3

- The COMPLETE

Spectrum How to succeed
In school "G, at Adventures

Issue by issue The Complete Spectrum has
been building up to be the ultimate reference
work on Spectrum computing...

Your first 30 minutes @ Saving and loading advice Discovering discs @ Microdrives @ Upgrading to 48k
Avoiding errors when typing in listings @ The 280 chip Composite video @ Graphics commands @ Books
investigated ® Computer jargon clarified @ Simple Animation technigues ® Plus Basic, machine code and
guides to Basic, machine code and graphics. graphics,

The 128k Spectrum @ Printers and interfaces

nside the 128 ® The mouse @ Joysticks @ Graphics

Databases ® Speech synthesis ® Keyboard add-ons packages @ Spreadsheets ® Machine code graphics
Graphics commands @ Animation techniques @ With @ With basic Basic, machine code
Basic, machine code and graphics tutorials. and animation secrets.

Please use
the order
form on the
inside back
cover

b=

Prestel and Micronet @ Modems and electronic mail
Hacking @ How Basic works @ Lightpens and graphics
tablets @ Machine code graphics @ Structured
programming @ The 128k Spectrum's Basic @ Plotters
Plus Basic and machine code tutorials.

.

-

rt

182

Beginners

More for beginners: Two dimensional arrays and conditional statements explored.

Spectrum in School

How the Spectrum adds impetus to learning, and the techniques for effective software.

How Basic Works

Our investigation of Basic continues with a look at how variables are stored in memory.

Binary Breakthrough

Practical uses of AND, OR and EOR round off our series on using binary numbers.

e

Into Adventures

What makes micro-adventures so fascinating? An introduction to this exciting world.

Creating Adventures

Want to write your own adventure? Here’s a few hints plus a testing little game.

Top Adventures

In a detailed survey of top adventure games we discover there’s something for everyone.

Machine Code

We show you how to make full use of the input and output routines based in the ROM.

Program Style

Put the finishing touches to Smiley Hunt, a structured program explained in detail.

Machine Code Graphics

We put theory into practice and provide the routines to move a sprite around the s::recn,J

SEEANE-B NS

r
p-

=

Index
A comprehensive summary of the contents of all six sections of this partwork.

Ay v 0 R aEu e wericl best -sefing compuer

= Doigbase Publications Lid. No maierial
may b reprodicced in whole or in part withot
writlen permission. While every care is taker,
the publishers cannot be held responsible for
any errors in articles, lisiings or adveriise-

The Complete Spectrum has been written by: Mike
Bibby, Pete Bibby, Henry Budgett, Mike Cook, Mike
Cowley, lolo Davidson, Kevin Edwards, Peter
Freebrey, Terry Greer, John Hughes, Alan McLachlan,

is published by

HEHIE.

Roland Waddilove.

Database Publications Lid,
Europa House, 68 Chester Road,
Hazel Grove, Stockport SK7 SNY.
Tel: 061-456 8383

Mews trade distribution by:
Europress Sabes & Distribution Lid.
Unit 1, Burgess Road, Ivyhouse Lane,
Hastings, East Sussex TN35 4NR.
Tel: 0424 430422,

Design: Heather Sheldrick. Photography: Paul Francis.

Illustration: Gordon Brookes, Bill Worthington,
Pamela Dunkerley, Tim Leckey.

’,

The Complete Spectrum | 181

The end of
the beginning?

The last part of the series that
aims to explain the elements of
Basic for absolute beginners

REMEMBER our six runners from last time? Until
now we've used two arrays to store the details about
age and time, one for each. When we talked about time
we looked at (), when it was details of the runners’
ages we wanted we looked at al). We switched
between arrays as needed. However it is possible to
hold both lists of data in one array, only now the
subscript holds two numbers.

The first number is the “switch” which tells us which
set of information we want. The second number is just
a pointer to the particular bit of data we're after.
Program I shows one of these two dimensional arrays,
as they are known, in action.

10 REM Program I

20 DIM (2,6)

30 FOR p=1TO 2

40 FOR g=1TO 6

50 READ rip.q)

60 NEXT q

70 NEXT p

80 PRINT “Pick time/age 1/2"
90 INPUT choice

100 FOR n=1TO 6

110 PRINT richoice,n)

120 NEXT n

130 DATA 20,21,25,27,30,33
140 DATA 35,35,55,20,27,24

Program [

The DIM of line 20 works just as before except now
it dimensions a two dimensional array. There are 12
elements of this array (2 times 6) but they're not
numbered from 1 to 12 as was the case in our previous,
one dimensional arrays. In fact there are two one
dimensional arrays parallel to each other, each holding
six items of data. The second dimension refers to the
fact that to get at a particular element you have to first
choose a one dimensional array and then specify which
element of it you want to deal with.

Incidentally, just because it is a two dimensional
array doesn’t mean you're stuck to a choice between
two arrays. You can have as many as you want, always
provided that your Spectrum’s memory doesn’t run
out. So you could have:

DIM w(3,9)
dimensioning a two dimension array of 27 elements or:
DIM d(5,50)
producing an array of 250 elements (five parallel
182 / The Complete Spectrum

arrays each holding 50 elements). For the moment,
though, we’ll stick to our simple array with 12
clements.

If you look at the data lines of Program I you should
be able to see where the figures that are going to fill the
array come from. The first six are the runners’ times,
the second their ages.

The nested FOR ... NEXT loops should hold no
fears for you. The outer loop — control variable p -
circles twice. For each turn of the outer loop the inner
loop — control variable g — cycles six times. Think what
effect this will have on the READ line:

50 READ r(p,q)

At the beginning p is 1 so, as the inner loop cycles,
values are read into the elements r(1,1) to r(1,6). You'll
see that this will read the times into those elements with
1 as the first figure in the brackets. Once this is done the
second loop puts the data for the ages into the elements
from r(2,1) to r(2,6). So if you want to talk about times,
the first number inside the brackets is 1. If it's ages
you're after then it should be 2. Figure I shows the
structure and contents of r() after the program has
been rumn.

d number.

r()] 1 2 3 4 5 6
T, =

1 |20 121|352 | 30| 33

irst
n

Sy o N
[2 [as [as]ss [20 [27 | 24
i

Figure II; The array r() and its contents

Once the data is actually in the array it's easy to
manipulate, as the final loop shows. Here it gives you
the choice of which data you get, the times or the ages.
It’s all there held in one array, r(), available at the
drop of a FOR ... NEXT loop — provided that you
have the appropriate numbers in the subscript.

Explore the two dimensional array that’s been
created. Try lines like:

PRINT r(1,3)
PRINT r(2,2)

until you can see how it’s built up. And then, if you're
feeling ambitious, try using two dimensional arrays in
your own programs. You'll find that they are powerful
ways of summarising — in a very flexible way — data
given in table or row/column form.

And now string arrays

Having dealt with numeric arrays it should come as no
surprise to learn that we can have string arrays. Like
numeric arrays, the names of string arrays have to be

rele

giv

B

pEseRE

‘

ol

just one letter, with the dollar sign, $, tagged on so the
Spectrum knows it's dealing with strings, not numbers.

The main difference between the two is that while
numeric arrays hold numbers in their elements, string
arrays hold characters. Let’s set up a string array with:

DIM g8(5)

We now have a one dimensional string array
consisting of elements g8(1), g8(2), on to g§(5). Each
of these can hold a character so let’s fill them with:

LET g$(1)="a"
LET g$(2)="1"
LET g$(3)="+"
LET gS(4)="M"
LET g§(5)="7"

You can now retrieve each character using the
relevant number in the subscript. So:

PRINT g$(3)
gives you a plus sign while:
PRINT g$(5)

returns 7.

This is just as it was with numeric arrays. However
string arrays have another trick, just for themselves.
Try:

PRINT g$
and you'll see:
al+M7

appear on screen. So, with string arrays, you can not
only address each element separately but you can use
the root name to get all the elements at once. And this is
the way that string arrays are mostly used. Set up
another string array with five elements using:

DIM d$(5)

At the beginning, each element is filled with a space —
corresponding to the elements of numeric arrays being
initialised to zero. Now give it a string to hold with:

LET d$=*KEVIN"

Notice that we're referring to the whole array by its
root name. This doesn’t worry the Spectrum which
takes the string and slots it into the five elements of the
array, character by character. Figure IIIa shows the
characters in their array positions.

Now store PETE in the array with:

LET d$=“PETE"

This has only four characters, yet the array has five
elements. What happens? The answer is that the “left
over” elements are filled with spaces. In this case, as
shown in Figure IIIb, there’s only one space padding
out the array.

Of course it could happen that the string being
assigned to the array is too long, such as:

LET d$=“ROLAND”

which attempts to put a six letter string into a five
element array. Something’s got to give and ROLAND
gets his end lopped off as Figure ITIc shows. The moral
is, always make sure your arrays are long enough to
take all the characters in the strings you want them to
hold.

It all depends

Have you noticed how relentless the Spectrum is? It
starts at the beginning of a program and works through
it line by line, obeying each and every line. A
FOR ... NEXT loop might send it round the houses
but each line in a program is obeyed at least once.

However sometimes you don't want this to happen.
It can happen that you only want a line to be obeyed if a
certain condition is true. A bank manager might want
his computer to tell him if a customer is overdrawn. But
he only wants the line:

PRINT c$:* is in the red”

obeyed when ¢§ really is in the red. If not then that line
is not to be obeyed.

Spectrum Basic allows for this type of thing by
having the IF . .. THEN statement. It works along the
lines of:

IF condition is true THEN do something

evaluating the condition if, and only if, the condition is
found to be true, obeying the rest of the line after the
THEN. If the condition isn’t true then all the code after
the THEN is ignored.

Figure IV shows the comparisons that can be used
line in Program II to:

= Equal to
<> Not equal to

< Less than
<= Less than or equal to

> Greater than

= Greater than or equal to

Figure VI: Operators and their rules

10 REM PROGRAM II

20 FOR n=1 TO 10

30 READ number

40 IF number=5 THEN PRINT number; “is §!"
50 NEXT n

60 DATA 0,1,2,3,4

Figure III: The string array d§

70 DATA 5,6,7,8,9

Program IT
The Complete Spectrum [183

The comparison is made in line 40. Here the contents
of a variable, number are compared with the number 5.
It’s easy to see that if number holds 5 then the condition
is true (5=3) and the rest of the line is obeyed. Notice
that as the FOR . . . NEXT loop is obeyed, 10 numbers
are read into number. However it’s only when the
condition is true (when number=5) that the message is
printed.

Following close on the comparative operator = (as
these things are known) is < >. You'll find it on the W
key. This is the opposite of = and means,
unsurprisingly, “is not equal to"”. Try changing line 40
of Program II to:

40 IF number< > 5§ THEN PRINT number:*
is not five”

and you'll see what it does. Now the condition is true
whenever number is not equal to 5. When this is the
case the message is displayed. When number does hold
5 then the condition can't be true (how can you have 5
not equal to 5?) and the rest of the line is ignored. So
you get a message for every value of number but 5.

The next operator we'll meet is < which means “less
than™. You'll find it sharing the R key, Again, alter th=
line in Program II to:

40 IF number < 5 THEN PRINT number:*
is less than 5"

and see what happens. Now the rest of the line after the
THEN is only obeyed when number holds a value less
than 5. The result is that the program gives messages
for values of 0 to 4 but none after that. Don’t get the
*less than™ operator, <, confused with the “less than or
equal to” operator <=. Found on the Q key, this is
subtly different in its effect. It also allows the case
where number is equal to as well as less than 5. If you
try:

40 IF number <= 5 THEN PRINT number:*
is either less than 5 or equal to 5%

in Program II you'll see that now you get the numbers 0
to 5 displayed.

Since we've had a “less than” operator it seems
logical that there should be a “‘greater than™ operator.
There is, it’s >, found on the T key. Using:

40 IF number > § THEN PRINT numbers*
is greater than 5"

will give you 6, 7, 8, 9 as your reward, all the values of
number that are greater than 5.

Not surprisingly there’s also a “greater than or equal
to” operator. It’s >=, to be found lurking on the E key.
A quick alteration to Program II in the form of:

40 IF number >= THEN PRINT number;*
is either greater than 5 or equal to 5™

will show you what it does. Now the outputis 5, 6, 7, 8,
9. The “equal to” part of the condition has accepted the
case where number is 5.

Try altering the comparisons made in line 40, using
different values. Also, you can change the numbers in
the data lines and see what happens. Be sure to note the
difference between < and <=, > and >=. It may seem
small but can be a potent force for program faults.

Notice that the operators are in opposites. If

184 / The Complete Spectrum

something is <= to something else, it can’t be >thanit.
That is, if number is less than or equal to 5, say 4, then it
obviously isn’t greater than 5. Similarly if it’s greater
than or equal to 5, say 6, then it can't be less than 5. The
conditions are mutually exclusive. Don’t worry if this
seems a bit academic. When you come to use
IF ... THEN to get your programs to take decisions,
you’ll understand.

In the above programs we've just compared the
value in a variable with a number. We could also
compare two variables or an expression such as:

IF oneVariable > itwoVariable THEN ...
IF 2*oneVariable < 3*twoVariable THEN...

Also the examples chosen have used the
IF ... THEN conditional statement with just a PRINT
after the THEN. There can in fact be all kinds of
keywords after the THEN such as LET or CLS. You
can even send the program hurtling all over the place as
we’ll see shortly. Which ever way they are used,
IF ... THEN statements are extremely important.
They allow our programs to make choices and so
become much more flexible and useful.

Often we don’t want to test for just one condition, we
want to test for two. For example, looking at Program
II again, we may want a number that lies between 4
and 7. Here there are two conditions to be considered.
We want number to be greater than 3 and at the same
time number has to be less than 8.

If you use:

40 IF number>3 AND number<8 THEN
PRINT number

you'll see how this is done. All we've done is to join our
two conditions with a logical operator, AND. Now
both conditions have to be true before the code after the
THEN is obeyed. The result is that 4, 5, 6 and 7 are
returned.

Try the following line:

40 IF number>=3 AND number<=8 THEN
PRINT number

Can you see how both conditions combine to give 3,
4, 5, 6, 7 and 8? While we often want two conditions
both to be true before we go on to the bit after the
THEN, sometimes we want the line to be obeyed if one
or other or both of two conditions are true. We may
want to go out if it’s sunny or dry or both. Here only
one of the conditions has to be true for us to be out of
the door. The only way we stay in is if both conditions
are false — if it’s wet and dark.

