“hacking”. It seems to be used interchangeably as a
term for inspired programming, for breaking the
protection on commercial software, or for committing
massive fraud via a computer.

A number of the original and genuine hackers in the
USA are reputed to have produced a glossary of
hacking terms (only available as a computer file to
those who are clever enough to find it) in which hacking
is defined as making furniture with an axe. It could
perhaps be defined more generally as the art of turning
a handle in the direction it doesn’t go.

The joy is in making something big and complex do
tricks that it was not designed to do, especially since
this usually means outwitting the designer. But as this
issue is mainly about computer communications, let us
confine ourselves for the moment to the narrower sense
of hacking as using a modem to go exploring where one
is not invited.

A lot of newcomers to the communications scene are
intoxicated with the myths of hacking and make
complete idiots — and nuisances — of themselves on
bulletin boards before they have sussed out that there is
a great deal more to computer linkups than hacking. In
fact, most modem users are not involved with such
activity — interested, yes, but not involved.

These new chums are the ones who use imaginative
pseudonyms like “The Mad Hacker” or “The Duke of
Edinburgh™ their first few times on, which is handy
really, as some of the things they do would embarrass
them later if they used their real names.

What it’s not

It might be a good idea to define what hacking is not.
Merely dialling up a bulletin board or other online
service is not hacking. Most of these services allow
visitors or even go out of their way to invite them. Even
the somewhat po-faced Prestel has a demonstration
password to give all callers limited access, in the hope
of interesting them in buying a subscription. To enter
the visitor identity and password just keep pressing 4.

Bulletin boards in particular are designed to be
accessible. These systems are meant for communi-
cation, so merely leaving a message of some kind is not
hacking. In addition systems contain a directory of
users — this is not hidden, so finding it is not hacking.
About eight times a day someone stumbles on the
Prestel directory, complete with mailbox numbers, and
thinks he has found the password file. He hasn’t, but he
may not realise it until after he has crowed about it.
How embarrassing!

Is hacking wrong?

It all depends. Merely getting into a system and looking
around ought to be pretty innocent, but what if it

158/ The Complete Spectrum

belongs to the Ministry of Defence? How much trouble
do you want to get into?

There have been very few prosecutions for hacking,
at least in Britain, partly because it is difficult to find a
law which has been broken. However there is a law
which applies very easily to computer fraud. It is called
*“obtaining a pecuniary advantage by deception”. This
would plainly be wrong. There have also been
prosecutions for “forging an electronic instrument™. So
it may be dangerous even to try guessing other people’s
passwords.

It is well to remember that assuming someone else’s
identity on a subscription computer system is quite
likely to cost them money just for the use you have
made of the system. They are entitled to feel aggrieved
about this, and it could certainly be construed as theft.
It is less obvious that anyone has lost anything when it
is an in-house computer in a business or a university
that has been invaded, because the legitimate user is not
expected to pay for computer time. But the offence of
“stealing electricity” may be held to apply.

Another reason for the rarity of prosecutions is
simple prudence. Those with the knowledge and ability
to get into a system which is really trying to keep them
out are usually too sensible to do any real damage.
They are interested in the game rather than looking for
dishonest gain, and well aware that interlopers may be
tolerated where thieves or vandals would not.

In the USA, where many hackers have been
arrested, it is significant that the ones in trouble are
almost always school kids. This is probably more to do
with a youngster’s typical lack of responsibility than
any preponderance of very young people in the hacking
subculture. That is to say, they get caught because their
activities make it necessary that they be caught, while
others, older and more restrained, escape because their
activities are relatively innocuous and no one can be
bothered to go after them.

A recent case involved teenagers who were using

stolen credit card numbers — just the numbers, not the
cards — to obtain goods illicitly. A lot of this activity
took place on dial-up services, because using a
computer link disguised the age of the persons placing
the orders. The miscreants were also using amateur
bulletin boards to exchange numbers and other
information.

The police finally caught them by the simple ruse of
setting up their own bulletin board, baiting it with some
interesting messages, and advertising its existence with
messages on other boards. Then all they had to do was
trace the calls of the individuals in question while they
were absorbed in reading the messages.

The best way to stay out of trouble is the same
method you would use in other walks of life — just try
not to annoy people. If you must sneak in and read
their mail, don’t put their noses out of joint by bragging
about it. If you can’t resist letting them know you got
in, then a cheeky message will get them quite angry
enough. There's no need to erase files or try to crash
their system.

The other side of the coin

Most systems are very well protected against
unauthorised entry. Typically, you need to know at
least a telephone number, a customer identity code, and
a password. Systems that are very sensitive will have
€Ven more security.

One home banking service requires a different
password for each transaction, in addition to the
customer’s own log-on password. The passwords are
posted to subscribers in small batches whenever the
computer reckons they are running low. Each
transactional password is used once and then
discarded, so if someone does happen to hit on one by a
lucky guess, it cannot be used again and again.

The problem that designers of such security systems
face is that the legitimate users don’t like having to

struggle with a difficult series of long numbers or
unrelated letters every time they log on to a system.
This means that they tend to undo the security of the
system by making things easier for their own access.
Instead of memorising their identity codes and
passwords, they write them down and tape them to the
computer where any casual office visitor might see. In
cases where they can choose their own password, they
choose something easy to remember, like someone’s
name, or the same number pressed five times. These
combinations are obviously much easier for a hacker to
guess than a random choice of letters or figures would
be.

Even a four character password can be almost
impossible to guess if it is made up of a random choice
of symbols. Using just numerals and letters, and
ignoring the difference between upper and lower case,
you have 36 to the fourth power, or 1,679,616 possible
combinations. Limiting the choice to first names, of
whatever length, brings this figure down to a few
hundred.

You can see from this that the legitimate users of a
system often turn out to be the hacker’s best friend, but
oddly enough, the hacker is also sometimes able todo a
friendly turn for the systems security man.

It is not unknown for the designer of a system to
enlist the aid of hackers in testing security by the simple
ruse of giving out the telephone number in a message
on a bulletin board, perhaps saying, “There seems to be
a computer at this number, does anyone know what it
is”? He may even give out a password or use some easy
ones to make sure that people will be able to get in and
give the system software a good workout.

He can then sit back and monitor how his system
responds to thousands of attempts to break it, and after
a few months trial, simply change the telephone
number when the system actually goes into service. By
this time the weak spots should have been discovered,
and any subsequent visitors will have a tough time.

How to hack

No one is going 1o tel]
you how to hack. ¥,
f:iin r;wcamjs on the bulletin boards as‘::':::;}j;:
7S and other help, but the
useful replies. Just fJEfH, Fegerl. o
; fold
Someone else sn't hacking‘;r, Yyou .::tw i

The quickest way to get useful information

ab -li i
out on-line computing and thence hack g is fo

become a legitimare subscriber to one or more of

the available dial-up services, When vou know

A good start mi o
good s ght be 10 join Dgy
Pufhmﬂam own MicroLink service, wi r'c‘:rbi[;jcf
part of Telecom Gold. Quite aside from 8ving

ou
You access to one of the most Successful

g."e_-ca‘mm'c mail systems going, you will also pe

1 may even
legitimate access 1o such a Sl

System is so much
L.'::.r {;*m lose all urge to hack into ar:ymr'u; eﬁ?
not, at least you will pe better eqmpped'

The Complete Spectrum/ 159

How Basic works

First of a two-part series on
how your Spectrum interprets
its language

FANTASTIC, isn't it? You plug in your Spectrum,
turn on the television, and as the screen warms up you
know that Spectrum Basic is already awaiting your
command.

In this two-part series we'll be taking a look at how it
works. The general principles are pretty much the same
for most other micros as well, but there are just enough
differences to make it very interesting — or frustrating —
if you try to transfer what you learn here directly to
other machines.

Perhaps the most important difference between
Basic and other high-level computing languages such
as Fortran and Cobol is that Basic is an interpreted
language, whereas the latter two are compiled.

That is to say, a program written in Cobol or
Fortran is turned into machine code en bloc and then
executed, whereas one written in Basic is turned into
machine code statement by statement, each statement
being executed as it is interpreted. There are compiled
Basics, but they are outside the scope of this series.

This has various effects, both good and bad. The
ones that most concern us here are that it makes Basic
rather a slow-running language — although thisisn’t too
apparent on most modern machines unless you go in
for a lot of screen animation — and it means that the
source program (the Basic program that you actually
wrote) remains in the computer’s memory all the time it
is being executed. And that in turn means that it is very
easy for us to watch it working.

Peeking around

Now it’s time to actually poke around in your
Spectrum’s innards — or PEEK around, to be more
precise, Because there are no hard and fast rules about
where Basic programs are stored, the first job is to
discover the beginning of the program storage area on
your set-up.

This information is contained at locations 23635
and 23636, and you can discover it by keying in the
following in immediate mode:

PRINT PEEK 23635 + 256 * PEEK 23636

We'll see the reasoning behind this later.

The information is actually contained in a special
sort of variable called a system variable — that is, one
that the computer itself sets and resets in order to keep
track of where information of various kinds is stored.

We shall be looking at system variables in a little
more detail next time. If you don’t have discs or
microdrives you will most probably get the answer
23755, and this is the number that we shall use in the
examples that follow. But if the answer you got was
different, use the number that you got instead.

Now type in the following Basic program exactly as
it is here:

10 REM This is a remark
20 PRINT “This is a PRINT statement™

160/ The Complete Spectrum

1020290...

Then key in the following direct command:

j=23755:FOR p=j TO j+21:PRINT PEEK p;
“ =:.NEXT p

and the computer will respond with this sequence of
numbers:

0 10 18 0 234 84 104 104 115 32
105 115 32 97 32 114 101 109 97
114 107 13

What you are seeing here is how the first line of the
Basic program you typed in is stored in the computer.
Each number represents the contents of one byte of
memory, starting from the point at which your
program begins. As you probably know, a byte can
store any number in the range 0 to 255.

The first two numbers, 0 and 10, are the number of
the first line of the program. It just so happens that the
Spectrum stores line numbers in the same order that
humans regard as correct, with the high number first
and the low number second.

Rights and wrongs

For hardware reasons, however, computers store
many numbers in the “wrong” order, with the low
number first and the high number second.

To work out the number encoded in the two bytes,
you multiply the high byte by 256 and add it to the low
byte, In this case it's 0x256+10=10, our first line
number.

You can see the more usual lo byte/hi byte order in
the next two numbers, 18 and 0. These mean that this
line of program needs 18 bytes to hold it — not including
the two bytes used for this information or the two that
store the line number.

We arrive at 18 by multiplying the 0 — the high byte
this time — by 256 and adding 18, our low byte. We
discovered the start address of the program storage
area by a similar lo byte, hi byte calculation.

After this comes the code 234 which stands for the
Basic keyword REM. All the standard Basic keywords
— Basic’s vocabulary — are represented in a similar
way, and the codes are called tokens. The simple rule
here is that every command which you can input on the
Spectrum by means of a single keypress is represented
by a token.

Note, by the way, that the spaces which the

Rt = |

(o M B w B = =]

[l

s v =~ = BN -

PN Pald .

L

o

— —

o) WO e U

b iyl - e

Sequence of Basic command statement

Line

number .
in bytes

e length REM

Enter
o (End of
message line)

010 180

234

84 104..107}| 13

Start of Basic memory, normally 23755.