There’s a logical operator to deal with this, the aptly
named OR. You can see it in action with:

40 IF number< 3 OR number>7 THEN PRINT
number

Here the line is obeyed if number is less than 3 or
greater than 7. The result is that 0, 1, 2, 8 and 9 appear.
Can you explain why:

40 IF number<=3 OR number>=7 THEN
PRINT number

gives 0, 1,2, 3, 7, 8 and 9? As with single comparisons,

pri
int

Jju
Bl

pr

try changing Program II to try different combinations
of conditions acting on different numbers.

String comparisons

Just as we can compare numbers and numeric
variables, so we can compare strings. This is possible
because, as you know, computers work with numbers.
Micros store strings as numbers and when we ask our
Spectrum to compare, say, A with B it compares the
numbers it holds for the strings.

Happily we don’t have to be concerned with the
numbers, we can just use the strings with the
comparison operators. All we have to know is that a
space has the lowest number, the numbers come next,
then capital letters then lower case letters. And we can
think of the < operator meaning “comes before™ and >
as meaning “comes after”. So comparing strings you
should see that:

a>l
a>A
a<z
a>l
1<9
ab<ac
aa>aA

are all true. You’'ll notice that some of the above are
more than one character long. To compare two strings
the Spectrum looks at the first character. If these are
the same then it goes on to the next character, if any.
Program III not only shows you string comparisons
in action, it also lets you explore the way the Spectrum
orders strings. Play around with it until you've grasped
how it does it. And then, if you're really keen to test
what you've learnt, try writing a program that will take
five strings and display them in alphabetical order.

10 REM Program II1

20 PRINT “Enter two strings™

25 INPUT a$,b$

30 IF a$<b$ THEN PRINT a$;# comes before ™
b%

40 IF a$>b$ THEN PRINT a$;“comes after ";b$
50 IF a8=b$ THEN PRINT * The strings are
the same™

Program [I]

Subroutines at work

When we combine subroutines with IF .. THENs we
can get some very powerful structures. Program IV
does just this.

Although in this case the subroutines are fairly
trivial the point to grasp is that each is completely
different and you choose which is to be performed. So
one program could do three or more different things at
your whim. In the real world, where the subroutines
might contain some quite powerful code, this makes
them both powerful and flexible.

Another property of subroutines is that they allow
programs to be planned and coded by dividing them
into simple steps. Take a look at Program V.

This impressive bit of code doesn’t do anything! It’s
just a dummy but it reflects a program that might be
written — one that gets information, processes it and
gives the result.

However once you've got a dummy like this, the
problem has been broken down into four areas, each of

10 REM Program IV

20 LET first=200

30 LET second=300

40 LET third=400

50 PRINT “Polite/Complimentary/Rude
1/2/3"

60 INPUT choice

70 IF choice=1 THEN GO SUB first
80 IF choice=2 THEN GO SUB second
90 IF choice=3 THEN GO SUB third
100 STOP
200 REM Polite
210 PRINT *It’s nice to meet you™
220 RETURN
300 REM Complimentary
310 PRINT “It’s wonderful to meet you”
320 RETURN
400 REM Rude
410 PRINT “Meeting you is the pits”
420 RETURN

Program IV

10 REM Program V

20 LET start=100

30 LET getlnfo=200

40 LET doSomething=300
50 LET giveResults=400
60 GO SUB start

70 GO SUB getlnfo

80 GO SUB doSomething
90 GO SUB giveResults
99 STOP

100 REM initialise

110 PRINT *start”

120 RETURN
200 REM get information to work on
210 PRINT *“getinfo®
220 RETURN
300 REM process the information
310 PRINT *doSomething™
320 RETURN
400 REM display the results
410 PRINT “giveResults”
420 RETURN

Program V'

which can be worked on separately. If you wanted you
could deal with the get/nfo subroutine, leaving the rest
of the program as it is.

You might even break this down into several
subroutines and solve their coding one at a time. It
really makes things easier doing it this way.

Try writing a program like this yourself. Once
you’ve seen how the old principle of “divide and
conquer” works in programming it’s unlikely that
you'll try any other method.

The end and the beginning

And this is where our course on beginner’s Basic ends.
Yet it’s only the start. Although we've covered the
basics of Spectrum Basic there’s a lot more to learn.
And even if you don't bother going deeper into the
language, you know enough to write some very
satisfying and practical programs. So, you've got the
knowledge, you've got the Spectrum. The rest of it is
really up to you.

The Complete Spectrum [185

Spectrum

This low cost micro can provide
a high degree of learning
impetus in the classroom

IT is a bit of a mystery as to why the Spectrum hasn’t
achieved a higher penetration into English schools.
Statistics published by the Microelectronics Education
Programme showed that the BBC Micro dominates the
English educational field. This isn’t the case in
Scotland, where the Sinclair machines, both ZX81 and
Spectrum, had a much bigger impact. There, the use in
education reflects quite closely the overall market share
of the Sinclair machines.

The reasons for this revolve around three areas — the
keyboard, microdrives and lack of educational
software. But the Sinclair Spectrum has a valid role in
all areas of education.

Let’s start with the keyboard of the Spectrum series.
The original “dead flesh” keyboard did not inspire
confidence when compared with the real keyboards of
the BBC Micro or Electron. However, Spectrum Plus
and 128 machines are a little better, and I've even heard
some teachers say that the old style keyboard was
easier for some children to use, as the keys were
separated from each other on the keyboard by a
distance sufficient to ensure that two or more keys
weren't pressed at once.

Microdrives have been generally accepted now as a
mistake. Educationalists were quite rightly concerned
about the long term reliability of such an innovative
piece of technology, and the high price of blank
cartridges and their relative vulnerability were big
problems.

Finally, software. Education authorities buying
computers are effectively buying engines on which to
run educational software. In the classroom a large
software base is vital, and the Spectrum has never had
this in the education field, despite the huge quantity of
programming talent that exists for the machine.
Perhaps one of the reasons for lack of software
development on the Spectrum is that the machine,
when running in Basic, is painfully slow when
compared with the BBC Micro. This has led to much
educational software for the Spectrum involving more
machine code routines than a corresponding piece of
software on the BBC Micro, thus increasing
development time and costs.

In addition, Spectrum Basic doesn’t possess some of
the features of BBC Basic, such as decent run-time

error trapping — again features which can be added
from machine code. Lastly, the graphics on the
Spectrum suffer from the way in which the colour
attributes are related to the character square rather
than the pixel.

But these technical problems can all be overcome.

186/ The Complete Spectrum

In schools

There has always been a “chicken and egg” situation
with regard to computers and their software. As long as
there aren’t many machines in education publishers
will obviously think twice before investing time and
money in developing software for a small market.
However, if the software doesn’t exist, the user base of
the machine is unlikely to get any bigger. As we'll soon
see, some software houses and users have been brave
enough to try and break this cycle.

The plus points

It mustn’t be forgotten that the Spectrum offers some
good advantages to the educationalist, starting with
cost, and this is continued with the later versions of the
machine. For the price of a single BBC Micro it is
possible to get two or three Spectrum systems. This
offers a better pupil to computer ratio, giving the
children obvious advantages — in any given period
more children can be using a computer.

The larger amount of memeory in a Spectrum also
allows larger programs to be used without the need for
disc systems. Finally, the use of a computer which has
received a high home penetration might facilitate the
eventual development of software and resources for
education that are as usable in the home as they are in
the classroom. Of course, care needs to be taken here to
develop educationally valid materials that can be used
without the guidance of a teacher, but this is an
interesting field for future work.

Down to work

So, having set the scene, what can schools do with
Spectrums? Well, the answer is virtually anything that
can be done on the BBC Micro. Software does exist for
the Spectrum, but you have to search around for it. A
useful address for teachers interested in the educational
use of the Spectrum is Resource, Exeter Road, off

Coventry Grove, Doncaster DN2 4PY. This
organisation, funded by some of the South Yorkshire
Local Education Authorities, has produced Spectrum
in Schools newsletters and good quality Spectrum
software. In addition, various other software houses
have versioned their programs to run on the Spectrum
and a vast industry consisting of companies producing
a range of add-on peripherals for the Spectrum has
Sprung up.

Primary level

Let’s start with primary education. Logo has rightly
become an important educational tool in this area. This
“turtle graphics” language allows children to use the
computer as a tool with which to explore various
concepts, especially those of a mathematical nature.
Sinclair produced a full version of Logo, including the
list processing features of the language as well as the
more usual turtle graphics. It's not a cheap package,
but the educational advantages offered by Logo are
extremely valuable,

Also, word processors like Primary Pen, a primary
oriented word processing package, allow the Spectrum
to be used as a creative writing tool. Other word
processors, such as Tasword, can also be pressed into
service. Of course, word processors need printers for
output, and here a variety of companies have produced
software and hardware to allow the Spectrum to drive
Epson or similar printers.

A third type of software that has proved valuable at
this level has been the database. Many teachers
working with the Spectrum started off with Vu-File,
and were able to introduce the database into project
work, using the Spectrum to store all sorts of
information. An early educational database for the
Spectrum was Factfile, produced by MEP and
published by Cambridge Microsoftware.

Resource has produced a series of well-received

dedicated databases such as Birdwatch, which allows a
database of information about birds to be accessed and
updated by children with great ease. The package also
includes a graphs pack, allowing the graphical display
of information held in the database. Another is Library,
which is designed to hold information about books,
allowing children to search the database for books
which may be of use in their current work.

Other types of primary educational software are also
available for the Spectrum, covering a wide range of
different fields. Software houses such as Blackboard
Software, Sinclair-Macmillan and Ginn and Company
have all produced some software in the past. The
teacher wanting to use the Spectrum in education will,
though, have a harder search for worthwhile material
than his or her colleague using BBC Micros.

Databases down the telephone

The Spectrum educationalist will find no difficulty in
accessing databases such as Prestel, Ceefax or Oracle.
A variety of modems are available allowing access to
the Prestel database which could easily provide a vast,
if a little costly, information resource. In addition,
Teletext decoders are available allowing access to what

- David Dodds, former headmaster of Thurcroft School

in Rotherham, called Freefax — the pages of Ceefax
and Oracle. He argued that the educational resource
provided by these systems provides a useful source of
national information that can be downloaded, printed
out and used in project work.

Secondary level

As we move up in age the software availability
decreases. Secondary level Spectrum software is
nowhere near as widespread as the primary level
material, so it’s not surprising that relatively little work
has been done with Spectrums in the general
curriculum. However there is one area in which the
Spectrum is strong at this level — control technology.

This is simply the design and construction of
electronic control systems. These don’t have to include
computers, but many such systems do. Why should the
Spectrum be so good at this? After all, it hasn't got the
built-in user ports or analogue to digital converter of
the BBC Micro. Well, it’s cheaper, and control
technology is one field where hands on experience is
more valuable than a large and expensive computer.
Indeed, much of the early work in this field was done
using the Micro-Professor single board computer — a
Z80-based system with a 20-key keyboard and an
LED display.

A variety of companies, such as Griffin and George,
produce input/output ports which allow the Spectrum
to control a wide range of additional devices such as
small motors, lights and other electronic circuits. For
example, Griffin markets a device called I-Pack which
provides TTL input and output ports for connection to
other electronic circuits, switch inputs and relay
outputs to allow simple switching of circuits and eight
analogue inputs for voltage monitoring. Software for
control applications is simple, so Sinclair Basic is
perfectly adequate for the job,

However at least two languages exist for the
Spectrum which have been designed to facilitate the
easy development of sophisticated control applications
on the Spectrum. The first of these is Control Basic, a
fully integrated Basic extension. The second is Control
Logo, a version of Logo with extra commands,
produced by the Advisory Unit for Computer Based

The Complete Spectrum | 187

Education of Hertfordshire LEA. Information on both
these products can be obtained from Resource.
Related to the above is the use of the Spectrum as a
data logger in the school laboratory. This is simplicity
itself, requiring just an analogue to digital converter
and a few sensors to convert various physical

cational needs

devices aimed at children who have

ial inpul oA
?ipggfc::hizf with standard keyboards, such Czi
Concept keyboard or Possum sy_gfrm.ﬂ B -
interfaced 1o the Spectrum, provi ing
pectrum keyboard

alternative fo other micros.

ch maligned S, .
waHuﬁnf?enT:uer as it's not being used.

re situation in this
dmittedly, though, the softwa ;
flrect isn’t very good for the Spectrum

parameters such as light or temperature, into an
electrical signal. Using a light sensor and the I-Pack
device mentioned above, for example, it is possible to
monitor the voltage and current characteristics of a
small electric bulb as well as the light level, in the
milliseconds after the light is turned on. Try that with a
voltmeter and ammeter!

The intention of using the micro in this way is not to
replace traditional methods of experimental school
science, but is to open up a whole variety of new fields
for investigation. Anything that can produce a voltage
can be monitored, graphs can be drawn — even Fourier
analysis of input signals can be done with suitable
software. Frequency can be directly measured, short
time delays measured, events counted and so on. The
Spectrum, with a suitable interface and software, can
replace a wide variety of expensive laboratory
hardware.

188/ The Completa Spectrum

So there we have it. The Spectrum is capable of a vast
range of uses in the classroom, from controlling robots
or floor turtles to allowing pages of Ceefax information
to be printed out. Spectrums have tended to sneak in to
schools, often supplementing already existing BBC
machines and providing useful hands on experience for
children who might not otherwise have got it with, say,
only one BBC Micro available.

Despite the demise of the old Spectrum, we should
look at the Spectrum Plus and the Spectrum 128 as
useful tools for the future, especially in the current
educational economic climate. Now, all we need to do
is twist the arms of a few software houses.

THE RMATOREILL
P rdtorbill nem s mesl) gy
] ach

Baci The

razoreill lives on
recky clideg 3

T T

- . A

1l has & Flar 84 THia
3 .

hite lines . Th

o Efeen

Liemats gng

1 belengs to
The raracbill mag
v The wings oo
are Gou #or
ater
58 shal|-dish ang
ur of the raioeniily
aay colour. The sgge
oNE BNE and rounssd
+ So tnmy dang
*F ledge in to the
Smls The rasocnill dent have nesrs
they just Lay e crisng, The
rAROrMIll wirerm s cesing er
R Chime 4 Grast deal of nores
=orBille deet e weehsg
saecially dor twimming.

The ra

A week's field study in Yorkshire was recorded by a class of 10 year
olds using the Tasword 2 word processing package. One feature of
this program is that a window can be placed in the text to allow
illustrations to be added.

T -

.'h
. Ik

In’rozrcc’rivz\bubble'speech odds to the
drama of this true life detective movie

Imagine Software is available from: 2= W53 "L WOOLWORTH LASKYS Rumbelows Greens Spectrum Shops and all good dealers.

THAT’S...

QUICK TO LEA

SPREADSHEET

This
MIHN]

Jﬁhr,m 1

JUST LOOK WHAT THIS === ——__ |~

PACKAGE CAN DO!

WORD PROCESSOR - Ideal for writing
letters or reports! Features: Constant time
display @ Constant word count (even
shows words per minute) ® Normal or
double-height text on screen or printout.

SPREADSHEET — Use your micro to
manage your money! Features: Number
display in rows and columns @ Continuous
updating @ Update instantly reflected
throughout spreadsheet @ Save results for
future amendments.

GRAPHICS — Turn those numbers into
an exciting visual display! Features: 3D
bar chart @ Pie chart @ Graph.

DATABASE — Use it like an office filing
cabinet! Features: Retrieve files at a
keystroke @ Sort @ Replace ® Save

® Print ® Search.

The “Th:-n wmg’ommmmcedmaaﬂz:#km Mh;'_n Epson printer. Results
fram other computers an ters may vary hily depending an equipment used.
Where narrow paperprinter is ;.-ud.dmu'prrssuftz can be achigved by cut and paste, -

Afar S0

Before gorting

..and it’s alld th
price of just &'

RN, EASY TOUSE

= =

I oMoy e
A Cag e W o P 1-.'- ation o F +
. BPrimt o SEan =i bk o F1Xbhaa
bR - ¢ S e T~ 0 oy
~ A wr pm §]
by 1 g

the MIND [
At g, DFFICE wpr

'[uT_HT_ SPEHT

rwaRD Spep
amal i
S Pig 58
4 desonge,
or L El
GCORL0r showing 1
dvailahjge, -
L)
-
 EOR

s CcD EFGHIT

atithe unbelievable
;t £5 :'..gi DATABASE SOFTWARE

sp ect rum 7 2 8
SpectrUm 48/
and Spectrum.,_

GRAPHICS

e

TOTAL s
i PENHT

«

I -+-‘-|-__
il
rGTHL L ;;
SpEN_r

1
i
1
H
i
al

Pleasesend me ___ copy/copies of
Mini Office for Spectrum 48k/Spectrum+

O | enclose cheque made payable 1o
Database Publications Ltd.
b

| wish to pay by
O Access [VisaNo. i

Signed
Mame

Address

Expiry date

Post to: Mini Office Offer, Database Publications,
68 Chester Road, Hazel Grove, Stockport SK7 GNY.

-----------------------J

How does 20p a day

turn your micro 1nto
a MAINFRAME?

Impossible you say! Just
20p a day for all that power?

No it’s not a joke, nor a trick
question. The answer Is
Micronet. The network that
links your computer by
modem to the most exciting
interactive database in the U.K.

All for 20p a day subscrip-
tion and the price of a local,
cheap rate telephone call*

So what does Micronet
offer that has excited 20,000
people to join.

Well, for a start Micronet is
an excellent way to keep
up-to-date with the very latest
information in computing.
Our database is continually
updated by our team of
professional journalists who
search out the stories behind
the news.

But Micronet is much more
than a news service — our
revolutionary mainframe
Chatlines give you the power
to hold real-time conversations
with up to 20,000 other users,
instantly.

Our free national electronic
mail system allows you to
send and receive confidential
mail to friends and businesses
24 hours a day.

You can even take part in
the latest multi-user strategy
games. Starnet for example,
allows you to compete against
hundreds of other “Star
Captains” for domination of
the galaxy.

Or win big weekly cash
prizes by competing in the
‘Round Britain Race’ which
makes use of the latest
viewdata technology to
challenge you to find secret
locations.

Every day new free and
discounted software is made
available for downloading
direct to your micro.

Teleshopping is the ultimate
way to seek out high street
bargains... or holiday and
hotel bookings... computer
dating... rail and airline

information... Jobsearch...
homestudy and schooling...
ideas, information and

MAKE THE RIGHT
CONNECTIONS

*For 98% ol telephone users.

Prestel is a trademark of British
Telecommunications plc on Prestel.
Micronet 800, Durrant House, B Herbal Hill,
London ECIR SEJ, Telephone; 01-278 3143,

entertainment facilities too
numerous to list. As ifall this
wasn't enough you can also
access Prestels'’ enormous
database which is included in
your subscription.

Micronet: the stimulating,
challenging and informative
way to add a whole new
dimension to your micro. All
yvou need is a modem. So cut
the coupon today for your
information pack.

For just 20p** a day can you

afford to be left out in the
power game?

e "___ v

NAaMI

ADDRESS

TELEPHONIE AL

l MAKE ANDMODEL OF MICRO

— — — — — T — — — — — —

Our experts share the benefit of
their experience in that daunting
field of educational programming

THE introduction of the micro into the classroom has
led to a new breed of programmers. These are the ones
who can create programs that not only provide an
educationally valuable experience for the user but are
also able to take anything an eager five or fifteen year
old can throw at them and still carry on without
crashing.

The generation of messages such as “Nonsense in
Basic” or “No such variable™ will, quite rightly, cause
most teachers and many children to recoil in horror.

So let's examine the additional techniques a
programmer needs to learn in order to produce robust
educational software. However it's important to
remember that all good education software is produced
by a team including a teacher, an adviser and a
programmer who has an intimate knowledge of the
machine concerned.

There aren’t many people who combine the ability to
come up with a good educational idea and carry it
through into a working program, so we'll look at the
methods a programmer can use to increase the
toughness of a program. The techniques will be
explained with the aid of examples from Sinclair Basic,
although the general points apply to programs written
on any computer.

The screen — appearances count

Although what goes on the screen is specified by the
teacher, there are a few points the programmer should
be aware of.
1. The amount of information to be displayed on the
screen at any one time is inversely proportional to the
reading age and attention span of the child in question.
Reams of text for a five year old could be disastrous,
as could one line per screen in an “A’ level program.
2. Use of colour and different sized text should not only
take into account the age of the target child, but must
also deal with technical problems, such as the relative
readability of different coloured text on poor VDUs.
Many schools run their Spectrums on old TV sets,
not RGB monitors.
3. Never break words at the end of lines. If the
specification includes such screens, though, check with
the teacher. There may be a valid educational reason,
but it's doubtful.
4, A mixture of upper and lower case text on the screen
is much more readable than upper case only.
Remember that the screen display is the main user

Criteria for
education

interface with an educational program. A visually
attractive screen will make the program more
pleasurable to use. Use graphics where possible to add
interest. Small things make a lot of difference, such as
changing the border colour to that of the background
paper, and so on.

Talking to the program

This is where most problems in poorly programmed
Computer Assisted Learning (CAL) software turn up.
We've probably all written programs that, for example,
bombed out if we typed in O in reply to a prompt.
(Come on you at the back, admit it!)

This is all very well for us, we know not to do it in

B

Hard copy of a program’
gram’s outpy
and a program shouid s vt o Nextrabls

upport ar [
Popular printers other than Sinea’;fa: ’.:W e

Or course, but we wil]
docume N

comprehensive Providing

Htation . . . won we?

future — but it’s not at all satisfactory for a program
that’s to be used by a non-programming individual.
Once we've got all the syntax and program logic errors
out of a program, the only remaining cause for error is
when user interaction brings in something unexpected.
The motto of the educational programmer should be
like that of a good Boy Scout — “Be prepared”. In
addition, remember Murphy's Law, clause 1,
paragraph 1 — “If anything can go wrong, it will!”
A good program will not therefore, allow a bad input
to the program — one that might cause a crash. This
positive vetting is called input validation and is one of
the most important items we'll discuss. So here we
go...
First of all, a couple of general points about the

The Complete Spectrum [188

Spectrum keyboard. The system variable at address
23609 decides the length of the click generated when a
key is pressed. It's often a good idea to lengthen this by
poking in a high value. This will make the user more
aware of when a key is pressed. This pip is not
generated when INKEYS$ is used and in these cases we
use the BEEP command, which also helps cut down
accidental repeats of the key. While the BEEP beeps,
the Spectrum ignores all else. A good statement to use
is BEEP 0.1,1.

If the program is to be used by younger children it’s
often a good idea to disable the keyboard repeat
altogether. This can be effectively done by POKEing a
value of O into system variable REPDEL (23561).
{(23561). This causes a delay of about five seconds
before a key starts repeating. Similarly, the value of
REPPER (address 23562) can be adjusted to give a
suitable delay between subsequent key repeats. A final
useful trick is that if two or more keys are pressed at
once, the INKEY$ function gets awfully flustered and
returns nothing. It helps knowing that address 23560
holds the character code of the last key pressed. If two
keys were pressed at the same time then the number in
this address is the code of the first key of the two to be
detected.

As for actually entering information into the
machine, INPUT is never used in a good program. This

Microdrive/disc drive

It should be possible for the user to transfer
software from tape 10 microdrive easily. So no
putting machine code in line 1 REM statements

nasty tricks. ;
or other such ¥ hould be written with

File handling programs § ;
] there

i ive or iape systems in mind, as i

ik i dard disc system in

doesn't appear 1o be a sian

or the Spectrum. _ ‘
usel’{hﬂe on the subject of filing, suitable

messages should be displayed when mpeh 5;;
microdrive operations are in progress. Us_ersd a
to be confronted by a Zystem ;;hwh is doing
ing they don't undersiana.
su!ﬁéﬁ;ﬁg;s gur:h as “Please wait ... sa_:wmg
data"” accompanied by some visual indication ;{
how far the save (or load) operation has gﬂfiﬂd
muich to help the confidence of a teacher or child.

190/ The Complete Spectrum

Sound effects

While you may like {
the idea of ratli
f’r?:de_nb’zfrg concertos or a quick 'ﬂﬁeﬂgf?;ﬂ
airkyries” while the program runs, don’t farge?

that in q classroom :
using the computer, only a small group will pe

Everyone else hq

Sound if necessary.
i A sampf’e way is to setf g variable,
sound isn't required and | if

{.‘.‘acﬁ BEEP Statement yse
Wrillen as:

say sflag to 0
it is,

d can thus pe

BEEP sflag*n,m

where n and m ar
€ the BE
effects can rein EP parameters. Sound

Yorce the learni
a fanfare for q ¢ 1" process, such as

on these,

orrect answer, But don't 8o mad

statement allows the user to type in any amount of
garbage and we only get to examine what is typed in
after Enter has been pressed. The best approach is to
use INKEYS to get a character from the keyboard,
then look at the character to see if it's acceptable.
As a simple start, let’s look at the problem of getting

1000 REM test for Y/N response

1010 LET temp=PEEK 23658

1020 POKE 23617,0: POKE 23658,8

1030 LET aS=INKEYS:IF a$=“" THEN GOTO
1020

1035 BEEP 0.1,1: IF a$<>%Y" AND a$<>“N"
THEN GOTO 1020

1040 POKE 23658,temp

1050 RETURN

Program I: Geiting a Yes/No response

a Yes/No reponse in reply to a question. The program
must respond to Y or N, irrespective of the status of
Shift, and so the simplest way of doing this task would
be a subroutine such as the one in Program I.

Bit 3 of address 23658 specifies the case in which the
keyboard operates. By POKEing it in line 1020 we're
forcing the Spectrum to read/return an upper case
letter whatever the status of the Caps Lock. Address
23617 specifies which of the Spectrum modes is
selected. By POKEing it to 0 we specify the L mode.

The routine will return Y or N in af depending on
the keys pressed and will restore the contents of
address 23658 to its original value. In addition, once
entered, the only keys that will cause the routine to be
left are Y, N or Break.

Similar routines can be used to check for other key
presses. If you require the entry of, for example, a
string of characters, we can write a subroutine that
replaces INPUT, allowing us to check characters as
they are typed in and reject them if they are not wanted.
So we could enter a string of numbers by rejecting any
character with an Ascii code of less than 48 and greater
than 57. We could even check the actual number of
characters entered, ensuring the string entered doesn’t

WO B

to
It should be possible for a single key press
generalise some sort of help page full of useful

the program, including any
information about prog N

commands the program understa
After this page the user can be returned to
where he was in the program.

overwrite other parts of the screen display. Try doing
that with the Basic INPUT statement!

Program II is a simple numeric input routine. It
accepts positive integers only — a full number input
routine would take care of decimal points and minus
signs, ensuring that only one of each was allowed in a
number. y and x specify the position of the input on the
screen, max the largest number to be entered, min the
smallest, and chars the number of characters to be
accepted. After the routine has been used, the number
entered will be in num and ns.

1000 REM number input routine

1010 REM 58 has more spaces than there

1015 REM will be digits in the number

1020 LET s§=* e

1030 PRINT AT y,x;s8(1 TO chars): LET n§=*"

1040 LET c$=INKEYS$: IF c§=*" THEN GOTO
1040

1050 LET ¢=CODE c$:BEEP 0.1,1

1060 IF (c<4BOR c¢>57) ANDc<>13 ANDc<>12
THEN GOTO 1040

1070 IF e=13 AND n$<>“" THEN GOTO 1120

1080 IF ¢<>12 AND n$< >“" THEN LET n$=n$(1
TO LEN n$-—1): PRINT AT y,x;n$+% ™:
PRINT CHRS 8 ' !

1090 IF LEN n$>chars THEN LET n$=n$(1 TO
chars)

1105 PRINT AT y,x;n$

1110 GOTO 1040

1120 IF n$=CHRS 13 THEN GOTO 1030

1125 LET num=VAL n$: IF num<min OR
num >max THEN BEEP 0.5,2: GOTO 1030

1130 RETURN

Program II: A simple numeric input routine

As you can see, most of this routine is taken up with
ensuring that a crash doesn’t occur if the user tries to
press Enter without entering a number, or if he tries to
delete a non-existent character, and checking that the
number entered is within the preset limits.

You could introduce further complexity — use your
imagination. For a start, what about a box around the
place on the screen at which data is to be entered, and a
small cursor? But, of course, there is a trade off. The
more error trapping we introduce the larger the
program will be. However this is a small price to pay on
the Spectrum with its relatively large memory.

Textual inputs can be processed in a similar fashion.
For example, when asked for a filename you can check
that it's the appropriate length and that it will be a legal
one, as it's being entered. This prevents the Spectrum
error messages being generated later in the program.

Additional advantages of this way of getting inputs
are that you can print the keys to the screen in double
size, different colours, and so on thus making the
display more pleasant to use.

Error handling

Of course, there will always be a few errors that get
through, such as the user pressing Break, a microdrive
cartridge being absent when the program attempts to
write to it, and so on. Most machines have something
called ON ERROR GOTO which allows such events
to be handled in a controlled fashion. The Spectrum
doesn’t, although it is possible to write machine code
programs that perform such a function.