Figure I: How the program is stored in memory

Spectrum automatically inserted after the line number
and again after the keyword REM are not represented
in the memory. They only appeared to make it easier
for you to read the line.

Then it gets simple. If you look up the next 16
numbers — as far as 107 — in Appendix A of the Basic
programming book, you will see that they are the
character codes for the remaining letters in the
statement — 32 is a space, 84 is a capital T and so on.
Finally, the sequence finishes with 13, which means
Enter, as an end-of-line marker.

All Basic command statements are represented in
the same general way. If you're still confused, Figure 1
may help to make things a little clearer.

Memories are made of this

By now you have probably worked out how to inspect
the representation in memory of the second line of the
program. Clear the screen (to keep things tidy) then
enter the following direct command:

j=23777:FOR p=j TO j+32:PRINT PEEK p;
“ NEXT p

and the computer will respond with:

0 20 29 0 245 34 84 104 105 115
32 105 115 32 97 32 80 82 73 78
84 32 115 116 97 116 101 109 101
1o 116 34 13

You know now that the first two numbers show that
this statement is number 20, and the two numbers after
those (lo byte/hi byte — remember?) inform you that it
is 29 bytes long. Then comes the token 245, which
stands for PRINT, a double quote — 34 — and so on.

But note that here the word PRINT, which formed
part of the message included in the quotation marks, is
listed as a series of character codes (80, 82, 73, 78, 84)
rather than as a token, because tokens only stand for

instructions that the computer has to obey and not for
similar words which occur inside quotation marks.

Statement of fact?

And finally there is the Enter token — 13 — to confirm
that we have come to the end of the line.

At this point you would probably assume that all
Basic statements are represented in memory in the same
way. Actually this is not quite true. Get rid of your
program by entering NEW, then enter the following:

10 LET p=I

then retype a version of our familiar direct command
line to see how that program was represented.

j=23755:FOR p=j TO j+14:PRINT PEEK p;
“ "NEXT p

You should get the response:

0 10 11 0 241 112 61 49 14 0
01 0 0 13

Some of that is certainly familiar enough. You will
recognise the line number — 0 10, — the line length, — 11
0 — and the Enter at the end — 13.

Other codes which shouldn’t cause any problems are
the token for LET — 241 — and 112, 61 and 49, which
are the character codes for the variable name p, the
equals sign and the number 1 respectively.

The rest of the line is a little more difficult, and we
shall leave a detailed analysis of it until next time. If you
want to explore it a little more in the meantime, try
entering different values for the variable p in the
program (both integers and real numbers) and see if
you can work out for yourself what is happening.

A useful clue is that in statements that include
numbers, Spectrum Basic represents the numbers not
once but twice — once for the purposes of LISTing and
once for its own internal operations.

o The Complete Spectrum | 1671

Drawing it out...

What's the best way for you
to draw graphics on screen?
Our survey helps you decide

THERE has long been a search for alternative methods
of entering data — and graphics in particular — into
computers, as the keyboard is simply not designed for
this sort of work.

In the professional world there exists a huge range of
inputting devices. Most of these have lower cost — and
so lower performance — versions for home micros and
the Spectrum has been well supported with light pens,
mice (covered elsewhere in The Complete Spectrum),
digital tablets, tracers and such like.

The choice is basically determined by your answers
to two guestions;

. How serious are you about drawing on your

Spectrum?
2. How much can you afford to spend?
For most people the first device contemplated is a

light pen.

Light pens

A light pen is little more than a photoelectric cell which
allows a larger current to pass in the presence of light.

When held against the screen the pen can
successfully detect the passing of the electron beam as
it scans the TV screen. Since the computer “knows™
when the electron beam began building up the picture it
can calculate where the beam is and so work out where
the light pen is positioned on the screen.

Light pens are relatively inexpensive but
unfortunately they are fairly inaccurate — only to about
two or more pixels. I have used them on many
occasions but never found one where the resolution
matches that of the Spectrum, and as such they are
more or less useless for serious drawing.

They are useful, however, in that they are normally
easy to incorporate into your own programs, and
routines can easily be written to select menus from
your own screen in much the same way as a mouse
does.

Incidentally dk’tronics claims that its light pen can
now resolve down to one-pixel accuracy, so that might
be worth a look.

A variation on the light pen is the Stack light rifle
which is really just a light pen that can be held some
distance away. This can be used within some games
rather like a joystick or keyboard but the software is
basic and unadventurous.

There are a few drawbacks with light pens. The fact
that you are drawing on the screen direct means that
you are scribbling vertically and this rapidly becomes
tiring. The light sensitivity setting may sometimes be
rather too critical, making it very difficult for the pen to
react properly to frequent changes of light and colour.
Definitely not recommended for any other than very
basic graphics.

162/ The Complete Spectrum

Digital tracers

These aid the tracing of diagrams and pictures, and
consist of a double-jointed arm with a pointer or
cross-hair arrangement at one end. The position of the
pointer can be worked out from the angle of the two
joints in the arm.

On larger machines the tracer normally comes
attached to the board, and quite often with a perspex
cover to help in stabilising your original.

Tracers tend to be more accurate than light pens
and, as they are horizontal, they are a great deal less
tiring to work with. But the jointed arm does make it
cumbersome to attempt freehand drawing.

Graphics tablets

The graphics tablet is probably the device to aim for.
Tablets are horizontal, with no obscuring double-
jointed arms, and are about as complicated to use as a
pencil. There are basically two types — touch sensitive
tablets and electromagnetic pads.

Touch sensitive tablets

In the touch sensitive tablet two thin films are
separated by an insulating layer.

Pressure on the pad with either finger or stylus forces
the two layers together and a built-in microprocessor
calculates the x and y coordinates, then passes them on
to the computer. The resolution is fairly good.

Obviously the main disadvantage of this type of
tablet is that every pressure on the pad will be
registered. This makes it a little uncomfortable to use as
you must be very careful not to rest your wrist or any
other part of the drawing hand on the pad.

There are two makes of tablet — the graphics tablet
from Saga which has now been discontinued and the
Touchmaster. This is quite a large unit which, in
addition to providing drawing facilities, can be used
with a variety of simple games for very young children.

The pad has an overlay for each game that allows
you to interact with the computer by pressing the
relevant picture on the overlay without using the
keyboard.

If you want a general purpose unit that can double as
an educational module in this way then this unit will do
all you ask.

Electromagnetic tablets

If, however, you require something that will enable you
to take the Spectrum to its limits graphically then there
is only one choice — an electromagnetic tablet.

This is the true graphics tablet of the professional,
and there is only one that will link up to a Spectrum -
Grafpad from British Micro.

The board contains a grid of wires, and the stylus
(linked to the board by a lead) is little more than a tiny
switch. When the stylus is pressed against the tablet the
on-board microprocessor detects which wires are
closest to the stylus and sends this information to the
Spectrum.

The system is very accurate and there is usually no
problem working at a resolution of one pixel. It doesn’t

s —

suf

dr:

All
suj
S|

suffer from false readings if you steady your hand on
the pad’s surface as it can only detect the single built-in
drawing implement. Also, it can be used very easily to
trace a picture taped to the surface of the tablet.

A strange feeling?

Using Grafpad — or Touchmaster, or even the RD
Tracer for that matter — is a very strange afTair at first
and takes a fair bit of getting used to. The main
difficulty is that all the artwork is being developed on
screen while your hands seem totally removed from the
result.

This can be very disorientating at first but after a few
days it becomes second nature — indeed it's a good job
the Spectrum'’s resolution is not better than it is or [
would find it almost impossible to go back to using
ordinary pen and paper again.

All these devices come with their own software. Most
supply the basic features of a graphics package and
support the drawing of lines, circles and so on.

The most sophisticated is the one that comes with
Grafpad, which allows you to edit at pixel level by
enlarging the screen up to four times.

The screen can be mirrored or scrolled in any
direction, and the attributes can be inverted. Triangles,
boxes, flood fill and the ability to add text at any point
are all possible.

Editing can be carried out either on screen alone, on
the attributes or on both, and small sections of the
screen can be worked on by setting a window which
can then be repeated anywhere else required.

It’s also possible to make up UDG banks very easily
using the “get UDG"” command. The main omissions
are the absence of a rotate facility and a patterned fill.
And the ability to scale the picture as in the keyboard
program Melbourne Draw would also be useful.

In general small problems like this aren’t important.
It's always possible to transfer partially-completed
SCREENS between packages to obtain all the facilities
required.

Although I have tried all the previous types of graphic
input device I have finally settled with Grafpad and
wouldn’t change for all the RAM chips in Taiwan.
Grafpad are currently revising their range, so if
you're interested it's worth giving them a ring on 0923
48222. If you can afford this unit [don’t think you will
ever regret your purchase or exhaust its capabilities.

The Complete Spectrum | 163

F 5

Colouring by

numbers

Second in the series which
clearly explains the complex
area of machine code graphics

WE have already seen that the Spectrum’s screen
display is built up by combining the information stored
within two separate areas of RAM.

*The first is called the display file and the second the
attribute file. The two sections are responsible for
different aspects of the picture you see.

Last time we looked at the information stored in the
display file. We saw that this section of RAM is
responsible for the shapes of the characters displayed
on the screen.

Now we're going to look at the attribute file and see
how the information stored here is used to colour the
screen display.

As we saw in the first article the display file starts at
&4000 hex, or 16384 decimal. It's & 1800 bytes long
ending at &57FF. Immediately following this is the
attributes file starting at &5800.

First try experimenting using Program 1. Hold down
a key and notice how the screen is built up as the
program runs through the attribute file storing 255 in
each memory location. The current address is printed
in hex.

This demonstration shows quite clearly that the
attribute file is 768 or &300 bytes long, comprising
24 rows of 32 bytes. This is exactly the same as the
number of character positions we can print at.

Apart from showing us how big the attribute file is,
Program I isn’t much help — it merely turns the screen
bright white. That's the effect of storing 255 in
successive bytes.

Each character on the screen has a corresponding

18 REM PROGRAM [

i | 3

58 LET he="123456789ABCDEF"
188 FOR a=22328 TO 23293

118 POKE 2,233

138 PRINT AT 15,5;

148 B0 BUB &00

170 IF INKEY$="" THEN B0 TO 170
B8 MEXT a

198 sTOP

500 REN --- Hex print a ---

408 LET x=INT (a/2%6)

410 BO SUB 630

620 LET xma=25b0x

630 PRINT hE(1+INT (x/16)) phé(len=16
#INT (x/14))y

448 RETURN

Program [

164 | The Complete Spectrum

attribute byte holding its colour information — ink,
paper, flash and bright. All this is crammed into eight
bits. It might seem a lot of information to squeeze in but
it’s coded in rather a clever way.

There are eight inks and eight paper colours
numbered O to 7. This range of numbers can be stored
in only three bits — 000, 001, 010....111. Bits 0, 1 and 2
hold the ink and bits 3, 4 and 5 the paper. This leaves
bits 6 and 7 which are used to store two flags indicating
whether the character is normal or bright and flashing
or steady.

There are only three true colours — green, red and
blue — called the primary colours. All the others you see
on the screen are made by mixing these three. White is
easy — it's all three — and black is a total absence of
colour. Yellow is a mix of red and green, cyan is green
and blue and so on.

The three bits used for the ink or paper tell the
Spectrum’s ULA, a chip responsible for the screen
display, which of the three primary colours to use.

If the bit pattern is:

Green Red Blue
| 1 0

the colour displayed is yellow — green plus red. You can
see now where the Spectrum get its ink numbers from,
yellow is ink 6 which is 110 in binary. You should be
able to work out the others without too much difficulty.
If not, Table I has all the answers.

Program Il can be used to investigate the atiribute
file. A character is printed at the top left corner of the
screen and the corresponding attribute byte is printed
in binary. The bits responsible for BRIGHT, INK,
PAPER and FLASH are labelled. Table II summarises
the function of the attribute byte.

Now we know the size and location of the attribute
file and how the colour information is coded we can
write some simple machine code routines. Program I1I
fills the attribute file with any value. It can be used to
clear the screen.

We use the normal default value of &38. This is

Colour eombination Result
0 0 0 i
0 0
0 0
L]
0 0
0 Cyan
0 Yellow
White

Table I: Colours available

ori
re
ext
Pri
SW

SCT

Tes

¥

t
t

e e N W e

-t - P e

s = e R

T S W e

18 REM PROGRAN 11

13 REN =====sscccseeeus

20 RER Alter these!

38 PAPER 3

I 3

58 FLABH 1

68 BRIBHT 1

70 PRINT *7*

L R
108 LET a=PEEK (22528)
1O LEY bt emieniract
208 INK Bt PAPER 7t BRIBHT B FLASH

(]

490 I 2

500 FOR i=7 TO @ STEP -1

318 IF a¢2*i THEN PRINT @

538 IF ad=2*i THEN PRINT 11 LET ama
=24

335 PRINT

S48 NEXT |

550 INK 1

568 PRINT AT 5,Bjb8)AT 7,0;b85AT 9,0
Jh8jAT 15,0;b85AT 21,0508

570 Ik 3

600 PRINT AT &,3;"Bright"jAT B,5;"F1
ash"jAT 12,5; "Paper®jAT 18,5; " 1nk"

E

205 PRINT AT 3,0 "Attribute="ja TH 60 TO 780
4608 PRINT AT &,0
Program [
{Bright toggle LD (HL},A jstore
jFill attribute file INC HL jnaxt byte
LD E,X2i100000 jmask DEC BC jcounter-1
LD A,438 $H111 byte LD HL k3808 jstart LD A,B
LD HL,L5600 jatart LD BC,k3n8 jlength 0R C
LD DE, k5801 jatart+l «loop IR NI,loop jfinished?
LD BC,L2FF jlength-1 LD A, (HL) jaet byte RET
LD (HL) A phLL dst XOR E jtoggle bit
LDIR j#ill rest
RET Program IV
Bit Function Range
Program [11
stored in the first location and then copied throughout z Plash ; O
the rest of the attribute file. In binary notation &38 is 6 Bright 0-1
%00111000 which is equivalent to INK 0, PAPER 7, 4 B i
BRIGHT 0 and FLASH 0. Replace this with any value ' S
you want. ¥ : 4 Paper Ll
Program 1V is quite interesting as it toggles the 3 ;
BRIGHT flag in bit 6. Calling it once changes every 2
normal character to bright and every bright one to 1 Ink 0-7
normal. Calling it again resets everything back to its 3
original state. It's useful for explosion effects. S

It works by loading each attribute byte into the A
register, XORing it with a mask in the E register,
%01000000, and placing it back in the memory.

A better explosion effect can be obtained by
exchanging the ink and paper for each character.
Program V shows how this is achieved. Call it once to
swap the ink and paper, call it again to restore the
screen to its original state.

It works by exchanging bits 0, 1 and 2 — which are
responsible for the ink, remember — with bits 3, 4 and 3,

Table I1: The structure of the attribute byte

the bits responsible for the paper. So an attribute byte
of %00101011, INK 3, PAPER 5, would become
%00011101, INK 5, PAPER 3.

® That’s it for now. In the last part of this series we'll
see how to read the keyboard and move things round
the screen.

LD HL,k5800 jstart RLCA OR D jdone it!
LD BC,4300 jlength RLCA LD (HL),A jstore
+loop LD D,A JSave new paper INC HL jnext byte
LD E, (HL) joet byte LD A,i80111880 DEC BC jcounter=1
LD A,111000000 AND E Jget paper LD A,B
AND E RRCA OR C
PUSH AF jeave bits 4,7 RRCA IR NI,loop jfinished?
LD A,%80088111 RRCA jnew ink RET
AND E jqet ink R D jand paper
RLCA POP DE jaet bits &,7

Program V

The Complete Spectrum’| 165

Programmers

do it with style

First of a two-part series which
illustrates the many benefits of
a structured programming style

THE suceess or failure of a beginner’s first attempt to
write a program depends on how much thought has
gone into it before he goes anywhere near his micro.

“Structured” is an adjective often used by the
experts to describe such a format. A structured
program is one that has been carefully put together
using a collection of separate routines, each controlled
by a main section.

You can liken this to a prefabricated house with each
wall, window or door representing a little program in its
own right. Producing the finished building, linking the
modules together according to a predetermined plan, is
a much simpler task than trying to create something
from the raw materials without any plans whatsoever.
And the finished building is much easier to dismantle
should the need arise.

You can relate this concept to programming. A
well-planned idea, using individually written routines,
is. simpler to put together. The finished product also
benefits from being easy to unravel and consequently
easier to debug, both for the writer and for people who
may want to alter the program.

In order to grasp what the phrase “structured
programming” really means we’re going to put
together a very simple Minefield game that will not only
be structured, but will also contain some useful
programming ideas that could be incorporated into
other programs.

The idea of the game is as old as the hills and very
simple. There are a number of mines hidden in a square
grid, and by entering X, Y coordinates you attempt to
find them all in the least possible number of goes.

This version will be a slight variation en that,
consisting of a 10 by 10 grid of boxes in which are
hidden 10 little user-defined characters called Smileys.
You enter the coordinates of the square that you think
each one is in, column first, then row. If you choose
correctly the Smiley is displayed accompanied by a
suitably triumphant sound. Should you choose
wrongly you will be greeted by a rather different sound
and given clues as to the whereabouts of the nearest
target.

The first thing to do is to plan the program by breaking
it into a series of small sub-tasks. And do this on paper
— not in your head — so you can keep track of things.
The most experienced programmers discipline
themselves in this way, and if it’s good enough for them

166 / The Complete Spectrum

it’s good enough for you. So here’s a list of tasks the
program will be carrying out:

. Initialise arrays and variables.

. Define characters.

. Draw and set up screen.

. Position each Smiley.

. Take input, check and validate.
. Check input against 4, give clue.
. Show Smiley if correct.

. Close game or re-run.

00 =1 S Ln B b e

Spectrum + Plan = Program

Each of our mini problems will be handled by a
subroutine, so to start with we’ll use REMs to create a
skeleton program.

The first part consists of a series of GOSUBs, one
for each of our tasks, neatly REMmed so we know its
purpose. The second part consists of dummy
subroutines — just a labelling REM, a RETURN, and a
separator in the form of a line of asterisks —
corresponding to each of our GOSUBs,

48 G0 SUB 48@: REM characters

&0 BO SUB &8@: REM draw screen

B8 G0 SUB B@R: REM position Smiley
{88 G0 SUB 100@: REM take input

120 60 SUB 1200: REM check for Seiley
148 GO SUB 14@@: REM game over

170 REN #e5ibiiaidansdananinetin
428 REM create characters

438 RETURN

440 REM ##343d8iittttaiita bbbt
488 REM draw screen

768 RETURN

770 REM ##885asiseies it iienadists
88 REN position Sailey

848 RETURN

B78 REM E¥4EsREvdeinitatititatisess
108@ REM take input
1298 RETURN
1100 REN #eseabibistitiirtetiiitend
120@ REN check for Sailey
1348 RETURN
{350 REN snesdeiistindiadiitistiteis
1480 REN game over
1488 RETURN
1490 REN 428HasdeebaiitttititiEH
1788 REM found Sailey
1738 RETURN
1740 REM SH8REREHIEERRHIHEREREREEHE

Program [

nur

pro
eac

The
bac
SCré
par

war
goi
Nof
prai

I_

T ——

And really that's the game in a nutshell, neatly built
up in sections controlled from the first part of the
listing. Granted, all the meat is missing — hence the
missing line numbers — but the logic’s all there. I've
deliberately left large gaps to allow room to expand and
add lines whenever I wish, without running out of line
numbers. We'll fill in a lot of them later. Because the
standard 16k or 48k Spectrum has no RENUMBER
facility, unless you leave yourself room to expand
you'll find it very difficult to keep to a neat
easy-to-follow numbering scheme,

Take another look at Program I — the following
points are important factors in assisting good
programming style.
® All GOSUBs are REMmed to identify the purpose
of the subroutine being called.
® Each individual subroutine is REMmed for the
same reason.

Initialisation is the vital first stage of our program.
Here we set the stage by giving some variables their
start values, and performing other housekeeping
activities. Once we’re through initialisation, apart from
the character definition routine, the rest of the program
is one large loop that gives us repeats of the game.

You should always label a program with its name in
a REM somewhere early on in the listing. So our first
line will be:

18 REM Smiley Hunt

During the game we are going to be using a lot of
variables, and where the Spectrum allows it we’ll give
them names that actually means something. This not
only helps us to pick our way through the listing, it also
helps anyone else who may need to do the same.

Three important variables in our game are best, for
the best score so far, furns, the number of guesses we've
had, and smileys, the number of faces we've found.

It is important that best is initialised early on in the
program so that it doesn’t get reset in the main loop
each time the game is re-run, For this reason it is at line
20. I've given it an arbitrary value of 50 for you to beat,
but any number will do to get the game started.

20 LET best=50

We now need to set up a two-dimensional grid to
store values in the various squares. We can achieve this
by using the array b(10,10), reserving sufficient
memory for 100 boxes (10x10), all accessible by the
numeric variable b. This is by far the most efficient way
to tackle the problem. It is also placed early in the
program outside the main loop as we don’t want it done
each time the game is re-run. So line 30 reads:

30 DIN biie,10)

Setting up the screen

The initialisation stage is now complete, so if you look
back at our list you'll see that the next job is to draw the
screen, Apart from items of text like the title, the main
part of the screen consists of a grid of boxes that
conceal the Smileys.

You could show these boxes as any character you
wanted from the Spectrum’s character set, but we’re
going to implement a user-defined block for this task.
Not only does it look better, we can also get some
practice at creating our own characters.

Line 40 calls the “create characters” subroutine at

§

Translate
to

GOSUBs

Draw screen,
Iﬂfﬁ&ﬂu
variabjes

to be resey

Initialise
once only
variables

to disclose
locations

Reposition
Icmporary
STOP

line 400 to achieve this. The box is not the only shape
we need. We also need our Smiley, so they are both
defined in this routine which READs the DATA
contained in lines 3010 and 3020 and then POKEs i
into memory using the USR command. The box is
allocated to the character “a” (Ascii 144), and the
Smiley to the character “b” (Ascii 145).