This is, however, beyond the scope of this article
although it is something you should be aware of. If you
validate your inputs and provide prompt messages,

[Timing s aRa et

No one could call the Spectrum a Jast machine
However you can’ have long delays in ﬂu;
brogram except for things like screen dumps to
Pprinters or tape/microdrive operations,

Any period of time longer than abour 20
Seconds with nothing apparently happening
:;:muld be looked at with the ideq of speeding up
Ei;::;?; .nf the program — with machine code

Check all the loops for statement
redundant, Put al] subroutines at the ssta?:c;”?;:
program. Wherever possible avoid the use of
trigonometric or logarithmic maths operations
and see if'there’s simply a faster way of doing the

.‘;’omziﬂm You won't be abl,
b e to do anythi
about it, and it's often necessary to £o bac-f::'a :ﬁ
ﬁ:;on wg designed the program. Who knows
aps tiey may be able io '
te cut down rhe delay? T they e

such as “Insert microdrive cartridge”, at the
appropriate time, you can at least prevent those errors
due to forgetfulness or carelessness.

However if someone is determined to crash the
program, the only prevention would be to implement
machine code error trap routines. A program that
crashes in this way, no matter how educationally sound
it is, will get a quick reputation — of the wrong sort! It’s
rather ironic that the Spectrum, with a price that tempts
the total novice, doesn’t have a “nice” way of handling
everyday errors.

End of lesson

Finally there is the actual act of programming. The
neater your program is, the easier it will be to debug.
Do have a specification before you start, so you can
plan the program. Structured programs of a sort are
possible on the Spectrum, by using GOSUB, FN — and
some care! GOTO statements should be used carefully.
Those sending control of the program from, say, line 1
to line 2000 are generally caused by lack of thought at
some point in the planning.

As for testing, the simplest thing is to do the silliest
things you can think of, because you can guarantee
that someone else will try it! Test each section of your
program as you complete it and be prepared for bugs to
turn up in the trial of the software with real kids.

Then, when it’s all debugged, no one wants anything
else added and you are totally happy with the program,
drop us a line and tell us how on earth you did it!

The Complete Spectrum /191

Second and final part of the
series on how your Spectrum
interprets its own language

IN the first part of this series we saw how the lines of
Basic that you input at the keyboard of your Spectrum
are stored in RAM, beginning at a location specified by
a system variable held in locations 23635 and 23636.
We also saw that the Basic keywords are
represented by one-byte codes called tokens, which
represent the various single-key commands.

Making a statement

Statements which involve numbers — such as
assignments — are a little more complicated than those
we looked at last time, especially as the Spectrum has
various ways of handling numbers depending on
whether they are integers or real.

To keep things simple, we shall be looking mainly at
integers. Even so, you should pick up enough ideas to
give you an insight into the general operating
procedures of the machine, and to help you write more
economical programs,

Briefly recapping, we found that when we entered
the one-line program:

10 LET p=1

and then investigated the way in which it was stored,
the computer responded by showing the sequences of
numbers shown in Figure I.

You will notice that the number 1 is stored in two
different ways — once for LISTing purposes (49 is the
character code for 1) and once for the computer’s own
uses.

This is done by inserting the code 14 in the byte
immediately after the code representing the number,
and this acts as a signal to the Basic interpreter that the
next five bytes are to be taken together, and that they
contain a number.

All numbers on the Spectrum require five bytes for
their representation, but the way in which this is done
varies. If the number is an integer between +65535 and
—65535, the first byte holds a zero. The second holds
zero for a positive number or 255 for a negative number

How Basic worls

byte), and the final byte holds zero again.

Real numbers are a bit more complicated. Briefly,
the first byte contains the exponent of the number, but
with 128 added to it, and the other four bytes are the
mantissa. Zero is represented by all five bytes
containing 0.

But don't worry if you don’t understand any of that
— just be grateful you are programming on the
Spectrum and don’t need to make the distinction
between real numbers and integers, as you do on so
many other computers!

Something which is easily forgotten when working
out how much memory a program will require is that
the RAM has to hold both the program and a certain
amount of working space. When your program is run,
a number of extra locations in RAM are allocated to
hold the variables. Information about this is contained
in another systems variable, at locations 23627 and
23628.

To see how this works, type in NEW to get rid of
your program, then enter the following:

10 LET a=l1

20 PRINT a

30 STOP

40 FOR b=0 TO 5:PRINT PEEK (PEEK
23627+256*PEEK 23628+b); ";NEXT b

50 LET a=a+1

— that is, it acts as a sign byte. The third and fourth 60 GOTO 20
bytes contain the actual value of the number (lo byte/hi
p fori Internal representation (end
- _ s T : s
241 | [112 4 s | a8 @P 1 |0 o ||:

Figure I: How a line of Basic is stored
192 / The Complete Spectrum

b B, | B o w 5 rYw

-

e s -

When the program is RUN, it will print 1 at the top
of the screen and then wait for you to
CONTinue. When you do, you will see the following on
screen beneath the 1:

97 00 1 0 0 2

Disregarding the last number — which is the new
value of a being printed as the program returns to line
20 — the other values represent the way in which the
variable a is held in the variables store, the location of
which is found by the PEEKs in line 40.

Figure II may make the sequence a little clearer.
Incidentally, all variable names are treated as being
lower case on the Spectrum, so if the variable had been
A instead of a, the representation at this point would
have been exactly the same.

Figure 1I: How a is stored in memory

CONTinue once more and the display will change to
read:

97 0 0 2 0 0 3

with the final number giving the latest value of @ and the
others showing how that value is updated in the
variables storage area every time the program executes
line 50.

Only single-letter variable names are stored in this
simple way. For longer names the complete name is
stored, but with 64 added to the value of the code of the
first character and 128 to the value of the last.

This is a great advance on those machines which
regard only the first two letters of a variable name as

Th
m;a.i,?;c:mrs recognises many different kinds of
dwerm; wzzn Stores each king in a sligh
e a{;‘! Those conirolling FOR . . NEX ;
At De aps the mos; interesting gy all th
o alon reguired ro organise the | y
},f;.:sf 18 bytes. ool held
1ere the first byre o]
variable name, w:':}f 128 t:z,;{:i?;zsrr: ?

. I T
only one byse is allocared expfat'ns&fvﬁaﬂ;:::

i
a;c;i!:z cﬁfr have only q single-letter name

e ;‘ 4 3 bytes are Shared berween the sr:an'

€ loop, the end valye and the size of the

rder indicated

number, storeqd

€ code for the

b y.fes contain the line
hi byte/lo byte way.

in the usual

significant, but it does mean that if you are not careful,
you can spend a lot of room storing unnecessarily
lengthy variable names.

There are several useful pointers to be picked up from
our look at the Spectrum’s handling of Basic. The first
is that because it is always possible to tell just where
any particular line is stored in RAM, lines can be used
for purposes other than the ones for which they were
designed.

REM statements in particular make excellent
stowing places for numbers which will form part of
machine code instructions — they can be extracted with
a PEEK, and then POKEd into the appropriate place
while the Basic program is running.

The only thing to be careful about here is that you
must know exactly at what address the statement is
stored, as an error here will almost certainly result in
the program crashing.

You can also use what you have learned here to cut
down on the workspace requirements of your
programs. Remember that unnecessarily inventing new
variable names rapidly swallows up storage space, as
each name is stored twice — once in the program line
and once in the workspace.

Secondly, keeping variable names short is doubly
efficient, as it saves room in both program and
workspace. Of course, both of these tips conflict with
the equally good advice to make your programs
readable and easy to debug — the choice is yours.

Finally, what happens when you type NEW? In
some computers, getting your program back is
tolerably straightforward as it is not actually erased
from memory.

The BBC Micro has the command OLD to restore
the program without any fuss. The Spectrum doesn’t
do this — once you have scratched your program from
RAM, then unless you kave previously SAVEd it, it’s
gone for good. If you try that now, and then re-enter an
immediate command to check up on it, you'll see what I
mean.

What's that? Not gone completely — there’s a little of
it still there? I'm afraid not. What you are seeing is the
representation in memory of the immediate mode Basic
command which you've just entered!

The Complete Spectrum [193

Memories are

made of bits

Conclusion of the series that
helps take the mystery out of the
way your Spectrum operates

SO far we have learned a lot about the binary system —
the numbers our micro works in. We have seen that its
memory is divided up into bytes — a set of eight
two-state, binary units called bits. Each bit can have
the value 1 or 0. If a bit has the value 1 we say it is set. If
a bit has the value 0 we say it is clear.

As we're dealing with eight bits at a time we can use
various combinations of the bits in a byte to code any
whole number (integer) in the range 0 to 255. To do this
we associate a code number with each bit. Figure 1
shows the scheme.

Our eight bits are labelled from b7 to b0 and the
numbers associated with each number are shown
above each bit (the more mathematical among you will
see that they're in ascending powers of two).

To discover the value coded in a byte we simply add
the numbers associated with every bit that is set (1),
ignoring all clear bits (0). So

%10101000

codes the number:
128 + 32 + 8 = 168

We also learned to do tricks with, or to put it more
properly, manipulate, binary numbers. We could
create the complement of a number — a sort of binary
opposite — by changing every clear bit to set (*“setting”
the bit) and changing every set bit to clear (“clearing”

the bit).
So the complement of the number:
%10101000
gives us:
%01010111

We can add and subtract binary numbers, as well as
multiply and divide. We learned other ways of
combining them too, with the logical operators AND,
OR, EOR. EOR, which stands for Exclusive OR, is
also called XOR.

When combining two binary numbers under the

influence of these operators we compare each bit in one
number with the corresponding bit of the other.

Then, according to a rule which depends on the
operator we're using, we decide whether that particular
bit (the result bit) in the “answer” byte is set or clear.
Table 1 shows the rules for the operators.

Sets the result bit only if both bits [
compared are set, otherwise the result bit
is clear.

Sets the result bit if either or both the bits
compared are set. Only if both bits
compared are clear is the result bit clear.

Sets the result bit if the bits being
compared differ in value. If the EOR bits
compared are identical, the result bit is
cleared.

EOR"

Table I': Rules for logical operators

Memory, machines and maps

As we've said, a micro’s memory is divided into
byte-sized compartments, called memory locations.
Each location has a number associated with it so we
know which one we're talking about. These numbers
are known as memory addresses.

Much of what a microprocessor does involves
moving information — in the form of binary numbers —
from one location to another. If you cast your mind
back to earlier articles, I said that each bit was like a
switch — its two values 1 and 0 could be used to signify
that the switch was on or off respectively.

Imagine that we could wire up one of our bits to a
machine’s on/off switch. Then by setting that bit we
could switch the machine on, and by clearing it we
could switch it off.

This sort of thing is possible, though we’d need to use
some clever electronics. In fact, since we deal with eight
bits at a time, we could arrange things so that a single
byte controlled the on/off status of eight separate
machines — each machine m7,m6 ... m0 corresponding
to an individual bit of that byte, b7,b6 . .. b0. We'll term
that byte the control byte.

We call such arrangements memory-mapped
output, since what we put in memory maps, or sets the
pattern for, what happens in the outside world, Most
microprocessors support this or some similar sort of

i Tl =) = i
L
e

128 | | 6 [32 16 8

b7 b6 b5 b4 b3

b2 bl b0

Figure I: Values associated with bit positions
194 / The Complete Spectrum

out

WeE

set
swil
byt

ma
loax
wit]

is ¢

Al

m7

I=om :
O—off bit value

o

control

byte

Figure II: Memaory mapped control

output. Figure II shows the type of scheme we mean.
Assuming we've got things connected up properly, if
we then load the control byte with:

%l11111111

all the machines would be on. Remember that if a bit is
set the corresponding nmrachine is on. If we want to
switch all the machines off, we can load the control

byte with:
%00000000

And, of course, we can have any on/off pattern of
machines, setting or clearing the relevant bits by
loading the ontrol byte with new numbers. Loading it
with:

%11110000
is one way of switching off half the machines.

AND switching off

Sometimes, though, we might want to switch a
particular machine or two on or off without knowing
(or caring) whether the others are on or off. This means
we need some way of affecting only the bits controlling
those machines, while leaving the others unchanged.

Suppose we wanted to switch off a machine — say
m6. We can do this by making b6 of the control byte
zero. To clear that one bit to zero we AND the control
byte with another byte — called the mask — the bits of
which are set (1) except for b6, which will be 0. That is,
we AND the control byte with:

%10111111

We then make this result our new control byte, and
off the machine goes. To see how it works in practice,
let’s assume that initially all the machines are on, so the
control byte is:

%I11111111

To switch machine m6 off we must AND it with:
%1011111

The sum is:

%11111111 Control byte
AND %10111111 Mask
%I0I11111. New control Byte

As you can see, the outcome is that when we update

the control byte with the result, m6 is switched off while
the others remain on.

The trick isn’t hard to see. Let’s consider things from
the point of view of bits in the mask. If the bit is a 1,
when you AND it with the relevant control bit the
resulting bit is the same as the control bit. That is,
ANDing a bit with 1 leaves that bit unchanged.

Think about it. If the control bit were 1, then as 1
AND 1 = 1, you're left with 1. The bit’s unchanged. If,
on the other hand, the control bit were 0 then, as 0
AND 1 = 0, the bit remains unchanged as 0. In other
words bits in the mask with 1 in them leave the
corresponding control bit unchanged.

So for machines whose on/off status we don’t want
to alter — we may not even know if they’'re on or off —
we set the corresponding bit in the mask to 1.

However if the bit in the mask were clear (0) it
wouldn't matter what the state of the original control
bit was — the result would still be 0.

Say the control bit was 1, then as 1 AND 0 =0 the

resulting bit is a 0. Alternatively, if it were 0, since 0
AND 0 = 0 the resulting bit is again 0.

So bits in the mask with 0 in them set the
corresponding bits in the result byte to 0. This means to
switch specific machines off we construct a mask
consisting of 1s for the machines we wish to leave
unchanged and Os for the machines we want off — in the
appropriate bit positions.

We then AND the mask with the control byte and
then make the resulting byte the new control byte.

OR turning on

Fine, but how do we switch on specific machines? Well,
we update the control byte by ORing it with another
mask. This time we put 1 in the bits corresponding to
the machine we want on, and 0 in the bits
corresponding to the machines whose on/off status we
wish to leave unchanged.

This works, since when you OR a bit (whether 0 or
1) with another bit whose value is 1, the answer is 1.
ThatisOOR I =1and 10R 1 =1,

So using a 1 in the relevant bit of an OR mask will set
the corresponding result bit. When this becomes the
new control byte the corresponding machine will be
turned or left on.

On the other hand, ORing a bit in the control byte
(no matter what value) with O leaves that bit totally
unchanged since 1 OR 0 =1 and 0 OR 0 = 0.