418 FOR c=@ TO 7: READ bits: POKE US
R "a"+c,bits: NEXT ¢

420 FOR <=8 TO 7: READ bits: POKE US
R “b"+s,bits: NEXT s

3080 REM character data

3818 DATA 0,BIN QI111118,BIN BiL111110
oBIN @111111@,BIN @L111010,BIN B11111
18,BIN Bil11ti0,0

3020 DATA @,BIN @1111118,BIN 10811001
BIN L1141111,BIN 18111181,BIN 110080
11,BIN B11111180,0

Once the user-defined characters are set up we can
move on to set up the screen. The subroutine to do this
starts at line 600 and is called by line 60.

We first choose the INK then clear the screen. Then
the two scoring variables turns and smileys are

The Complete Spectrum /| 167

418 INK 2: CLS

420 LET turns=8: LET saileys=0

430 PRINT AT 1,8; INK 2; stsdnieeies
HH

648 PRINT AT 3,8; INK 29"#") INK)"
Seiley Hunt ®; INK 2;"#"

650 PRINT AT 5,B; INK 2;"seeesesiese
Heee"

468 PAUSE 108

478 FOR x=9 TO 18: FOR y=18 7O 19
4B8 PRINT AT y,x;CHR$ 144

498 LET blx-8,y-9)=0

TBE MEXT y: NEXT x

718 INK L3 PRINT AT B,9;"2123456789"
720 FOR y=18 TO 19: PRINT AT y,28;5y-
10: NEXT ¥

730 PRINT AT T,0143"x": PRINT AT 14,2
'y

740 INK 2¢ PRINT AT 11,0;"Buesses’:
PRINT AT 12,3;turns: PRINT AT 14,24
*Buileys®: PRINT AT 15,27;smileys
758 PRINT AT 17,2;"Best®: PRINT AT 1
By 3jbest

initialised so that each time the game is re-run they are
set to zero. Three lines of PRINT statements are next
used to put the title on the screen inside a box of
asterisks.

To create the grid we need to PRINT our box
character, CHRS 144, on the screen. This is achieved
with two nested FOR...NEXT loops. The first
generates the X location of each box, while the second
generates the Y.

These FOR ... NEXT loops are also used to place
Os in all the elements in our array b(). Line 690 does
the job. Remember, when typing in the NEXTs in a
nested loop, you must put them in reverse order to the
FORs, as in line 700.

We now need to print the numbers 0-9 for the X and
Y coordinates and this is done in lines 710 and 720.
‘We're using single digits rather than the numbers 1 to
10 because they can be entered using one key press
when it comes to the input routine.

The horizontal numbers are easily printed in a string
but the vertical numbers are slightly more difficult to
deal with. We obtain them by printing the
FOR ... NEXT variable y with an offset 10 subtracted
from it. The first time through the loop y = 10, so y—10,
0, is printed at location 10. The second time through y
= 11, s0 y—10, or 1, is printed at location 11 and so on
until y is 19 and 9 is printed.

Finally the subroutine prints a small x and y to show
the axes of the grid, and the headings for the scores.
Underneath these are the numbers that will hold the
scores, which at the moment hold the values we have
assigned to them.

Now enter line 65. This will stop the game once the
screen is set up.

&3 BTOP

Run the program and you should see on the screen,
in addition to 100 red boxes, the numbers 0 to 9
running across the top of the columns, and also down
the right-hand side, with a small x and y showing the
axes. If your screen differs in any way check your

typing for errors, including all punctuation marks.

Hide and seek

The next task is to hide the Smileys in the grid. This is
achieved using the subroutine starting at line 800 and
called by line 80.

81@ FOR s=1 TO 18

B28 LET saileyx=INT (RND&1@)+1: LET
saileyy=INT (RND#1R)+!

B30 IF bismileyx,smileyy)=l THEN B0
T0 820

840 LET bismileyx,snileyy)=i

850 NEXT s

A FOR...NEXT loop generates 10 random
numbers for smileyx and smileyy — the coordinates of
our smiling face. Then using line 840 we place 1sin the
elements in our array.

Line 830 checks to see whether any selected element
already has 1 in it, and if so it sends the program back
to line 820 until an array element is encountered with a
0. You can check whether your Smiley generator has
worked by removing line 65 and replacing it with line
B5:

B85 ETO0P

Now type in line 845, which is another temporary
line to be removed later.

BAS PRINT AT saileyy+9,smileyx+8)
INK By "a*

Now when you run the program you should find 10
asterisks in the grid boxes showing the locations of the
hidden Smileys. You can leave this line in for a while as
it will be useful later for testing purposes.

® Well, that's enough for one session. Next time we'll
progress on to the input routine, and show how to check
Jor any correct or incorrect guesses.

Guesses
@

Best

R FEEEETEETEEEE
* Smiley Hunt =

X R EREFTERETEEEES

*
@123456789

EEEEEE xEES
BEEREEEEE N
EEEEEEEEEE
EEEEE>ENER
IEEEEEEEEN
EE+EIEEEEER
EEEEREN:EE
*AER+NEEEE
S@a E+EEEEEERER

EEEE+EEE N

y Smileys
@

Oo-JOAEQD=E

The screen showing the hidden Smileys
168/ The Complete Spectrum

Give information about the
program to the user but not to
the micro.

Calls the subroutine that handles
the screen. This clears the
display and prints out the
possible answers. The variable is
used as GO SUB screen is much
easier to follow than GO SUB
1000.

Stops the program crashing on
into the subroutine definitions
that follow.

Section of the program that puts
the answers on the screen. These
stay on screen while another
part of the program moves the
asterisk about.

Asks the user to type in the

question and stores it in the
string array g§. Try leaving out
LINE and see what happens.

Writes the question at the
bottom of the answers.

Moves the asterisk up and down
the list of answers, eventually
stopping by one.

Forms a FOR ... NEXT loop
which cycles 10 times, moving
the asterisk each time.

Makes the noise. As y varies, so
does the pitch of the note
(measured in semitones above
middle C).

Asks the user for a decision and
stores it in g8 Maybe the
decision maker could be used to
supply the answer!

A mugtrap that ensures all
irrelevant replies are discarded.

Assign values to five numeric
variables. These values are in
fact line numbers and will be
used in combination with GO
SUB and GO TO commands.

Invokes the subroutine that lets
the user type in a question.

Has the subroutine at line
answer working out which of the
replies to select.

Each of the answers is displayed.
Their screen position is deter-
mined by using PRINT AT y.x
where y is the row number
(ranging from O to 21) and x the
column number (0 to 31) of the
first character in each answer.

Sends the program back to the
main program. It takes things up
again from the next line after the
GO SUB that called the
subroutine.

Deal with accepting the ques-
tion.

Calculates a new row number
for the asterisk using RND to
give a random number and INT
to make sure that the answer is
whole. The expression can only
give the values 1,4, 7, 10, 13 and
16 as results. Compare these
with the row numbers of the
ANSWETS,

Now you see it, now you don’t.
The asterisk appears and then
disappears, obliterated by
having a space drawn over it.

Determines whether the main
part of the program is repeated.

If the answer is Y for yes, the
program is sent back to the first
subroutine again.

By the time the program gets to
this line g§ must contain N or n.

alls, jumps

and loops

Continuing our exploration of
the Z80 instruction set - Part Five

WE have already used the simple, unconditional
CALL instruction. However it is possible to have a call
which is conditional upon a flag, so that the call is only
performed when the flag in question is set, or only when
it is reset.

Similarly, there are conditional RET instructions,
which test the condition of a specified flag and only
perform the return if the condition is met.

This is the way a program makes decisions. By
making a call or jump conditional, we can control the
flow of a program, causing it to do different things
under different conditions. To make a CALL
instruction conditional, a few extra letters are added to
the mnemonic:

CALL addr Unconditional call

CALL Z.,addr Call if zero flag set

CALL NZ.addr Call if not zero (flag reset)
CALL C,addr Call if carry flag set

CALL NC,addr Call if carry flag reset
CALL M.,addr Call if sign flag set

CALL P.addr Call if sign flag reset

CALL PE.addr Call if parity even (flag set)
CALL PO,addr Call if parity odd (flag reset)

There are special call instructions called restarts —
mnemonic RST — which can only be used to jump to a
few specific locations at the beginning of the memory.
These are used in the Spectrum ROM to call routines
that are used a great deal, like the character printing
routine, because the instructions only use one byte of
memory. Each of the eight restart opcodes has a fixed
call address, so no address needs to be specified.

A JP (jump) instruction is just like a CALL, except
that it doesn’t store a return address on the stack.
Jumps may also be made conditional on the state of the
flags. The mnemonics are as the list for the CALL
instructions, but substitute JP for CALL.

Relative jumps

There is a special kind of jump called a relative jump —
mnemonic JR. With this jump you do not specify an
address to jump to, but the number of locations to
jump, forward or backward. However since you have
to give this number in a single byte, you are limited to
255 possible locations, so you can only jump forward
by 127 or backward by 128. This number is called a
displacement.

The forward jumps are easy to calculate. You just
count the number of locations from the instruction
{(maximum &7F) that you want to jump. The location
in the memory just after the displacement number is
location zero in this count.

Jumping backwards is trickier, as the displacement

170/ The Complete Spectrum

has to be counted backwards from &FF. This is
slightly awkward, as relative jumps are most often used
to jump backwards, to perform small loops through
routines that need to be performed repetitively.

In Program I the column at the right shows the hex
number that would be entered as a displacement in the
relative jump to jump to the memory location on that
line,

Address code Displacement

7CFF 00 <— F7

D00 00 <4— FB8

D01 00 <4— F9 Jumpbelow comes
to here

D02) <4— FA

7D03 00 +<4— FB

D04 00 <4— FC

D05 00 <4— FD

7D06 18 <4— FE &I18isJR op-code

7D07 F9 <4— FF Displacement &F9
jumps back 7 places
to &7D01

JDO8 00 <«4— 00 Countingfrom here
— & TD08

D0 00 =4— 0Ol

TDOA 00 <«4— 02

7DOB 00 <4— 03

DOC 0 44— 04

Program |

In Program [, the memory is mapped in the same
direction that our hex handler presents it, but some
authorities would draw their diagrams the other way
up. Now is as good a time as any to go into the top and
bottom business. These terms are often applied to
memory addresses, and it can be confusing.

When someone says that an address is near the top
of the memory, does that mean it is near address zero,
or address 655357 You might think it means that the
top is at the beginning of memory, since when you step
through the memory with our hex handler (or any
memory listing utility for that matter) the earlier, lower
number addresses are at the top of the screen.

However, it is more likely to mean that the lower
number addresses are at the bottom, and the higher
numbers are at the top. High at the top, you see? I try
to avoid using the terms top and bottom, but when you
do come across them, make sure you know which way
round your interlocutor is facing.

As with the CALL and JP instructions, the JR
instructions can be made conditional on the state of the
flags.

There i1s a special loop-counting relative jump, the
DNIZ instruction. When this is encountered, the B
register is decremented, and the jump is performed only
if the result was not zero (conditional on the zero flag
being reset).

This makes it easy to set up-a loop to be executed
any number of times — up to 256 — just by loading the
count into the B register.

T—— kL

- e s L= S L i

w BT — e AL T |

L =5 m = W

The stack

We have already discussed the stack an
how‘CALL and RET instructions ai‘fbét it.ql':l:z
are instructions for incrementing or decremen-
tung the stack pointer, or loading it with the
contents of the HL register, but these are best left
alone tlmles$ You are certain you know what you
are doing. It is quite easy enough to make a mess
of the stack without manipulating the pointer!
PUSH and POP are the usual ways of getting
a number on to or off the stack, but there is also
an instruction, EX (SP),HL, which can be used if
you should ever wish to exchange the number on
the top of the stack with the HL register. You can

also do this with the stack and IX or IY.

Block instructions

These are like little subroutines all in one instruction.
They are used when the same manipulation needs to be
carried out on a block of memory locations.

LDIR and LDDR are the block moving
instructions, and the ones in this group that are most
often used. First you load HL with a “source™ address,
DE with a “destination” address, and BC with a
“count”. The LDIR instruction will repeatedly move
the byte from the address in HL to the address in DE,
then increment both of these pointers, and decrement
the counter in BC.

When BC reaches zero, LDIR stops its work and
control passes to the next instruction in the program.
The effect is to move a block of the size held in BC from
the address held in HL to the address held in DE.
LDDR is exactly the same, except that the two
memory pointers are decremented instead of
incremented, so they should be loaded with the end
addresses of the blocks rather than the beginning.

CPIR and CPDR work in much the same way as the
block moving instructions, but they are used to search
a block of memory for a byte of a particular value. The
start (or end, with CPDR) of the block is loaded into
HL, the size of the block into BC, and the byte to
search for into A. DE is not needed.

If a byte matching the contents of A is found, then
the instruction finishes with HL pointing to the address
after the one holding the byte with the zero flag set,
otherwise it finishes when BC reaches zero and all the
flags will be reset.

There are also non-repeating versions of the four
instructions above, which allow the programmer to add
more instructions of his own to make more
complicated decisions before looping back to process

another byte. The mnemonics are the same except for
the omission of the R.

IN and OUT

The IN and OUT instructions are used for
communication with peripherals. In the Spectrum this
means things like reading the keyboard and cassette
port.

The Spectrum does not use proper rigorous port
addressing for its peripherals, so more than usual care
must be taken in the selection of addresses for use with
IN and OUT. The address is not decoded into a unique
port number, instead a port is selected whenever a
particular bit (or bits) of the address are active.

A careless choice of port numbers may activate

peripherals you did not mean to disturb, giving
unexpected effects, especially with microdrives.
Reading any one of the eight keyboard port addresses,
for instance, will also read some bits from the MIC
socket.

With IN and OUT, the desired port address is put
either in BC, in which case any register can be written
to or read from the port, or the high byte of the address
is put into A and the low byte follows the instruction
opcode in the routine, in which case only the A register
can be read into or written to the port.

This last method is a hangover from the earlier 8080
processor which only had single byte port addressing.
The Z80 port can have a full 16 bit address the same as
the memory, but remember that the Spectrum
peripheral does not decode it properly.

There are Z80 IN/OUT instructions similar to the
block handling instructions which could theoretically
be used to read or write a number of adjacent portsina
systematic way. This might be very valuable in another
larger system, but it’s quite useless with the Spectrum’s
Mickey Mouse port decoding.

Interrupt handling

Interrupts are an extremely useful feature of most
microprocessors, and the Z80 has a versatile set of
interrupt facilities. The Spectrum only uses these in a
very simple way but many programmers have found
ways to add greatly to the Spectrum facilities by
changing the interrupt handling.

In the Spectrum, there is a 50-cycle clock which is
part of the hardware for timing the television frame
scanning. This clock is also connected up to give the
Z80's maskable interrupt pin a blip 50 times a second,
and every time this happens, assuming the interrupts
are enabled, the Z80 drops whatever else it may be
doing and has a guick read of the keyboard.

This is called a maskable interrupt because it can be
disabled by an instruction in software, to stop the CPU
being called away in the middle of a sensitive job (like
when it is loading or saving to cassette). There is also a
non-maskable interrupt, but this is not used in the
Spectrum, and cannot be useful without changes in the
ROM. The mnemonics for enabling and disabling the
interrupt are EI and DI.

There are three interrupt modes available in the Z80.
The mnemonics for selecting the modes are IM0,IM 1,
and IM 2. Interrupt mode 0 is not used in the Spectrum.
In systems where it is used, a peripheral may place a
single instruction (usually a restart) on the data bus and
force its execution with a signal on the interrupt pin,

The interrupt mode used by the Spectrum is IM 1,
which is the simplest of the modes. In this mode, the
ZB80 always executes a Restart 0038, which calls the
keyboard scanning routine at address &0038,
whenever an interrupt is received, enable state
permitting.

Interrupt mode 2 is the interesting one. In this mode
the CPU forms an address using a byte previously
placed in the I register for the high byte, and the byte
currently on the data bus for the low byte,

It then fetches a new address from the memory at the
address it has so formed, and this second address is the
one it calls for the interrupt routine. This means that
you could set up a whole page of addresses in a vector
table — with the page address in I — and the peripheral
would be able to control which address in the table the
CPU would pick to call, by putting the low byte of the
address on the data bus.

However IM 2 can’t be used in exactly this way in

The Complete Spectrum /171

Some programming aids

the Spectrum because the 50-cycle interrupt does not
provide a predictable low order byte on the data bus
and some peripherals, notably the Kempston joystick
interface, may in fact place almost any number on the
bus.

It is still possible to use IM 2 to capture the
interrupts, but you have to use a vector table of 256
bytes which all point to the same address, so that
whatever number is found on the data bus, the same
address will be found for the interrupt routine.

This is the technique many programmers use for
protection of commercial software, for interrupt driven
music, and for extending the Basic language
interpreter.

There are two special return instructions for use
when returning from interrupt routines. RETI and
RETN are used when returning from a maskable and
non-maskable interrupt routine, respectively. In fact
any return will work, but these make sure that the state

172/ The Complete Spectrum

Picturesqueé,
6 Corksecrew Hill,
West Wickham,
Kent BR4 9BB.

HiSoft Devpak,

180 High Street North,
Dunstable,
Bedfordshire LU6 1AT.
(0582) 696421

of the interrupt enable is restored to the state it was in
before the interrupt.

The final instruction associated with interrupts is
HALT. This stops the microprocessor in its tracks until
an interrupt occurs, which in the Spectrum will be
every 50th of a second with the interrupts enabled, or
never if the interrupts are disabled.

A non-maskable interrupt cannot be disabled, but
this is not used in the Spectrum. The HALT instruction
is used by the Basic when timing the PAUSE
command.

And finally ...

There are pairs of instructions for manipulating the
carry flag. SCF sets the carry flag, and CCF
complements (or inverts) it.

® In Part Six we will try some practical programming
and find out more about using the Spectrum ROM.

IT°S A DISCOVERY

' FROM ALL ANGLES

Whichever way you look at it, Discovery - the
multifeature Spectrum disc drive system from
Opus - is a lot of hardware for your money,
especially now we've made it even rnore
aftordable.

At an incredibly low £149.95 it explodes the myth
that you can't buy a full-blooded Spectrum disc
drive for under £200. In fact to beat our price you
might have to settle for a non industry-standard
stystern — microdrive, waterdrive or even a 28"
disc drive lookalike Hardly worthwhile perhaps
when for very little more Discovery offers not just
an industry-standard 3% " 250 K disc drive but all
these amazing features:

¢ DOUBLE DENSITY DISC INTERFACE

¢ JOYSTICK INTERFACE

¢ PARALLEL PRINTER INTERFACE

© COMPOSITE VIDEO MONITOR INTERFACE

® BUILT-IN POWER SUPPLY FOR DISCOVERY AND
SPECTRUM

¢ PERIPHERAL THROUGH CONNECTOR

® RAM DISC FACILITY

@ SIMPLE ONE POINT CONNECTION TO THE
SPECTRUM

AFEATURE-PACKEDSYSTEM
FORJUST £149.95 INCLUDING:

@ 35" 250K disc drive

® Double density disc interface

@ Parallel printer interface

@ Joystick interface

@ Video monitor interface

@ Peripheral through connector

® Built-in power supply

@ Utilities on ROM including format and verity
® RAM disc facility

® Random access files tully supported

@ Connections for second drive upgrade
@ Comprehensive user manudal

f;'l;,}tlx

s

ONLY £149.95

Discovery takes no USER RAM from the spectrurn,
Random Access Files are fully supported and
formatting and back-up routines are included in
ROM. You can also choose from a wide selection
of 314" disc software specially writien for the
Discovery games and business user.

Discovery’s price of only £149.95 even includes
VAT, free delivery and a full I2-month warranty.

As you can see Discovery is much, much more
than just a simple disc drive and it's available
from all good computer stores nationwide. Call
0737-65080 for details of your nearest dealer orto
order your Discovery direct.

Opus s:.ﬂha Ltd,

55 Ormside Way,

Hol industrial Estate,
Redhill, SURREY RH1 2LW.

Opus.

NOW A NEW DISCOVERY FOR THE 128K
SPECTRUM — CALL 0737 65080 FOR DETAILS

il LR I 2000

- FREE COMPUTER PROGRAMS - INSTANT SPORTS RESULTS - CONSTANT TV. UPDATE -
ALL FREE FROM ANY TV. VIA THE VOLEX TELETEXT - TELESOFTWARE ADAPTOR

A WORLD OF INFORMATION AT YOUR FINGERTIPS

TELETEXT

is extra information available day or night whilst television
transmitters are on air and without any charge and can now be
enjoyed without the need of having a special Teletext TV. set. All
you need is to plug in your VOLEX TTX2000S Adaptor to receive
4-Tel from Channel 4, CEEFAX or ORACLE services.

TELESOFTWARE

is the name for computer programs which are broadcast as
Teletext. Thus they may be loaded “OFF-AIR” into your Spectrum
instead of being loaded from, say, tape or microdrive. 4-Tel is
Channel Four's Teletext magazine and they are now broadcasting
FREE telesofiware. Because of the special nature of teletext these
programs are frequently updated - so you will not see the same
thing each time you run the program.

EASY TO SET UP AND USE

As simple procedure tunes the VOLEX Adaptor to your local
teletext channels. All loading of Telesoftware is via an index page
on 4-Tel which the Adaptor will automatically find and display for
you. Absolutely no modification is necessary to TV. or computer,
A comprehensive manual being supplied.

STORING PAGES

With the Volex Adaptor it is possible to send received pages to
your printer or to Microdrive for storage and later recovery,

THE VOLEX TTX2000S
IS THE ADAPTOR APPROVED BY CHANNEL FOUR TV.

TN

Simply write out vour oeder and post to
VOLEX ELECTRONICS, STOWELL TECHNICAL PARK,
ECCLES NEW ROAD, SALFORD, M5 2XH. TEL. 061-736 5822.

| enclose cheque/PO. payable o VOLEX ELECTRONICS
OR charge my ACCESS/BARCLAYCARDMISA number:

BN [TTTTTTTTTITT1T71]

MAME

ADDRESS

IS

I|
Jl " OF VOLEX GROUP p.l.c

) g‘ELECTﬂONICSE jk

EVERY WILD IMAGINATION NEEDS
A LITTLE SELE CONTROL.

As a Spectrum user you already enjoy some pretty
sophisticated equipment.

Soit's a pity if you are still missing that sophisticated, positive
control your equipment deserves.