So when we OR the bits of the mask that are 0 leave
the corresponding bits of the control byte unchanged.
This means, to switch specific machines on we use a
mask consisting of Os for the machines we wish to leave
unchanged, and 1s for the machines we want on — in
the appropriate bit positions.

We then OR that mask with the control byte and
make the resulting byte the new control byte. Hence, to
ensure that m6 is definitely on, we OR the control byte
with:

%01000000

For example, if m6 is off, and all the rest on, to
switch m6 on we do the following:

%10111111 Control byte
AND %01000000 Mask
%I11111111 New control Byte

The use of force

Of course, both AND and OR have uses for the micro
enthusiast other than controlling machines. To
illustrate one, consider the Ascii character set. The
codes for A to Z are in the range 65-90, while their
lower case equivalents, a to z, are in the range 97-122.

Looked at in this decimal way, there seems little
relation between the upper and lower case sets. If we
look at them in hex, though, we can see that:

A...Z runs from &41 to &54
a...z runs from &61 1o &74
I hope you gan see the pattern.

In fact the numerical Ascii difference between a
lower case character and its upper case equivalent is
always &20. Looked at in binary, this difference is
9%00100000. In other words, bit five is set for lower
case, and is clear for upper case — remember, we start
with the zero bit. For example, the code for A is:

%01000001

1896/ The Campiete Spectrum

whereas the code for a is:
%01100001

Similarly, the code for Z is:
%01011010

and the code for z is:
%01111010

In both cases the only difference is in bit five. So if we
have an Ascii code for a letter, we can foree it to be
upper case by clearing bit five to zero. We can do this
by ANDing the code for the letter with the mask
%11011111 (&DF).

Remember, the bits in the mask that contain 1 will
leave the corresponding bits in the Ascii code for the
letter unchanged in the resultant byte, whether they be
O or 1. On the other hand, the bit in the mask with Oin it
will force the matching result bit to be zero. So:

%01100001 (The code fora)
AND %11011111 (The mask— &DF)
gives %010 1 (Thecodefor A)

It won’t surprise you to learn that we can reverse the
procedure — forcing upper case into lower case — by
using OR to set bit five. This time the mask will be
00100000, the Os leaving things unchanged in the
resultant byte, the 1 forcing a corresponding 1 in bit
five of the result bit. So:

%01011010 (The code for Z)
OR %00100000 (The mask—&20)
gives %0ITTI010 (The code for z)

One further use for AND is to test if a particular bit
in a byte is set. We just AND that byte with a mask

consisting of a 1 in the bit being tested, with Os in all the
rest. The bits with 0 in them, of course, set the
corresponding bits in the resultant byte to zero.

Since the rest of the bits are already cleared to zero
by the mask, the only thing that could stop the entire
resultant byte being zero is the value derived from the
bit under investigation:

@ If that bit is set, the corresponding result bit will be
set also (1 AND 1 = 1) so the resultant byte will be
non-zero.

@ If the bit being checked is clear, the corresponding
result bit will be clear (0 AND 1 = 0) so the resultant
byte is zero.

Let's see how this works in practice. If we were
testing for bit four being set, the mask would be
%00010000. Try ANDing this value with 2001 10100,
where bit four is set, and also with %00101100, where
bit four is clear, and you'll see that the resulting bytes
are non-zero and zero respectively.

Hey presto, it's XOR!

So what of EOR/XOR? Well, its function is to return a
1 if the pair of bits being combined differ, and 0 if
they’re identical. Given this, we can use XOR to test
which bytes in a bit differ. For example:

%10101110
X0R %l11001101
gives %01100011

where the set bits neatly mark out the differing pairs.

We can also use EOR/XOR to complement or NOT
a byte, by XORing it with a mask of %11111111.
Since the mask is all 1s, the result depends entirely on
what's in the byte under investigation. Bits that contain
Is will give 0 (since 1 XOR 1 = 0), while bits that

contain zero will give 1, since 0 XOR 1 = 1.
This is exactly what we want to happen with a NOT
— change the 0s to 1s and vice versa. For example:

%10101101
XOR %I11111111
gives %01010010

(The complement)

We can also use EOR/XOR to test if two bytes are
identical. If the result when we XOR is zero, they must
have been identical since every pair of bits must have
given zero, which only happens when the bit values are
the same.

If there’s a non-zero result there must have been a
pair of bits that differ, so the two bytes under
consideration must differ. For example:

%10101010
XOR %10101010
gives %000000

whereas:

%10101110
XOR %10101010
gives 9%00000100

which is, of course, non-zero, since the bytes differ.

You might have come across EOR/XOR in
graphics application programs where it’s widely used
for its “hey presto” effect. This is based on the fact that
if you XOR a first byte with a second and then XOR
the result of that once more with the second byte, the
first byte reappears. Look at this, if you don’t believe
me:

%01011100 (First byte)

XOR %01110010 (Second byte)
5500101110 (Result)

XOR %01110010 (Second byte again)
9%01011100 (First byte back!)

We use this XORing technique to draw things on a
background and then move on, leaving the background
unchanged. In this case the first byte is the background
pen number. If we then XOR our second byte —
corresponding to the ink number of whatever it is we’re
drawing — on to the background, it will be displayed in
the resultant ink number. It’s rather like mixing colours
mathematically.

To get rid of what we've drawn, we draw it again
with the same ink number, once more under the
influence of XOR. Of course XORing twice with the
same byte gives us the original byte back. This results
in whatever it is being drawn appearing in the original,
background colour. Hey presto — it's gone!

That's it...

And that’s the end of the series. Hopefully you'll have
gained some idea of the power of binary numbers and
the ways they can be combined. I've only touched on a
fraction of the potential uses, but you'll be well
equipped to work things out for yourself from now on.
And if you're looking to take these ideas further,
why not try the machine code series we've featured?
These articles should get you off to a flying start.

The Complete Spectrum /[197

) adventures

What...Why...

ADVENTURE games on the Spectrum are a natural
extension of such role playing games as Dungeons and
Dragons or even Cluedo. They give you, the player,
freedom of movement and freedom of action within a
set group of locations, within which you can wander
around, effectively doing your own thing.

- Imagine a vast movie set, dozens of actors and
hundreds of props. You have read the draft script and
know a little of what to expect as you move around, So
you know that it is a detective story, or a swords and
sorcery treasure hunt.

You are to play the lead part. You may move and act
in whatever fashion you choose — this is the fascination
and attraction of the adventure game. If you wish, you
can ignore the plot and explore your new world just as
the fancy takes you.

A good game, be it text-only or the most
sophisticated graphic display imaginable, transports
you to another reality. It creates an alternative universe
where you really can believe you are leading a
completely independent existence — where dragons still
roam, or life depends upon finding that hidden cylinder
of oxygen.

Not only can you move around at will but usually
you can collect, examine and use the objects you see
along the way, climb up cliffs, swim rivers, open doors,
eat, drink and generally take on the persona of your
other self.

The final objective will vary from game to game but
all contain a series of puzzles that you have to solve.

Fo T . .

. g gk e ey g BeW TR TR R el

Fis

——

P T o ¢,]

Those that accept typed-in commands usually call for
mental dexterity with no time limit, whereas those
employing a joystick often call for a quick hand and
eye.

Which...

Adventure games come with all types of plots and
scenarios, from deep hidden dungeons to spaceships in
the far future, from prehistoric dinosaurs to Victorian
detection. There should be something to please
everyone,

There are three main types of presentation —

text-only, text-with-graphics and graphics-only. As
with almost anything you buy, there are good and bad
examples of each type, so either ask to see the program
demonstrated or read its reviews in computer
magazines. At least you will then have some idea of
what you are buying.
Many people favour text-only games as these usually
mean that a fair amount of descriptive text is displayed
as you visit different locations. Also, your mind is far
better at providing a detailed picture of your surround-
ings than the best graphics yet available on the
Spectrum. If you think about it, very few classic novels
have pictures.

Text-with-graphics programs vary considerably —
some have good graphics and not much text, a very few
have good graphics and good text. Many have
mediocre graphics that take some time to draw and
would be better as text-only.

Graphics-only adventures usually use a joystick to
control the progress of the game and can be roughly
divided into two groups. First, and largest, is the arcade
adventures group where you guide your alter ego
through different locations. Other actions — picking up,

examining, shooting and so on — are achieved by
certain joystick combinations or by use of the
keyboard.

Secondly there are those games that employ a series
of icons or small pictures, over which you move a
cursor to select a command. In addition to the picture
of your location will be icons representing the objects
lying around and those carried, together with those that
stand for permissible actions such as get, drop and
opern.

To actually do something, you guide the cursor first
over the action icon, then the object icon. Although this
technique is quite impressive and is ideal for players
who cannot read or spell, it can sometimes take longer
to give and select a command than to type in the
appropriate words.

How...

You have loaded your first adventure and the
instructions have given you some idea of your final
objective. So how do you start? Most people, even
hardened adventurers, charge around a bit to see what
is there! T

Having got that out of your system, you can now
start playing properly. It is wise to start from scratch,
as the number of moves you have made may have been
counted. This could mean that it is near moonrise or, if
you have a lamp, it could very soon run out of oil or
batteries. Programmers are devious creatures and
often want to keep you in the dark, literally.

Most games will allow you to quit, so type in QUIT
and press Enter. More often than not you will be asked
if you wish to start again. Alternatively you may have
to switch everything off and reload the program.

The first thing to remember is that you must not get

T

T

CLUMP OF
ELMS

COMMON

v

LAND

'\.

4 i
- FARM TRACK | . . COBBLED S CASTLE |
(Rusty scythe) | 7 TRACK i GATEWAY
i oqg) X I

Figure I: General mapping

lost. Right from the start you should get into the habit
of drawing maps. These need only be a series of boxes,
with the location written in them. They should be linked
by lines (North, East, South, West} to show the
direction of one location from another. Note where you
can only travel in one direction. Figure I shows you the
idea.

Not only will this help you to know where you are
but it will also give you a good idea where you have not
yet been. Exploration and discovery are what
adventures are all about, so go everywhere and
examine everything.

Some games allow you to EXAMINE objects before
you have picked them up. Find out which type you are
playing and have a good look at everything you can —
you will be surprised at what you will find. Objects to
be found will fall roughly into three categories —
treasure, useful, and red herrings. The first are usually
pretty obvious but the latter two can only be decided by

200/ The Complete Spectrum

= - FOIJ;CED
BANK OF CLEARING BY
STREAM (H H BOUGH H
C (Mirror) STREAM (Eagle’s nest)
W L 4 UP L
! WN
d LEAFY GLADE & OLD TREE H
{Leaves) 2
I X

AT each location make a brief note of where you
are and what objects are 1o be seen. Arrows
of permissible travel. T more there than meets the eye.

indicates movement in that direction is not
permitted. Check ALL directions — there may be

playing the game.

A common problem is to find that you can only
explore a limited number of locations because
something or someone inhibits your progress. Perhaps
it is as simple as a locked door, where you have to find
the right key, or you may need some rope to climb out
of a window.

The puzzles may seem difficult, but as you play you
will find there is often a pattern or theme, similar to
crossword puzzles in different newspapers. Also, just
like a good crossword, having solved the clue you'll
kick yourself for not seeing the answer sooner.

When...

Not only must you learn how to move around freely
but you also have to find the correct order in which the
puzzles have to be solved. It is no good parachuting
from an unclimbable cliff, only to find you do not have

e —

Ty ¢ —

INVENTORY

of a game, you may find you
already have some useful items.
LOOK

exits and so on.
SAVE ¥
game position.
_ LOAD

game. Some
RESTORE.

the magic sword that defeats the dragon waiting round
the corner!

Sometimes the future use for an object is obvious, all
too often it is not. The amount you can carry is usually
limited to only a few items, so you cannot solve the
problem by carrying everything.

Fortunately all the better adventures allow you to
SAVE your position — together with all you are
carrying — on to a blank tape of your own. This will
allow you to carry on from your last SAVEd position
when catastrophe occurs. Also, if you SAVE your
position regularly as you proceed it will enable you to
backtrack when you find you have missed some vital
clue.

If the adventure is divided into obvious
compartments make sure you have thoroughly
investigated every location before moving on to the
next phase. It is fairly common practice to find that an
apparently useless item in an early part of the game is
vital later on. Likewise some problems set in early
phases need something found later to solve them. You
don’t have to have a devious mind to play adventures
but it helps!

carrying —try it at the beginning

Will usually cause a repeat of ||
the present location description |
— useful if the text scrolls and B 1
you have forgotten details of i

Enables you to SAVE your fi

Enables you to LOAD in the | _.
data from a previously SAVEd ||
games use

Where...

In many games only the cardinal points are recognised
— North, South, East and West — but beware of the
occasional South East or North West. When you are
mapping the terrain always try these directions — you
never know what may happen! Remember that UP and
DOWN are also movement commands — you may
even find that in a forest CLIMB TREE has no effect
but UP does.

Although many words will be recognised by the
program, not all games have extensive vocabularies.
This is not necessarily the sign of a poor game but it
does mean you have to learn how to use what is there.

Wanting to enter a hut with a door to your north
could involve one of the following: OPEN DOOR then
GO NORTH, IN, GO DOOR, GO HUT, ENTER or

Gives you further information
about specified object, also try
SEARCH. If the object could
conceivably be read, ftry
READ.
Usually allows you to start.
again at the beginning of an
adventure without having to
load in the program from tape.
WAIT In some games a useful
command to allow subjective
time to pass while waiting for
something to happen.
Sometimes TAKE — for picking
things up, perhaps to
EXAMINE more closely. d
Sometimes PUT — for putting
down what you are carrying.
Beware of dropping things
breakable.

QUIT

GET

DROP

ENTER HUT, or just plain NORTH. You must learn
how to interact with that specific game.

This learning process is usually quite quick and you
will often find help by reading the instructions first.
Icon driven games do not have this problem. What is
possible is clearly defined by movement icons shown
on the screen. This is a mixed blessing as sometimes
that feeling of freedom of action is lost.

There is one other movement problem found in
nearly every adventure game — mazes. You will find
yourself'in a series of locations that all appear the same.,
Your careful mapping will now no longer tell you where
you are, because moving West after moving East will
not bring you back to where you started. You must
map these mazes carefully and completely. They often
hide items you need or the way on to another series of
locations.

The traditional way of solving a maze is to drop an
item at each location, so making the description of that
place unique. Instead of drawing a series of boxes
linked by lines, just draw the boxes — each numbered —
with arrows showing where that direction leads to.
Figure I1 shows you an example,

Logically you should be able to map a six location
maze with five dropped objects. Of course
programmers are aware of this, so they are forever
trying to think up more devious mazes. You may find
an eight location maze and only be able to carry four
objects.

Perhaps you could go back and collect more things
to drop or maybe part of the maze can be mapped
before entering the other part. Try examining
everything — you may find something hidden that will
define a separate location. Look very carefully at either
the graphics or the text, perhaps there is a minor
difference you did not spot at first.

The permutations for adventure games seem
endless. Spells may be cast, passing strangers may be
talked to, or computers may be quizzed. Alternate
universes are out there just waiting for another intrepid
adventurer . . . like yourself,

The Complete Specirum | 201

Creating

adventures

Take the challenge one step
further by actually writing
your own adventure game

IF you want to write adventures, there are really only
two ways you can go. One is to use an adventure
creation program and the other is to go the whole hog
and write the entire program yourself. But this will take
time and a great deal of thought — even before you type
in anything at all.

Writing an adventure is like playing one. There are
puzzles you will have to solve and your mapping of the
game must be accurate. It is all too easy to write one
that is almost impossible to solve — the knack is
producing something that is just difficult enough to
make the player want to continue to the end.

Puzzles are what make a game, together with the
feeling that the computer has some idea of what the
player is trying to achieve. There is nothing worse than
the bald reply of “You can’t”. Think up humorous or
ambiguous replies that give the impression the
computer knows exactly what is wanted but chooses
not to comply for some reason,

The plot need not be developed in full but you must
have some fairly concrete ideas on what the player will
have to do to complete the game. Having got more than
a glimmer of an idea, start drawing out a map of the
terrain. Draw a number of boxes in a grid pattern and
number each box. These represent locations and
should be large enough to write where it is and what

objects — if any — will be found there. Boxes should
connect in the main compass directions but do not have
to connect in all directions.

Having got your basic plot and map sorted out, you
must refine them to form a logical and consistent
whole. You will have thought of several good puzzles
for your adventure and having drawn the map will have
included the objects you wish to use. Now is the time to
consider whether there are enough puzzles to hold the
player’s attention and whether the objects to be found
are plausible at that location.

You are creating a world of your own, so you can
dictate the logic of that world — but it must seem
reasonable to anyone playing the game. Finding a
silver sword just lying on a path may not be so
acceptable as finding it hidden behind a stone slab.
Whatever you do, do not jar a player’s acceptance of
what is seen on the screen.

Writing your own adventures from scratch is a very
satisfying and challenging project. It can also provide a
very adaptable operating system or core program,
providing you are prepared to spend time refining what
you learn after writing each adventure.

There are many ways of programming adventures
and the mini-adventure shown here, Gravely Manor,
uses a very simple direct method. It works well enough
but is without any special frills. Used as it stands it will
provide the bones on which to build a more elegant
system of your own.

First consider what is happening when you play an

The Quill - Gilsoft

This is the only adventure creation program
available for the Spectrum and is not difficult to
use. It seems complex at first but don’t panic, all
will come into focus as you progress. Having
briefly outlined some of the functions of the
program, you are given step by step instructions
on creating a simple adventure. Follow these and
The Quill will begin to come alive.

Although any adventure must be planned
carefully in advance, The Quill has excellent
editing facilities, so alteration of locations,
objects, vocabulary, messages and even
directions can all be made with reasonable ease.
Sound may be incorporated using the Spectrum’s
BEEP command and user defined graphics
(UDGs) may also be handled, enabling you to
have rudimentary graphics.

Each area of information can be accessed
from the main menu and then individual data
about one particular location or object entered or
altered. The program even checks that the entry

is valid with respect to the other entries already
made. It will not permit you to refer to a location
or object that does not exist.

There is no doubt that The Quill provides the
most painless way of creating your own
adventures. Several programs created with its
help have become best sellers and Gilsoft request
only that The Quill be credited somewhere within
the program.

Taking note of a growing demand for
adventures with graphics, Gilsoft introduced The
Illustrator. This enables pictures to be added to
programs written with The Quill. Even so,
creating good graphics is not only time
consuming but also requires a certain artistic
flair.

Pictures must be very carefully sketched out
on graph paper before they are translated into
commands that The Illustrator will act on. This
requires a fair degree of dedication but the result
can enhance the game's attraction enormously.
You would be well advised to become adept at
using The Quill before adding any pictures.

After The Illustrator came The Patch, offering

L

=T = = ol -]

= 6 00O

(4]

B

t!

= b

202 / The Complete Spectrum

Initialise

Display
location/objects

A

3 2

Display
what happens

N

N

Request A 5
INPUT command

N

Determine
~— result of command

A4

Figure I: The sequence of events in an adventure program

adventure. Figure I shows a simple diagram of what
happens. Once you load and run the program, the first
thing is to set up such things as variables, arrays and
perhaps display instructions. You then enter a loop that
will only be broken out of if the player wins, dies or
quits.

This starts with the display of the first location, any
objects visible and perhaps the directions in which you
can move. The program then waits for you to enter a
command of some sort. This could be a direction in
which to move, or some other action command.

Whatever you type in will produce some response,
even if it is an ambiguous answer meaning that the
game does not have anything of importance to tell. If

sl

additional facilities that may be combined with
the other two programs. They include an
excellent quicksave/load routine to and from
RAM and the ability to alter repetitive system
messages.

The three programs from Gilsoft are a
complete package and once mastered give you
the opportunity of creating top adventure games.

the command requires a move to a new location then
you are back at the beginning of the loop. This
procedure is repeated until you win, lose or quit.

As a programmer you will have to look at this loop
more closely and begin to think how to code the various
sections. Gravely Manor uses a similar construction,
so you will be able to harvest some of the routines for
yOUr own games.

The program is directed to the initialisation routine
(8000) at line 10. This is at the end as it is only accessed
once and could have a substantial number of lines. All
GOTOs and GOSUBs are found by the computer
counting from line I, extra lines at the beginning would
tend to slow down the response to input commands.

This game only has nine locations and all the
information for these is in lines 8101 to 8209. The
DATA in 8101 is READ at 8035 into six arrays
NQ.E()...D(). This defines the location reached in
moving in any of these six directions from the present
location. So, the first six numbers will appear in N(1),
E(1) and so on. This allows exits only to the North — to
location 2 — and the South — to location 10 which is a
special case and only brings you back to location 1
after a message.

If writing your own game, only type in six direction
numbers on each line, This will enable you to check
your map more easily. They are all on one line here to
make it more difficult to cheat if playing the game.

So that the game is not too easy to play, no REMs
are shown but to gain from it, you must understand
what is happening. After playing it, you can learn a
great deal by inserting your own REMs. Here are some
line numbers to get you started:

99 Display inventory
399 Start game loop
499 Print location and objects
599 Input and parser
699 Check for verb
799 Single key/word inputs
899 Check for object
999 Direct program for action

If you study the lines following 699 and 899, you will
see that they check the input against the lists of verbs
and objects in V§ and N§ (8015, 8020), This will give
values V and N that enable the program to be directed
to the appropriate action and response in 1010. 18 is
subtracted from V because verbs below that number
have already been dealt with as single key or word
entries such as N, EAST or INVENTORY.

To study these actions and responses you will have
to work out the REMs yourself, starting with 1099
CLIMB. EXAMINE is an important verb and will
direct the program to a series of lines starting at 4000
for each object recognised in N§.

The object DATA (8301-8309) is put into three
arrays P(), C() and O8(). The first defines the object’s
initial location and the second is its class. Class is an
important attribute, and may be used in many ways. It
is used here to indicate whether the object is
immediately visible (505) and its weight (1510).

Only a brief explanation is possible in such a short
space but once hooked, you will find writing adventure
games just as fascinating as playing them. There are
many similarities and more ways of constructing them
than you would first imagine. The more you write, the
more you will learn about the ‘workings of the
Spectrum.

Now turn the page and discover the mysteries of
Gravely Manor.

The Compiete Spectrum | 203

Gravely

Unravel the secrets of
Gravely Manor in search
of a mysterious amulet

A CLS ¢ IF ﬁl'll' *Mists
swirl,..*t LET L=i: GO TO B

483 IF L)7 AND (P<3 OR P(5)>8) THEN
PRINT *It‘s very dark!'"s 60 TO E
458 PRINT LS(L)

388 LET F=@: PRINT P$;"You sem"
585 FOR I=1 70 18: IF P{IDCOL OR CII
133 THEN 60 TO 515

S18 PRINT * "+08(1): LET FeF+]

313 NEXT I: PRINT

520 IF F=0 THEN PRINT "Not much®
400 POKE K,B: PRINT : INPUT “Mhat no
w? "; LINE I#: IF I14="" THEN BO TOE
685 LET [#=1$+" *; LET ¥=1: LET V=
¢ LET N=B: LET W=l: LET W§{l)a""g LET
W§(2)="

418 FOR J={ TO 2

415 FOR =Y TO LEN 1

A20 IF I#(1)=" ™ THEN LET Ws(J)=I8(
y T0 i): LET Y=[+1y LET IsLEN [$

423 NEXT |

638 IF (W§(J)="the " OR N§(J)=*a °*
OR W8(J,1)=" ") AND Y(=LEN I$ THEN
LET W§(2)=" *: 6D T0 415

635 IF WSLJ,10€)" " THEN LET Weh+]
648 NEXT J

78Q FOR I=1 TO 188 STEP 4

705 IF We(L)=V§(I TO 1+43) THEN LET
Val+(1-1)/4; LET I=1B8

710 NEXT |

715 IF V=0 THEN B0 TO A

728 IF W)1 THEN 60 TO %@

725 IF V)17 THEN 60 T0 A

T30 LET Is=I8(1)

204 / The Complete Spectrum

- FOR =1 TO 112 STEP 4

905 IF WS(2)=N$(1 TO 143) THEN LET
Nel+(1-1)/4s LET I=112

918 NEXT It [F N=@ THEN B0 TO A
1008 [F V=23 AND NX1& THEN LET I8=i$
{2,1)+ 60 T0 604

1885 IF NCI@ THEN IF (PIN)OOL AND PI
NIOR) OR CIN) X3 THEN PRINT “Is it b
ere?i GO TOE

1818 LET V=V-18: 60 TD 11D@+(Veide)
1188 IF L=t AND (N=1D DR N=21 OR N=27
) THEN LET L=5: BO TO D

1185 IF L=5 AND (N=1B DR N=22 OR N=28
) THEN LET L=4: GO TO D

1118 PRINT *There is nowhere to clisb
"' B0 TDE

1288 IF N>9 THEN 60 TO &

1205 IF PIN)>@ THEN PRINT "You are n
ot carrying that!": 60 7O E
1218 IF N=5 AND P=1 THEN LET P=@

1215 PRINT * OK...dropped®: LET F(N)=
L: LET WT=NT-CIN): BD TO B

1380 IF N>1& THEN 80 TO A

1303 B0 7O 4088+ (nslb0)

1488 IF (P{1)<1 OR P{1)=L) AND P}L TH
EN PRINT "Its already full!'*: B0 TD
E

1483 IF PCLICL OR P(11aL THEN PRINT
*You fill the lasp with mil..."t LET
P=2: B0 TO E

1410 B0 TO A

1508 IF N)9 THEN BO TO A

1385 IF PINICL THEW PRINT "You've al

1700 IF N9 THEN GO TOGIN
171560 TO A

1800 IF N=b THEN PRINT "Be careful n
ot to waste thes!": B0 TO E

1883 IF N=35 AND P=1 THEN PRINT "You
cannot. It's espty!®: B0 TO E

IB1Q IF N=3 AND P>1 THEN PRINT "It b
urns brightly®: LET P=J; 60 TO B
1815 PRINT “Arsonist!": B0 7D B

1588 IF L=4 AND W=11 THEN PRINT *You
struggle at the heavy desk and noti
ce a lever®: LET L§(4,93 70)="By th
e desk is a lever,"s LET 8=11 GO TO C
1985 IF L=2 AND N=12 AND P(8) }B THEN
PRINT *With bare hands?": B0 TO B
1918 IF L=2 AND N=12 AND CI9))1 AND P
{8141 THEN PRINT "You lever the loos
e flag up withthe pickaxe and see soa

ething": LET CI9)=1s BD TO C

1915 60 7O A

2000 IF L=A AND N=13 AND S=1 THEN PR
INT "You hear a low rusbling sound":
LET L§(6,97 T0)="A hidden doorway to
the west hasstairs leading down.”: L
ET D(4)=B: BO TO E

2005 60 TO A

2108 INPUT * Play again ? *jI$

2105 IF 1$(1)="y" THEN RUN

2110 8TO0P

4180 PRINT *Full of oil!*: LET Cil)=3
tBOTOE

4200 PRINT "A history of Bravely Mano
r. Sosepages speak of the first owner
‘shaulet of Power, [t's clained tha
t it is hidden in the manor®: 60 TD E

4500 IF PC3 THEN PRINT 04(%): 60 TO
E

4505 IF P=3 THEN PRINT "The lamp bur
ns steadily*s 60 70 E

4580 PRINT "Safety type": B0 TD E
4700 PRINT "An old gentlesan with an
daulet around his neck®: 60 TO E

4800 FRINT *Must have been a strong s
an who used this'": 60 TO E

4988 PRINT "Carved in a sost intricat
(] toothed pattern®: 60 TO E

5800 IF L=5 DR L=5 THEN PRINT "What
i size, a sweeps delight!™s B0 TD E
5885 60 TO A

5108 IF L4 THEN 60 TO A

5109 PRINT *Looks heavy": 60 TO E
5288 IF L=3 THEN PRINT "Heavy local
stone"; 60 TO E

5205 IF L=2 THEN PRINT “One looks as
though it is loose®: 60 TO E

SHE B0 TOA

$30@ IF LCY4 THEN 60 TO A

3105 PRINT *Looks stiff'*: G0 TD E
5480 IF L=3 AND R=l THEN PRINT "That
could be a keyhole®s 60 TO E

5485 [F L=2 OR L=3 THEN PRINT "Brubb
y but still sound®: 60 TO E

S418 60 TO A

5588 IF L<)9 OR C(4)=1 THEN B0 TD A
3385 PRINT "Sosething lies in the dus
t"s LET Cidis={: LET C(BI=3: GO TO B
96 IF L=2 OR L=3 THEN B0 TO 5480
5683 PRINT *Dusty walls®: B0 T0 E
8000 DIN W#(2,4): DIN L8(9,158)1 DIN

T N p————— e

=ly LET NLw=B: LET FII:

=@t LET WT=1: LET K=23458

BS LETwé="n ¢ s w u d

i 1| norteastsoutwestup downinve
lookquitclindropecanfillget go insel
ighsovepull®

628 LET n$="barrbookcobwkey lampaatc
painpickrod chindeskflaglevepanasheln
alln ¢ s w u d norteastss
utwestup down"

BA25 PRINT P$;Ps;" BRAVELY MA
NOR";P$;"You are lost in sist and stu
ableacross a derelict house. Solve i
ts riddle or stay for ever... *
BO3D RESTORE BI81: FOR I=1 TO §

6835 READ N(I),E(D),S{1) WiD),UCD, D0
It NEXT [

B4@ RESTORE B281: FOR I=1 TO 9
BE45 READ LE(L): NEXT |

8858 RESTORE B341: FOR I=1 TO ¥

8855 READ P(I),CUI),08(1): MEXT I
Besl 6D TO C

Biel DATA 2,8,10,8,0,8,3,8,1,7,0,8,4,
8,2,6,0,0,0,0, ,0,0,0,0,0,6,0,1
i 740,5,0,6,2,0,0,0,0,0,0,9,8,5,0,8,8,
0,0,0,0

B281 DATA "Entrance to a derelict old
aanorhouse. The walls are covered
with festoons of cobwebs.®

8282 DATA "South end of the Breat Hal
1, theancient flagstones are broken.
The walls are panelled in cak.*

B283 DATA "The north end of the Great

‘ebarrels lying in the corner,

8284 DATA "The aanor kitchen. Chains
hang down from hooks in the chimney,
probably for a large cauldron.®

B207 DATA "Cool, airy roos with windo
ws. [t was probably a serving room.”
B288 DATA "The kitchen cellars, cospl
etely eapty except for a covering of
thick dust."