Let's face it, there's not much joy in a joystick, and
keyboards can be all fingers and thumbs. Frustrating, especially
if your imagination is much faster than your fingers!

What you need is an AMX Mouse.

Tl Already thousands of Spectrum
CO%[;‘}EBLE owners have adopted an

AMX Mouse and wouldn't
be without it.

We didn't claim it was

‘the best input device’.

The press said it for us.
In fact it has received
outstanding critical acclaim, and
no wonder!
The AMX Mouse brings to Spectrum
users the same freedom and versatility
which has, up {0 now, been the exclusive
province of much more expensive computers.
S0, it's no surprise that nearly all the new 16 bit
State of the Art’ computers now come with a Mouse as standard.
Proof, if proof were needed, that the Mouse is here to stay.

There are three superb programs included with the Mouse.
AMX ART — Making full use of on-screen windows, icons, pull-
down menus and pointers, you'll be astonished at the quality of
the work you can produce, save and print using either ZX or
Epson compatible printers. AMX COLOUR PALETTE —The
wonderful pictures you create with AMX ART can be brought
vividly to life with rich vibrant colours. AMX CONTROL — Now
you can create a ‘Mouse environment’ in your own programs,
AMX Control adds 28 commands to normal Sinclair Basic.

SPECTRUM
128

L

There is also a growing list of programs available from other
leading software houses, which also utilize the Mouse, including,
Artist Il and the Writer from Softechnics, and Art Studio from
British Telecom’s Rainbird software collection, and many more
titles will be available soon.

Isn't it about time you trapped an AMX Mouse?

The AMX Mouse package costs only £69.95 and includes
the Mouse, interface which also includes a centronics printer
port and a fully illustrated operating manual.

This superb package is available from all good computer
dealers or direct, using the FREEPOST order form below.
® FOR INSTANT ACCESS/VISA ORDERS TELEPHONE (0925) 413501/2/3
I PLEASE RUSH ME POST FREE (Guantity) AMX MOUSE SPECTRUIM I
PACKAGES @ £69,95 EACH, INCL VAT & P&P
| ENCLOSE CHEQUE/POSTAL ORDER FOR £

orpesit vy I accessjor TR visa [ftick as appropriate)

ewonve [[[T T T T T TTTTTTT]

EXPIRY DATE

SIGNATURE

MNAME (Block Capials Please)

ADDRESS _

POSTCODE _

[PLEASE SEND ME FURTHER DETAILED INFORMATION ON THE AMS RANGE OF
~ PRODUCTS (Tick f appropriate)

AMX MOUSE

IMAGINATION AT YOUR FINGERTIFS

l SEND TO: ADVANCED MEMORY SYSTEMS LTD., FREEPOST, WARRINGTON Wad 18R I

.....
.........
'''''''''''''''''

T T L T o A R L A TN T B S TITR AT SR IR D e e

PR

AT LAST A SPECTRUM GRAPHICS PACKAGE THAT IS FUN AND EASY TO USE.
THE OCP ART STUDIO CONTAINS EVERY FEATURE YOU WILL NEED TO CREATE
BEAUTIFUL ILLUSTRATIONS. IT WORKS WITH THE AMX MOUSE FOR EVEN GREATER
EASE AND OUR HARD COPY OFFER MEANS YOU CAN HANG YOUR MASTERPIECE ON THE WALL
DO IT ALL - CREATE AN IMAGE. SHRINK IT, EXPAND IT, MOVE IT. ROTATE, COPY IT, COLOUR IT, SPRAY ON A PATTERN OR SHADE. MAKE

ELASTIC LINES, TRIANGLES, RECTANGLES, CIRCLES - STRETCH AND MANIPULATE. ADD TEXT OR CHARACTERS, UP, DOWN, SIDEWAYS - ANY
SIZE OR PROPORTION. ZOOM IN TO DRAW IN FINE DETAIL. SHRINK THE WHOLE PICTURE TO ADD BA CKGROUND.

Pull down menus. * lcon driven

1. joystick, mouse control

An extrernely powerfull utility which should be of use fo OR
professional artists and designers as well as the home user”
FOr use with disc or microdrive or
s and SP DOSd

Include

AMX). (Available Mail Order Only)

FOR 48K ZX SPECTRUM

A
U AT ;

I== ART STUDIO ¥

MAKE CHEQUES OR P.O. PAYABLE TO RA

—, BARCLAYCARD AND ACCESS ORDERS TE

|- |
f
\ f OAIMNEIB s iR hoT i
- # HAINBIH S a division of British Telecommunications plc

&

Combining
numbers bit by bit

Part 4 of the series that helps to
take the mystery out of the way
your Spectrum operates

NOT too difficult

IN previous articles we've seen that binary numbers
can be added and subtracted just as our more familiar
decimal numbers are. And, of course, we can multiply
and divide them.

There are, however, other ways of combining two
binary numbers that are extremely useful in dealing
with computers. They're also easy to use, so let’s have a
look at them.

Firstly, we'll see how we can NOT a binary number
— simple, one-bit numbers first. By the way, we're going
to be dealing exclusively with binary numbers this
month, so we can drop the % sign. The rules for doing a
NOT are simple:

If the bit is 1 then it becomes 0
If the bit is 0 then it becomes 1

If you like, the NOT converts a bit into its opposite.

SoNOT 1 =10
And NOT 0 =1

Why do we use tne word NOT? Well, mathe-
maticians often use the number 1 to mean TRUE and
0 to mean FALSE. So NOT 1 means NOT TRUE,
which means FALSE, which is 0. That is, NOT 1 is 0.
And, as NOT FALSE is most certainly TRUE, NOT 0
is 1.

If we are to NOT a binary number consisting of
several bits, we simply apply the rule for NOT to each
bit individually.

So NOT 10110010
becomes 01001101

Some people think of this process as “turning the
number on its head” — so it's sometimes called
inverting. Others call it “taking the complement of the
number”,

AND quite easy

NOT just works on a single binary number. However,
there are other sums or operations that have a set of
rules for combining two binary numbers. For instance
we can AND two binary numbers. Let's look at the
rules for ANDing a single bit with another bit,
When you think about it, there are four possible

combinations of bits that we could AND — 0 with 0. 0
with 1, 1 with O and 1 with 1.

We write that we are ANDing, say, 0 with 1 as 0
AND 1. The rules for ANDing are:

0 AND 0 = 0 (case a)
0 AND 1 = 0 (case b)
1 AND 0 = 0 (case c)
1 AND 1 = 1 (case d)

Notice that the only time the result is 1 (TRUE) 1s
when the two bits ANDed are both 1 (TRUE). This
helps us to see why we use the word AND (o describe
the operation.

If you think of the first bit as “this” and the second
bit as “that”, what we're doing when we're ANDing is
asking whether “this and that” is true

“This and that™ can only be true when both “this” is
true AND “that”, is true — hence the use of AND to
describe the process. For example, consider the
statement that it is:

dry AND sunny

This is true only if dry is true and sunny is true (case
d). If either of the two (or both) are false (cases a. b, ¢)
the whole statement is false, since it isn’t both dry and
sunny.

We can AND pairs of binary numbers of more than
one bit — just apply the rules of ANDing to each bit
individually, For example;

10010110
AND 10110011
gives 10010010

OR even simpler

We can also OR two binary numbers. The rules for
ORing a single bit with another bit are as follows (again
there are four possible combinations):

0 OR 0 = 0 (case ¢)
0OR 1 =1 (case)
1 OR 0 =1 (case g)
1 OR 1 = 1 (case h)

In this case, you only get a FALSE result (0) when
both bits are FALSE. If either or both bits are TRUE
(1) the result is TRUE. It's easy to see why we use OR
to describe this. If one, OR the other, OR both is true
the whole thing is true!

Let’s use the meteorological analogy again. Let’s
consider the statement that it is:

dry OR sunny

This is only FALSE when it is NOT dry and NOT
sunny (case e), otherwise it is TRUE (cases f, g, h).

To sum up, with OR, the whole thing is true if either
or both the things being ORed is true. As we did with
AND, we can OR pairs of numbers with more than one

The Complete Spectrum/ 173

bit — we just apply the rules of ORing to each bit
individually. For example:

10010110
OR 10110011
gives 10110111

EOR - an exclusive

Let’s continue our exploration of logical operations
with a look at EOR.

EOR stands for Exclusive OR — sometimes people
call it XOR. Either way it's the same thing. EOR is a
variant on the way we normally use the term OR. For
example, if I say:

Mike OR Pete wears glasses

this is true if Mike wears glasses, OR Pete wears
glasses, OR both Mike and Pete wear glasses.

. Now it’s this last case of OR we're interested in,
where they both wear glasses. EOR works just like OR
up to this point. However, EOR does not “allow” both
of them to wear glasses. Either one does, or the other,
but not both.

To put it another way, the one who wears the glasses
does so exclusively. If both are wearing glasses then
while:

Mike OR Pete wears glasses

would be true,
Mike EOR Pete wears glasses

would be a downright lie!

We could signify that a statement is true with the
letter T, and use F for false. At school our teachers used
ticks for truth and crosses for false. Since we're using
computers, though, we'll use numbers. 1 will denote
true and 0 will denote false. We've chosen 1 and 0
because they fit in so well with the binary system.

So, in the above example, if Mike has glasses we can
give Mike the value 1. If Pete hasn’t glasses we can give
Pete the value 0. Table I shows the idea, applied to each
combination of spectacle wearer. The ones and zeros
are known as truth values, states or conditions.

As you can see, there are four possible cases as far as
Mike and Pete wearing glasses are concerned. Neither

Wears glasses]
Mike Pete
Case | 0 0 neither wears glasses
Case 2 0 1 Pete wears glasses
Case 3 1 0 Mike wears glasses
Case 4 1 1 Both wear glasses

Mike wears Pete wears Mike OR Pete
glasses glasses wear glasses

0 0 0

0 1 1

1 0 1

1 1 |

Tabie II: Truth table for OR

this case, it's the truth table for OR. We can use it to
work out the result for any OR combination of two
bits. All we have to do is to find the row that starts with
the two bit values we’re combining and then look in the
third column for the result.

Table II1 shows a similar table for:

Mike AND Pete wear glasses

Again the first two columns are identical, covering
all four possible cases. The third column combines
them according to the AND rules.

Mike wears Pete wears |Mike AND Pete \
glasses glasses wear glasses
0 0 0
0 1 0
1 0 0
1 | 1
iz

Table IIi: Truth table for AND

Look again at Table II. This corresponds in a sense
to our binary rule for OR — you get a 1 if either or both
bits you combine contain a 1.

However if when talking about Mike and Pete you
mean OR in the exclusive sense, EOR, then the
combination of Mike wearing glasses and Pete also
wearing glasses would have to be false. This is because
EOR means either one or the other wears glasses, but
not both — it’s exclusively one or the other.

If we do mean EOR in this exclusive sense we’d write
our statement about them as:

Mike EOR Pete wear glasses
Its truth table is given in Table IV:

Table I: Mike EOR Pete wears glasses

can wear them as in case 1, where both Mike and Pete
has O value. Then again, Pete may wear them (1)
whereas Mike does not (0), case 2, and so on.

If you look carefully at the numbers involved in all
four cases, you see that we've got four pairs of bits we
can combine. Each pair of bits is made up of the “truth
bit” for Mike and the “truth bit” for Pete.