8289 DATA "R long, low stone room wit
h manystone shelves around the walls.

BIRL DATA 5,4,"A large barrel®
B302 DATA 4,1,"An ancient book®

B383 DATA 1,4,"A sticky cobweb®
B384 DATA 9,4,"A large aetal key"
B3RS DATA 1,6,"A handsome oil lamp®

8304 DATA @,1,"Box of matches®
B387 DATA 3,3,"An old painting”
B388 DATA 9.6,"A rusty pickaxe"

B389 DATA 2,6,"A bright metal rod"
7888 PRINT "The blades of a strange d
evice spring from a panel and you ar
€ cut to shreds. It seess you musthav
e made a fatal mistake'': B0 TO 2108
9188 CLS : PRINT P$;*You have a visio
n of the asulet seen in the painting
and a voicethanks you for recavering
it. Mists swirl and you are back in

the sunny hills near your home.®
9185 60 TO 2108

The Complete Spectrum | 205

Something for

everyone

An adventure can take on many
forms, so there’s sure to be one
that will appeal to your taste

GIVE 10 people a selection of books or pictures and
ask them to arrange them in order of preference and it's
very unlikely they will all make their selections in the
same order.

It’s the same for adventure games. Some like a little
humour, some prefer long descriptive text, some want
the challenge of difficult puzzles and yet others want
the freedom to roam around many different locations.

If the number of games used for such a test were
reasonably large, you would see a sifting upwards of a
range of games that had caught the attention of most of
our players. They may not be selected in the same order
but the top 20 or so in each person’s selection would
contain many similar titles,

Top 10 charts are not always indicative of good
games as they are mostly based on volume of sales and
initially this does not always reflect on how good the
game is. They are often influenced by the amount of
advertising a software company has put into a product
before its release. Also as book publishers have found
out, a good cover can sell well even if the content is
below par.

Fortunately — unlike books — reviews of computer
games are more widely read. Find a reviewer with the
same tastes as you and read his comments carefully
before deciding what to buy next.

Right from the Spectrum’s early days adventure
games have proved to be a major part of its software
diet. Recently a list was published containing more
than 150 titles. How do you narrow this down to what
may be considered a classic collection?

Obviously it must be shaded by the players’
preference for type of adventure. This may be swords
and sorcery, detective, science fiction, fantasy,
medieval, modern, based on a book, or just plain zany.
Some will have graphics and some not. Graphics will
usually make for a more attractive presentation but
rarely alter the playability of the game.

One of the first

No collection of adventure games would be complete
without a version of the game considered to be the
original — Adventure. This was written by Will
Crowther in 1975 and subsequently enhanced by Don
Woods. It was played on many mainframe computers
in America and doubtless retarded the progress of
science by many man-years!

As the memory capacity of home computers grew

208/ The Complate Spectrum

and programmers became more adept at squeezing
gallons into pint pots, the Crowther and Woods
adventure appeared on most home micros. There are
several versions for the Spectrum. All are text only but,
if you can find a copy, one of the earliest by Abersoft
called Adventure 1 is a good implementation of the
original.

There are two others that can be recommended -
Classic Adventure from Melbourne House and
Colossal Adventure from Level 9. The latter has an
excellent end-game added to the original version,
reputedly because Level 9 had advertised a 200 room
adventure and then realised the original did not have
enough locations.

These adventures take place in a series of
underground caves where you attempt to find various
treasures. Needless to say all is not plain sailing, as
other creatures are determined to either steal the hard
won treasure, or impede your progress to other
interesting parts of this subterranean complex.

You give commands as two word inputs in the form
verb/noun and many of our accepted adventure
puzzles can trace their history back to this classic
adventure.

Another program that has to be considered a classic
and a worthwhile addition to anyone’s collection is The
Hobbit from Melbourne House, This was the first to
feature graphics with real picture quality. It also scored
a first by having independent characters roving around
within the adventure that you could interact with
meaningfully.

Although not the first game to be based on a
well-known book it was certainly the first to be sold
packaged complete with book. You play the part of

T S T Y) P T T e N S -

et om P s e am o

— —— Fall: e -]

e g g e e me

— e o B e L RN

T___' prias Beog ol Do Sdds ik 4

M = e = e W ~ < G ;niN

L B =

LENE B =

= B B e 0

[=20 =]

hobbit Bilbo Baggins who, with 13 dwarves and the
wizard Gandalf, sets out on a quest for the Lonely
Mountain. The journey has many dangers — trolls,
goblins, elves and finally the dragon Smaug must be
outwitted to achieve success. The game differs from the
book and the slight variations make this adventure
totally addictive.

Friends of the sword

There are many other games that fall within the realms
of fantasy, so if the thought of venturing forth armed
with your trusty sword appeals to you, then be
prepared for a long and rich feast. Level 9 has several
adventures in the mould of Colossal Adventure such as
Adventure Quest and Dungeon Adventure. These have
lots of amusing puzzles and many locations to explore.
Both are text only games but produce such highly
descriptive text that you have to question the present
vogue of graphics with everything.

Three more text-only games come from Incentive
Software, an interlinked trilogy — although each may
be played separately — where your task is to search and
destroy the evil sorcerer Vran Verusbel. Mountains of
Ket, Temple of Vran and The Final Mission will each
provide you with a series of brain gelling puzzles that
are both logical and fiendishly simple — once you have
solved them!

Melbourne House has now released a follow-up to
The Hobbit, the first of three programs based on that
classic trilogy The Lord of the Rings. It has very
rudimentary graphics, several flaws that cause the
program to crash and is very, very slow in operation.
But if you are one of the many who have read and
enjoyed the original books, you will find this adventure
brings back all the tension and magic of Middle Earth.

Still in the realm of fantasy but with the added
dimension of using magic spells, is Red Moon from
Level 9. As we have come to expect from this
company, there are some 200 locations, excellent
descriptive text and a really workable combat and
magic system. Red Moon also has very acceptable
graphics and is probably somewhat easier than Level
9’s other games. It's a good one for the beginner and
has its fair share of Level 9 humour.

All the offerings from Adventure International are
strong on fantasy, such as Robin of Sherwood,
Gremlins, Spiderman and The Hulk. All have very
good graphics and devious puzzles and although
perhaps not the best games for a beginner, they will
grow on you. No collection is complete without at least
one from this stable.

One of the attractions of adventure games is the
freedom of choice you have in your actions. One
legitimate restriction may be on movement, as
sometimes you need to solve a certain puzzle before
another series of locations is opened up for exploration.
All the adventures mentioned so far come into this
category but if you really want to do your own thing
then look more closely at some of the adventures from
Beyond Software.

Adventure plus

1984 saw the introduction of Lords of Midnight, a
mixture of both strategy and adventure quest. This has
some 4000 locations and a graphic representation of
what you would see if you looked in eight directions
from each location — yes, some 32,000 views of the
landscape! The aim is to defeat the evil Doomdark,

who controls the north and whose forces are moving
steadily southwards to engulf the remaining free lands.

You initially control the movement of four main
characters and guide them wherever you choose. There
are many other characters you may meet and try to
recruit to your cause. Once they have joined you, you
then control each of these independently. Each of the
four main characters has different attributes and can
best be guided to specific tasks — but the choice is
yours.

Do you rally together thousands of loyal troops for
major set battles or infiltrate the enemy’s lines and
strike for his source of strength? There is more than
one way to defeat Doomdark, for this is a game with
many possible outcomes and some of them are not
what you would wish.

Beyond Software followed this with a sequel,
Doomdark’s Revenge, with even more possible views
of the lands of Midnight — 48000. This is a complicated
game also involving the raising of armies and special
quests but is not recommended for novice adventurers
who would be advised to sharpen their teeth on Lords
of Midnight.

For those not so interested in the strategy of
directing battles involving thousands of troops, Beyond
has produced Sorderon’s Shadow. This combines
traditional text input with the landscaping effects used
so successfully on its two previous strategy adventures.

This is role playing par excellence. There are many
independent characters — good and bad — and a series
of nine interlinked quests that are bound to keep even
hardened adventurers on their toes.

Using not dissimilar techniques Firebird’s program
Runestone is another landscape you can walk into with
the help of your trusty Spectrum. Three different
characters may be controlled — warrior, elf or wizard.
There are also a number of independent characters
with whom these three can interact.

As in those from Beyond Software, the game takes
place in real time so a fairly regular change of control
from one to the other is advised, or you may find orcs

WA i

[

The Complete Spectrum | 207

have overrun one of your comrades. Text input gives
the feeling of being similar to The Hobbit, with what
appears to be a large vocabulary and many complex
inputs recognised and acted upon.

Elementary...

For those not so interested in swords, dragons and
magic spells, there are a growing range of adventures
that take place nearer to home. Melbourne House
should satisfy those would-be detectives among us with
Sherlock. The aim is to prove to that pillar of the law,
Inspector Lestrade, that the solution to various crimes
is elementary.

Lots of travel by hansom cab and steam train will get
you and your friendly biographer to the scene of the

crime. Not an easy game to get into but persevere and
you will find life in Baker Street quite exciting.

Another game of detection — but very much of today
— is The Forth Protocol from Hutchinson Computer
Publishing. This three part graphic adventure requires
very few typed inputs. It uses a series of small pictures
or icons that represent permitted commands and you
simply move a pointer to the one you wish to choose.

The plot revolves around you having to track down
possible espionage suspects and evaluate information
obtained from a central security computer. Everything
takes place in real time with the threatened detonation
of a nuclear device as the incentive to solve the many
clues on time. The innovative presentation combined
with a slick plot makes this one for any serious
collection.

Espionage is also the link with Mindshadow from

208 / The Complete Spectrum

Activision. Here the problem is to find out who you are,
You were obviously involved with some form of
organisation — but what? You wake up on a deserted
isle having been attacked and lost your memory.

What happens next is up to you. There are good
graphics, good responses to your commands and some
excellent features that many software houses would do
well to emulate. Spectrum users can only hope for more
from the same source.

Moving further into the future there are several science
fiction games that will keep you checking your oxygen
and watching out for aggressive robots. Level 9 seems
to have the monopoly on good adventures of this type
and the Silicon Dream trilogy of Snowball, Return to
Eden and The Worm in Paradise cannot be bettered at
present.

The last two have good graphics and an operating
system that, in the case of the Worm, is probably the
best produced in the UK. The descriptive text is
imaginative and very readable with an even greater
dose of that very special Level 9 humour. Although not
easy games to solve, they encourage players of any
standard to continue and Level 9 offer the best cheat
sheets in the business,

If humour is what you want then the satire of
Hampstead or Terrormolinos from Melbourne House
or Bored of the Rings from Silversoft will probably
tickle your fancy. All are good games that have
brought a new meaning to adventure games. Gone are
the days where a sharp sword was the only requirement
for a true adventurer.

As you can see the choice is vast, and here we have
only scraped the surface to give you a selection of our
favourites. Not all of them will appeal to everyvbody
and the answer is to make up your mind which kind of
adventure will suit you personally.

so%w}%““” YOU can go for gold

Y ...with the

This is the package that broke all
records! More than a game — it's a
brilliantly written collection of
ELEVEN great track and field events!

Ever imagined yourself as another Seb
I Coe? Then try to run against the world
record holder at 1500 metres. And if that
distance is too much for you then there's
always the 100, 200, 400 and 800 metres
to have a go at.

Not much good at running? Don't worry,
MICRD OLYMPICS has many more
challenges for you. Why not try your skill at
the high jump or the long jump?

And if you can’t beat the computer at
running or jumping then you can always
throw things around in frustration! The
trouble is that it's just as hard to be a
champion at the discus, the hammer or the
I javelin.

And the pole vault takes the event to
new heights! .

Yes, it's fast, furious fun, pitting
yourself against the world's best times and
distances on your micro.

You may not be another Steve Ovett or
Alan Wells, but with practice you COULD
become the Micro Olympics Champion!

8 = L
"_
Ml

/-)

‘------‘_:\‘ \

Play Micro Olympics ™~ ﬁ;;ﬁ::w:m:ﬁ";""-:;
= mmﬂnll‘:::ms ue made payable to pactrum
— and let your fingers E " bl P £5.95
do the running! :'D*}f!.;:s"“é" _— -
Signed
' Name:
& . Address
Send for it today } =
Post ta: Micro Dlympics offer, Database Publications,
\ i 68 Chester Road, Hazel Grove, Stackport SK7 SNY.
B o e e e e e e e e e e e e e e e e O

—

Now YOU can fly with the
legendary Red Arrows -
in the most challenging
flight simulation ever!

It's the most exciting flight simulator ever
written for a home computer - the product of
many months of dedicated work by some of
Britain's top programmers, enthusiastically
aided by the talents of aircraft designers,

Save £2!
Now only £6.95

ORDER FORM

Spectrum 4Bk Spectrum+, Spectrum 128

Tape £6.95 5005 i r
I wish to pay by:
O Access/Mastercard/Eurocard No.
RS (I R (1N (R N (I | LN (IR NG RO Al IR e T
[Barclaycard/Visa No.
L 1 | | J 1 i 1 1 L 1 1 Il L 1 L1

O Cheque/PO made payable to
Database Publications Ltd

!_Ex,pirv date:

Name

Address

Signed
Order at any time of the day or night
Telephone Orders;
061-429 7931
Don't forget to give your name, address and credit card number
[ENQUIRIES ONLY: 061-480 0171 Sam-5pm |

rEWY il

Orders by Presiel:
Key *B9, then 614568383

L 4

been thrllllng crowds at air shows for the

engineers, mathematicians - and the Red Arrow
pilots themselves.