" Table 11 combines these pairs for all four cases in
accordance with our OR rules. We've stored the result
in a third column. We call such a table a truth table. In

174 [The Complete Spectrum

Mike wears Pete wears Mike EOR Pete
glasses glasses wear glasses
0 0 0
0 1 1 !
1 0 1 !
1 1 0

Table IV: Truih table for EOR

If you look at each case, you'll see that the only time
Mike EOR Pete is true is when either one or the other
wears glasses, but not both (or neither).

More formally, if both bits are 0, or both bits are 1
the result is 0. If either is 1 and the other is 0 the result is
1. To put it another way, if the bits are identical the
result is 0, otherwise the result is 1.

Let's have a look at how we EOR binary pairs of

nuj

ap,
s

nul

the
ths
ha

is |

let
it
res

wh
nu
un

S

T e e

numbers. It's the same as for OR and AND — just
apply the rules for EORing to each pair of bits in
succession. For example:

10110110
EOR 11100101
gives 01010011

Take a look at what happens when you EOR a
number with zero:

10110110
EOR 00000000
gives 10110110

that is, when you EOR a number with zero it leaves
that number unchanged. Also something interesting
happens when you EOR a number with itself:

10110110
EOR 10110110
gives 00000000
Whenever you EOR a number with itself, the result
is zero, This is as it should be: remember, when you
EOR two identical bits the result is zero.

Now you see it, now you don’t

Now EOR has a property which makes it quite useful —
let's look what happens when we take a number, EOR
it with a second number and then go on to EOR the
result once more with that second number.

First number 10101101
Second number EOR 01101000
Result 11000101
Second number EOR 01101000
Final result 10101101

As you can see, the first number has magically
re-appeared! This always happens when you EOR
twice with the same number as, in a sense, the two
EORings cancel each other out.

Table V summarises the process for all four possible
pairs of one-bit numbers. As you can see, for all the
cases the final resulting bit (when the first bit has been
EORed twice with the second) is identical to the first
bit.

Another way to think of it is that we are doing:

first number EOR second number EOR second number

Taking the underlined part first, we've already seen
that any number EORed with itself gives a zero result.
So what we’re really doing is:

first number EOR 0

which, as we've also seen, must leave just the first
number, since EORing with zero leaves a number
unchanged.

All this may seem rather abstruse, but actually it’s

\I_

quite useful. In fact we tend to use AND, OR and EOR
quite often in graphics, particularly in animation. To
simulate movement we frequently print something on
the screen, then after leaving it there for a while to
register on the eye, we blank it out and print it in a new
position and so on.

Sometimes we blank the character out by printing it
again in the same place but in the background colour.
We can, however, use EOR. If we use EOR to place
our character on the screen — never mind exactly how
for the moment — when it comes to wanting rid of it, we
can just repeat ourselves.

That is, we just EOR the character on again. As
we've seen, the effect of two EORs is to cancel each
other out. In this case, they cancel out to the original
background — and the character disappears. Don't
worry too much about the details, I just want to convey
the general idea.

The point is, logical operators, as AND, OR and
EOR are known, can be invaluable to both the Basic
and machine code programmer.

First Second Result Second Result
bit bit Ist EOR bit again 2nd EOR
0 0 0 0 0
0 1 1 1 0
1 0 1 0 1
1 1 0 1 1

Table V: EORing twice

The Complete Spectrum /175

xploring the 128

We continue our assessment of
the Spectrum’s latest model

The Spectrum 128 can function in two modes. In 48k
mode there is no difference between the 128 and the
Spectrum Plus, but in 128k mode there are a few new
facilities and one new keyword. In addition, the single
key entry of keywords has been junked — you now have
to spell out the keywords letter by letter.

The new functions are available as choices from a
pair of menus. The main start up menu gives you a
choice of an automatic tape loader, a tape volume
tester, a trivial calculator function to turn your £180
computer into a £5 calculator, entry to 48k mode (with
no way to return except reset) and finally, the 128k
Basic.

When in 128k Basic you have a full screen Basic

Sinclair has wisely decided to nfake this an
optional extra in Britain, unlike Spanish
retailers who inflict it on their cusiomers
willy-nilly. I see no reason to come up with the
extra £20 to buy one. The keypad does have some
exira editing keys not available on the keyboard,

but it is otherwise a waste of space.

176/ The Complete Spectrum

editor instead of the traditional two lines at the bottom.
Once you get used to seeing the cursor at the top of the
screen you can have great fun with the cursor keys,
moving all over the program lines in any direction to
make your editing changes. If you do have a keypad,
you can use a wider variety of cursor movement
controls to move (or delete) by a word at a time instead
of single characters, for instance. But even without the
keypad it is much easier to edit a program.

The Edit key is no longer needed to get a line down to
the bottom of the screen for editing, so now it is used to
call up the edit menu. From this you can select a
renumber function although this is very limited as it
only renumbers by 10, starting at 10, with no other
choices.

There is a print function, which actually lists the
program to the R§232 port — why not use LLIST? —
and, of all things, a function to restrict program editing
to the bottom two lines of the screen. Presumably this
last is meant as a panic button for agoraphobics. This
menu doesn't seem very well thought out, and it could
easily have been replaced by a few new keywords.

PLAYing around

The new keyword is PLAY, which is the command for
both the sound chip and the Midi output. PLAY is
followed by a string statement in the same way as a
PRINT command, and the contents of the string
dictate the output. The letters “a” through to *f’
represent one octave of musical notes, and the capitals
give the notes an octave higher.

Sharps and flats are indicated by the addition of
hashes and dollar signs, and lengths of notes are
indicated by a number representing a standard musical

St

ne

L

S

e SR e

_— W Wl W

e

i L

—"—_T_

interval, minim, crotchet, or whatever.

The whole thing is extremely powerful and easy to
program. Music strings can be manipulated in the same
way as other strings, and handed to the PLAY
command as a string variable or array. All the special
features of the chip are accessible via PLAY, including
white noise and enveloping. The basic two-octave
range can be shifted up and down the scale to cover
about eight octaves.

To direct the music to a Midi peripheral instead of
the built-in sound chip, you need only add a letter and
number to the front of the string. This makes the
changeover from chip to Midi a real doddle. Five out of
the 14 pages in the introduction pamphlet are devoted
to this command, which covers it pretty well.

The sound chip is one bit of hardware which Sinclair
apparently failed to “lock out” of 48k mode (see
below}), but of course PLAY won’t work in 48k mode.
The fact that it is available in this mode is probably
only of academic interest, but commercial program-
mers might put extra sound routines into 48k games to
use it when it is there, so giving enhanced sound while
still using 48k for compatibility with early models.

Compatibility

Despite the presentation of the Spectrum 128 as being
two computers in one box, some changes have been
made to the 48k mode ROM, so it is no longer exactly
the same as the old Spectrum. The only time this is
likely to cause trouble is with games that use a
particular, rather draconian, protection method
(checksumming the ROM), and a few that use the once
empty block between & 386E and & 3CFF to vector the
interrupts in interrupt mode 2.

Sinclair Research has gone to considerable lengths
to retain compatibility with the old software, to the
extent of purposefully not fixing any of the bugs from
the old ROM, but even so the changes mean there area
few games that will not work on the new machines. The
good news is that they claim that 97 per cent of the old
stuff will run.

The other side of the compatibility coin is how many
new programs are going to be written that actually use

R R ———

the big memory in 128k mode? The software houses
have come out with a nice bunch of 128k releases to
start with, but remember, anything they write with the
new features will not be saleable to the millions of
punters who already own the older models. Whatever
they produce from now on will run on the 128, but it
may well not use the big memory or the sound chip. It
may even run in 48k mode.

The hardware compatibility picture is less clear.
Sinclair has taken pains to “lock out” most of the new
features when the computer is in 48k mode to avoid
spurious effects from old software encountering
unexpected new hardware.

Apparently they have learned from all the trouble
everyone had when they made a minor change in the
ULA a few years back. Most add-ons will still work.
Microdrives and joysticks in particular will still
function in both 128k and 48k mode.

The casualties are likely to be the more complex
non-Sinclair items. Before you buy a disc drive or
maodem set-up it would be well to wait for the dust to
settle, and let the manufacturers sort out their patches.
One such peripheral which won't live under the new
regime is the VTX 5000 Prestel modem. This has a
shadow ROM that takes control at power-up, and
since the 128 powers up in 128k mode rather than 48k,
the VTX is required to get along with the new half of
the computer. This it will not do.

You get q jo; more, for

y a lot more '

perhaps too mych more .

Spectrum is still available,

lo come down now that
Some peo,_p.:'e may stiil

rubber key, vintage 1982 model, and won' bother

to change, but new customers
' | may wel|
top model is the only one to buy.y i

money. The “reql”
and the price is bound
a new model is oy,
be happy with their

The Spectrum 128 —
two micros on a
single circuit board?

The Complete Spectrum [I 77

We take an in-depth look at one
of the new breed of plotters

A PLOTTER is a computer-controlled device for
making drawings on paper. It does for computer aided
design what a printer does for word processing — by
providing a hard copy.

Traditional plotters are bulky affairs requiring a
framework surrounding a plotting surface the size of
the piece of paper they are to plot on. Serious use
generally dictates a paper size very much larger than
one expects a printer to handle, so plotters can be very
large indeed.

However, the Penman plotter described here is not
the traditional style of machine, but more like a Logo
turtle — in fact it can be used as a turtle as well as a
plotter. This versatility, coupled with the small size and
low price makes it much more appropriate for use with
a home computer like the Spectrum.

The feature that makes the Penman much more than
a turtle is the ability to sense the edge of the paper with
great accuracy. Once it has located itself in the home
position — by finding two edges of the paper with its
photosensors — it can find any point on the paper in
steps of a tenth of a millimetre. It does this by crawling
across the surface of the paper using two wheels
attached to very precise stepping motors.

The Penman’s movements are controlled by its own
on-board ROM, which interprets commands output
from the Spectrum via the Interface 1 RS232 port. This
can be done using the channels and streams, by
opening a stream to the “t” (RS232 text) channel, and
printing the commands to the plotter.

These commands are a string of letters and numbers
and are fairly easy to set up. For instance,
“DRM100,1200" sent through the RS232 link would
cause the plotter to lower the pen and draw a line from
its current position to a point 10mm to the right and
120mm up.

Ups and downs

In this command string “DRM" stands for “down pen
and relative move”. This command is like DRAW x,y
in Basic. If the move is made with the pen up, and an A
is substituted for the R to make it an absolute move,
then no line will be drawn and it will be similar to the
Basic command PLOT, x,y. Absolute moves are made
in relation to the home position, while relative moves
are made in relation to the current position of the
plotter.

Other commands allow you to select any of the three
different coloured pens or to draw curves and circles,
or even to get the plotter to print text in any size from
Imm to 127mm. Text is simply sent to the plotter as a
string and the characters are drawn by routines in the
plotter’s inbuilt ROM.

Further control options allow you to make the

178 / The Complete Spectrum

Put pen to paper

plotter behave as a turtle, or control the stepping
motors directly in “robotic” mode. The plotter also
sends information on its movements back up the
RS232 link, so you could even use it as a mouse. These
possibilities are for the more advanced user and may
well involve you in writing your own software. In
particular, it may not be possible to find a version of the
Logo language for the Spectrum which is set up to use
the Penman plotter as a turtle.

The Penman comes with a black perspex plotting
surface, a few sheets of the recommended paper and a
selection of colour pens. Replacement pens are easy to
get as you can use Hewlett Packard plotter pens or just
Pentel refills (available anywhere) with the supplied
adapters. Most paper will work with the plotter, but
you definitely get better results with the special
“Mellotex™ stuff.

A3 or A4 size paper is recommended, but the
commands actually allow for control over much larger
areas. The length of the ribbon cable that connects the
plotter “turtle” to the control box might prove to be the
limiting factor.

The 32-page manual is a nicely produced and very

- Chunnel 4

o —,

=X

EX

lin
re
re

tine
| REM Vector Hat R';‘; 59p": PR

10 OPEN# 43°C": OPE

M "

. T (COS
45 ."55‘3“3 WGOINT (COS X*90)"
mgHINT (SIN x*65)

40 NEXT j
50 PRINT#45 &
HRS 10;#43°V18

A¢HP 1,LVector Hat"#55C

complete piece of documentation, and there is a further
set of technical update notes running to 15 photocopied
pages. Five stars for the paperwork.

It is possible, using Interface 1 extended Basic, to send
all the necessary Penman commands to control the
plotter through the R8232 port. However this does
involve you in the learning of a new command syntax
and the rewriting of screen graphics routines in order to
transfer the graphics to paper. This process can be
made easier with a piece of software from Softest.

The Softest Penman driver provides extended Basic
commands to control the plotter with the more familiar
Spectrum PLOT, DRAW, INK, LPRINT and
CIRCLE commands. When this software is loaded, the
normal screen graphic commands can be used, with the
addition of an asterisk (*), to direct the output to the
plotter rather than the screen. This makes it easy to
rewrite your Basic graphic routines for hard copy, once
they have been set up and tested on the screen, merely
by adding asterisks to the Spectrum graphic
commands.

The Softest driver’s CIRCLE command in
particular is much easier to use than the counterpart in
Penman command syntax. This command, and the
RS232 cable that comes with the Softest software, are
enough to make the package a good buy.

This product is fairly new and there are still a few
rough edges, but Softest seem very keen to get the thing
right and actually worked over the weekend to fix a bug
I had pointed out to them.

The Penman is not a product specifically aimed at the
Spectrum, but meant to be used with any computer that
has an RS232 interface. This means that you will still
be able to use it if you should ever upgrade to another
computer. However, it also means that no account has
been taken of features that are peculiar to the
Spectrum.

One of these affects the text printing. The Penman
expects a line feed character, &0A, to be used at the
end of a line of text, to direct the plotter to start a new
line. Unfortunately, the Spectrum outputs a carriage
return (&0D) instead. The plotter interprets a carriage
return as an “End of Text” marker and returns to
command mode, interpreting the next line of text as a
command string. Naturally a muddle results.

It is possible to get around this by printing line feeds
(use CHRS 10) via the “b™ or binary channel (the *t”
channel won’t send them), but this will only work with
PRINT, not with LIST, which sends carriage returns

regardless. So you won't be able to get pretty coloured
listings from the Penman.

The other problem is accuracy. The Penman does
not have a frame, but keeps track of its movements by
counting its fractional wheel turns. Inevitably some
error is bound to creep in after a session of crawling
around on a piece of paper, especially if a wheel goes
over the edge of the paper. When accuracy is important
you must plan things so that the plotter never steps off
the paper — probably easiest done by using large sheets
— and you must “home” the plotter frequently during
the plot so that it can reorient itself at the paper edges.
The latest version of the plotter has an “autohome”
feature which will take care of this, once enabled by the
appropriate command.

Paper quality is very important, both for accurate
movement and smoothly drawn lines. If the paper is too
thin it can ruck up, and some photocopy paper has a
low friction surface which causes wheelspin and
consequent inaccurate movement. Running the wheels
across fresh ink is also to be avoided, but there seems to
be no way to plan around this.

ANY size

Suppliers

Penman Products
8 Hazelwood Close
Duminiou Wa}r
Worthing

W. Sussex

BN14 8NP

Tel: (0903) 209081

Softest
10 Richmond Lane
Romsey
Hampshire

505 8LA

Tel: (0794) 513676

The Complete Spectrum /178

Cassette
handling

All the facts you need to know
about those cassette commands
— at your fingertips

LOAD *”

J key

Loads from cassette. Must be followed by file name in
quotes, or just a pair of quotes — the empty or null
string. Further specifiers for code or data loading
optional. Basic programs load complete with variables.

MERGE *”

T key, Ext mode

Merges a Basic program from tape with one already in
memory. If there are any line numbers which are the
same in both programs, the one from the tape will
overwrite the one in memory. Won't work on machine
code or data.

SAVE “name” S key

Saves program to cassette with file name name.
Further specifiers for CODE and DATA may be used
to save other than Basic programs. All saves must have
a name enclosed in guotes. Basic programs are saved
complete with variables.

svstgm variablﬂﬁ

|

16 to turn off cassetie

ck on.
i to turn them bac
s. POKE with 6 to | ;
mFSSli:g_F; stop the names of files from m:‘:slsmf%]e:a
Wh::le page screen when loading r_nu_‘mp ::3 : mﬁ.:
1:50 interferes with the ‘:a‘.rcerr; t‘fttﬁ e
iti o be su

m when editing, s sure e
pmfﬁﬁn. Does not deal with “Start lizvmg.
meshs‘ any key'' message when
pr ¥

unfortunately.

23570: POKE with

180/ The Complete Spectrum

VERIFY “”

R key, Ext mode

Like LOAD, except that it does not transfer program
to memory, but reads the tape and compares it with the
memory contents. Use after a SAVE to make sure
program or code or data has saved properly. Also acts
on variables when verifying Basic, which causes
confusion.

LINE x 3 key, Ext mode

Placed after the name in a SAVE command to make
the program run from line number x when it is
subsequently loaded. Only works with Basic programs,
not machine code routines.

CODE x,y | key, Ext mode

Used following name in save or load to specify a block
of code instead of Basic program. The block runs from
x and is y bytes long, but x and y need only be specified
when saving.

DATA x() D key, Ext mode

Used following name to save or load the numeric array
x(). Only arrays may be saved. not ordinary variables.

DATA x$() D key, Ext mode

Used following name to save or load the string array
x3(). Only string arrays may be saved. not ordinary
strings.

SCREENS$ K key, Ext mode

Used instead of CODE 16384.,6912 (o save or load the
screen memory. Nice little shortcut.

USR “a”,168 L key, Ext mode

Used with CODE to save the UDGs (168 bytes,
beginning at the address returned by the USR function
for user-defined graphic a).

The COMPLETE

With Part V of The Complete Spectrum, you can see how its compre-
hensive coverage makes it the ultimate reference work on computing
with your Spectrum.

To keep your copies in perfect condition we have produced an attractive
binder to hold all six parts. It is bound in smart black pve, with the logo
printed in silver. All you have to do before inserting the monthly parts in
your binder is to remove the outer cover and the ‘Special Offers’ section
in the centre.

For addresses in the UK, the binder costs £3.95, or £6.95 for overseas.

If you missed Parts 1, Il, Il or 1V, or would like to subscribe for all the
remaining parts, you can do so by using the order form in the centre of
this issue.

Contents of Part lincluded:

@ A step by step guide to your first 30 minutes using the
Spectrum. @ Advice on saving and loading. ® How to avoid
errors when typing in listings. ® An investigation of the Z80,
the chip behind it all. ® Computer jargon clarified. ® And the
start of our regular series — a simple guide to basic Basic, an
introduction to machine code, and a how-to-do-it guide to
graphics.

Contents of Part Il included:

@ Discovering discs. @ All about microdrives. ® Upgrading to
48k. ® Composite video. ® Graphics commands. ® Books. ®
Animation techniques. ® And our regular series — basic Basic,
machine code, graphics - continue to explain the mysteries of
the Spectrum.

Contents of Part 1l included:

@ The Spectrum 128. @ Printers and Interfaces. @ All about
databases. ® Speech synthesis. @ Keyboard add-ons. @
Graphics commands. @ Animation techniques. @ And our
regular series — basic Basic, machine code, and graphics -
continue their investigation of the techniques of Spectrum
programming.

Contents of Part IV included:

® Inside the 128 @ The Mouse @ Joysticks @ Graphics
packages ® Spreadsheets ® Machine code graphics @ And our
regular series - basic Basic, and machine code continue the
exploration of your Spectrum’s hidden secrets.

InPart Six..

We bring to a close our exciting
investigation of the Spectrum world!

Adventures — what makes them such a popular pastime.

Top Adventures — a survey of some of the more popular games on the market.
Creating Adventures — writing your own or using a commercial product.
Classroom Spectrum — a look at the Spectrum’s involvement in education.
Educational criteria — the rules for writing first class educational software.
Inside Basic — how those vital keywords are stored.

PLUS pages of hints and tips to help you get the best from your Spectrum.

OnsaleJune 4

How does 20p a day

turn your micro into
a MAINFRAME?

Impossible vou say! Just
20p a day for all that power?

No it’s not a joke, nor a trick
question. The answer is
Micronet. The network that
links your computer by
modem to the most exciting
interactive database in the U.K.

All for 20p a day subscrip-
tion and the price of a local,
cheap rate telephone call*

So what does Micronet
offer that has excited 20,000
people to join.

Well, for a start Micronet is
an excellent way to keep
up-to-date with the very latest
information in computing.
Our database is continually
updated by our team of
professional journalists who
search out the stories behind
the news.

But Micronet is much more
than a news service - our
revolutionary mainframe
Chatlines give you the power
to hold real-time conversations
with up to 20,000 other users,
instantly.

Our free national electronic
mail system allows vou to
send and receive confidential
mail to friends and businesses
24 hours a day.

You can even take part in
the latest multi-user strategy
games. Starnet for example,
allows you to compete against
hundreds of other “Star
Captains” for domination of
the galaxy.

Or win big weekly cash
prizes by competing in the
‘Round Britain Race’ which
makes use of the latest
viewdata technology to
challenge you to find secret
locations.

Every day new fiee and
discounted software is made
available for downloading
direct to your micro.

Teleshopping is the ultimate
way to seek out high street
bargains... or holiday and |
hotel bookings. .. computer
dating. .. rail and airline
information... Jobsearch...
homestudy and schooling...
ideas, information and

MAKE THE RIGHT
CONNECTIONS

*For 98% of telephone users
Prestel is a trademark of British
Telecommunications plc on Prestel.
Micronet 800, Durrant House, 8 Herbal Hill,
London ECIR SE). Telephone: (01-278 3143,

entertainment facilities too
numerous to list. As if all this
wasn't enough you can also
access Prestels'” enormous
database which is included in
your subscription.

Micronet: the stimulating,
challenging and informative
way Lo add a whole new
dimension to your micro. All
you need is a modem. So cut
the coupon today for vour
information pack.

For just 20p** a day can you
afford to be left out in the
power game”?

[Ty Micranet 800, Durrant House, 8 Herbal H

Lond R AES. Tele

| NAMIE

I TELEPHONI AG

I MAKE AND MODEL OF MICRO

|
|
|
|
|