Every ounce of power contained in the micro,
and its enhanced sound and graphics
capabilities, is used to give the utmost realism
to re-creating the most spectacular aeronautical
displays ever seen in the skies of Britain.

Youmnhypmcﬂdnghkeoﬁlmdhqglm

drama begins as you plunge into
manoeuvres that have

last 21 years.

On the panel in front of you are all the
instruments you need - plus a screen giving you
an external view of the complete formation you |
are flying. Slip out of line for a second and the ' |
eagle-eyved Red Leader will be on the radio J
ordering vou back into position. i

The program comes with a detailed flight
handbook that will soon give you the confidence
to take YOUR place alongside the ace pilots of
the Red Arrows, even if you've never flown
before!

This is just one of the
intricate manoeuures you
will be able to carmy out
with this program,

of the most man
fighter in the

have some fun
and say that you
were flying in
formation with,

TURN YOUR COMPUTER INTO A PROFESSIONAL

GAMES WRITING MACHINE FOR FUN AND PROFIT!
" LASER BASIC adds 100 new commands to Sinclair Basic.

These extended commands are semi-compiling so graphic animation

: is extremely fast. LASER BASIC

includes, extended interpreter,
sprite/graphic designer, fully
documented program and 2 sets
of pre-defined sprites.

@ Up to'255 software sprites can be defined, each with its own
user selectable dimensions (up to 7 screens wide!)

® Operations can be carried out, on or berween screen
windows, sprites and sprite windows.

@ Sprites can be block 'PUT" or can use one of three logical
operations — AND, OR and XOR.

@ Sprites and screen windows can be pixel scrolled in any
direction, mirrared, enlarged. spun, inverted or cleared.

® Procedures with local variables and parameter passing,
® TRON and TROF (trace facility)

@ |6 bit PEEK and POKE.

® REMNUMBER and REM renumber.

® Mon destructive MOVE with 2 frame animation.

® Collision detection and pattern recognition facilities.

OUT NOW FOR THE SPECTRUM 4BK."

SPECTRUM+ ON CASSETTE ALSO
£14.95 Now

N3 TS ®mg=0o0

=

s =oo0

om

Microdrive compatible. S (25
: P DC:U‘T = ,'”-f

. —= PR ———— _'_'T;_ \ » Using the | =
A new age dawns' The armval of | // . VH Vs = e fos \ , Jour ,a,-og,_”‘:sﬂ‘f Compile

| — | Elpsl '
LASER BASIC: first in a powerful range S . L W= . - . il r‘”“‘r ang ¢z, b’:"a‘ even

. : — o 3
of development tools for fost ah — I {11 Stang 4 !

programming, brought te you with the
combined skill gnd resources of
Ocean and Oasis - (producers of fA

“White Lightning”)
Other, easy to use products in this - b
expanding range will include screen INW

ortist/designers, music composers and
machine code emulators to make your

programming more rewarding md i

exciting. . -

T (] SRR

The last part of our exploration
of the Z80 instruction set

PROGRAMMING the ZB0 microprocessor is one
thing, programming a particular computer which
incorporates it is another. The machine code
instruction set is always the same wherever a Z80 is
used, but the things you can do with it are limited and
dictated by the facilities offered by the rest of the
computer.

Micros used in business usually employ a standard
operating system which is common to a lot of
computers of different makes. CP/M was the first of
these transportable operating systems and the one
which is most often used with Z80 (and the earlier
8080) based computers. More recently a number of
new operating systems, like MSDOS and PCDOS,
have sprung up for use with the various 16-bit
microprocessors, but these have no relevance to the
Z80 processor.

There are a number of features of the Spectrum
hardware that make it impossible to use CP/M with the
ordinary 48k Spectrum. This is not a terrible drawback
because CP/M is not very well suited to the kind of
thing that the Spectrum is most used for. CP/M is
mostly concerned with handling text and disc files, with
almost no graphics capability at all. This is fine for
business use, but hopeless for video games.

When learning to program the Spectrum we have to
learn more than just the ZB0 machine language. We
have to know a lot about the rest of the computer as
well. Much of this knowledge will not be of use in
programming other computers, which will have their
own foibles and limitations. This is the real drawback
of not having a standard operating system. What you
learn may not be transportable to other machines.

It is & good idea to keep in mind the fact that almost
everything about the Spectrum is non-standard. Clever
hardware shortcuts and software routines have been
used instead of handfuls of expensive peripheral chips.
When you move from the Spectrum to a more
expensive computer you will probably find program-
ming a much simpler and more straightforward affair.
It will certainly be different.

The aspects of the Spectrum in which most
individuality is evident are the parts of the machine
concerned with input and output. This does not mean
just the reading of joystick ports and so on with the
Basic IN and OUT commands, but all input and output
- including cassette loading and saving, typing on the
keyboard, and the display on the screen and ZX
printer.

Each of these functions is handled in a highly
idiosyncratic way on the Spectrum, and indeed other

Specifically
Spectrum

home computers also use unusual methods to do some
of these things.

Luckily most of the hard work of writing code to
handle the input and output has already been done, and
the routines required are available in the Spectrum
ROM. All we have to do is learn how to use them.

The screen

Whenever the Spectrum is turned on, the ULA is busy
scanning the screen memory and converting the
contents to a television picture. Memory elements set to
a binary 1 cause a pixel to appear in the INK colour for
that part of the screen, and elements set to zero cause a
pixel to be displayed in the local PAPER colour. All
you have to do to make things appear on the screen,
therefore, is load the appropriate memory locations
with the right patterns of 1s and Os, and maybe also
load the attribute memory locations with the desired
colour codes.

A lot of graphics routines do just that — poke bytes
into the screen memory. However the Spectrum screen
memory is laid out in a funny, non-continuous fashion
which isn’t easy to work with, and a lot of effort can be
saved with a ROM call, provided what you wish te put
on the screen is text or a user-defined graphic.

Just load the A register with the code for the
character you wish to print on the screen and then call
the routine at &0010. There is a bit more to it than that,
because you ought first to make sure that the right print
channel is open, but this is easily done by calling
another ROM routine,

Besides codes for characters and UDGs, you can
“print” control characters to alter the printing position

bl [Y M 3 X LD AR jChannel 2 in the
w2 mo o om jaain screen
nm TMZ C0 CD CalL kl&ll | CHAN=OPEN RON
routine
| monom
M 1 T L6 1k
mn & TS JE ¥ LDASA (Cade for "A* Ls bl
R I TE 4 M
mr us TMT 07 D7 RET ML jCall print routine
b | Y TO#E 3E 3E LD AP jCodn for "B in A
h¥i | LT e a2 n
e 28 TO8A D7 D7 RST WBMIA Primt it
i &2 THE JE JE LD ASCCT jMew a "C*
m: w7 TORC 43 &3
iy ul TMD D7 D7 RET hMAiR
mu TOBE C9 C9 RET | Raturn
s i TF W W
Program |

or printing colours, Try out the bit of code in Program I
with the hex handler. Note that RST 0010 is one of the
special one byte call instructions, and is the equivalent
of CALL &0010.

If you want to print a number of characters at once,
it may be easier to use the PRINT-STRING routine.
This time we load two pointers before calling the ROM
routine. DE holds the address of the start of the string,
and BC holds the number of characters in the string,.

Notice that the space at the end of the string means

The Complete Specitrum | 209

e i ek ZE 3E LD A2 | Salect channel 2
m 2 ™y R n
nm w Téé CD CO CALL klsdl jOpen Channal
nm |1 T o n
M 1 L1 I T
o\ 17 TM® L1 10 LD DEATDTS yBtart of bext
nie 1 Teh 73 T3
nn 1A TR TR D
nie 1 TOSC @1 @1 LD BC,hM@M: jLength of tmxt
nmw & e M M
nm o TEE W N
nu oms TO6F CD CD CALL k203C jCall PRINT-STRING
nue o 7 X X
ni on W on a
nw 72 09 C9 RET |Return
nns T N jHante of
niw ms B " |space
nmur on 773 AR 4@ DEFB 'H" 1 Text storad hare
nie 76 &5 &3 DEFR %'
nusy e N7 W & DEFR ‘1Y
N e TO78 &C C DEFB "1"
niar TOT9 &F &F DEFR 'o*
mn n TOh M M DEFR' " 18pace
o o me m "
Program IT

that successive calls to the routine in Program II will
print the word Hello several times across the screen
separated by spaces. If you change the space to a
carriage return (&0D), successive Hellos will be
printed on a new line.

There are also a couple of handy ROM routines for
printing numbers. This is not as easy to do as you might
think at first, as it involves changing the contents of a
binary register into a string of character codes
representing the decimal equivalent, and then printing
that. Using the ROM takes all the sweat out of the
process.

Program 1II demonstrates the use of the ROM
routine that prints the Basic line numbers. It is only
good for numbers up to 9999, but does have the

e 8 ME E S LOAMZ phgain, open channal
a2 nmoe w 2

WMz W5 T0CA 0 €0 CALL ksl

wn 1 nme oo

mM 1 ML 16 1

s 1 7MCE 61 B LD BC, MABZ jDecimal 1204
e a8 ME R N

el nF WM

MM WS 70N D CD CALL BIAIB jCall OUT-WM
me m 1810

wmn MmOk

WL M TS 9 9 RET |That's all

Program IIT

advantage that it prints leading spaces for numbers
with fewer than four decimal digits. The number to be
printed must be in BC when the routine is called.

More complex numbers, including full floating point
notation, can be printed with the ROM PRINT-FP
routine. Using floating point arithmetic on the
Spectrum involves calling the ROM calculator
routines, which is a very big subject and beyond this
article. PRINT-FP simply prints the top number on the
calculator’s own stack.

Unless you are heavily into mathematics, the biggest
number you will probably ever want to print is the
maximum contents of a double register, &FFFF or
65535 decimal. What you do is load the number into
BC, and call the STACK-BC routine to put BC onto
the calculator stack in floating point notation, then
PRINT-FP will print it out. Program IV shows how.

Note that we have been using channel two
throughout to direct the printout to the main screen.
You can use other channels as well, for instance
channel one for the bottom two lines of the screen, or

210/ The Complete Spectrum

M &2 TEXL 3JE JE LD AkE2 A Usual

nm 2 ‘2 B n

mn TEXE C0 CD CALL kitM

mn |1 TEF NN

M n TN U I

um 1 TEIL M1 Bl LD BC,AFFFF

N M TEIZ FF FF

nmwm M TEXY FF FF

e TEM C0 CD CALL &2028 Call BTACK-BC

umm u TN OB OB

brat] B TEM N N

mi om TEIT CD CD CALL 2DET Call PRINT-FP

mia m TN E B8

M M TEW™W O OB

e m TESM 9 C9 RET JAll done
Program IV

channel three for the ZX printer, or even the extended
channels with Interface 1.

The keyboard

Reading the keyboard is a complex procedure in the
Spectrum, involving the reading of eight separate input
ports and considerable bit testing and calculation to
take account of the use of shift keys and so on.
However the Spectrum normally takes care of this
process automatically every 50th of a second or so, as
long as the interrupts are left enabled. Many machine
code programmers find it convenient to allow this
automatic keyboard scanning to continue, and just
pick up the code of the last key pressed from the
systems variable at location 23560,

There are a few disadvantages with this approach.
Advanced programming techniques sometimes use the
interrupt system for other purposes, like continuous
music. It may be desired to save processing time by
disabling the interrupts, especially when only a small
portion of the keyboard needs to be read, as in most
games. There is also the fact that the “last key” code in
location 23560 can only register one keypress at a time,
like the INKEYS function in Basic, whereas things like
diagonal joystick movement require the simultaneous
reading of two keys.

Reading the keyboard directly for your own
programs need not be as involved as it is when the
Spectrum does it. Normally you will only be interested
in a few of the keys at any given time, so you won't
have to scan the whole keyboard, and you are unlikely
to be concerned with things like the extended mode
shifts. The eight keyboard ports and their respective
keys are laid out in Figure 1.

If the key is pressed, the appropriate bit will be set to
zero, if it is not pressed, the bit will be a one. Bits 5 and
7 are not used, but must not be assumed to be either one
or zero, as they can be either value at random on some
Spectrums. Bit 6 is read from the EAR socket, and also
may be either one or zero, depending on what is going
on there.

In Program V the port connected to keys 1 to 5 is

Ni Bit3 |Bit2 | Bit0
32766-&TFFE | B | N | M |SYMSH | SPACE
49150-&BFFE | H J K L ENTER
57342-&DFFE| Y | U 1 4] P
61438-&EFFE f 7 8 9 Q
63486-&F7FE | 5 4 3 2 1
64510-&FBFE | T | R E w Q"
65022-&FDFE| G | F D 5 A
65278-&FEFE | V C X z CAPSSH

Figurel

-—v-——'

read continually until one of these keys is pressed,
whereupon the number read (which will have been
complemented and masked) is printed on the screen. In
a real program, you would probably test for certain
keypresses and use the results to make the program
execution jump to an appropriate routine.

bril B TEW X X LD AR 10pen channel 2
bl M R R
e TER2 CD CD CALL klsbi

hril L M OM M
M 1 TEM 16 1
un | JERS M M LD BC,WFTFE jPort nuaber 63484

K 29 TE®% FE FE
o w T B R

e ;7 TEME ED ED IN AL [Read the port

R 1 W MW ON

& TERA 2F F CRL jCosplesent &
ragister

M TEYR E4 Eb
e 1 TEXC IF IF
I N TESR 28 A IR IR jlusp back to J240%
I 246 TEYE Fb Fb ji# mo kayprass

AND &IF (Hank off extra bits

s & TESF B6 06 LD BAGR jCluar B register
e 0 TEM B M

mr n TEAL & W LDC,A jA gaus into C
e ws TEAZ CD CD CALL KIAIR jCall PRINT-MUN
w27 TEAT 1B 1B

mwn % TEM LA 1A

Wy e TEAS JE N LD AMD Carriage raturn
mn 13 TEAR B0 W
s TEAT D7 D7 RET M1 JPrint it

N JEMR C¥ CY RET jBack to Basic

Pragram V'

Writing to port 254 drives both the BEEP speaker (bit
4) and the MIC socket (bit 3), and can also be used to
change the border colour (bits 0, 1, and 2). All three are
affected at once by the same OUT instruction, so if you
want to make a sound without changing the border
colour, you have to be sure to set the border colour bits
to the existing colour.

If you just want to make musical notes, it is probably
easiest to load the appropriate values into registers and
call the beeper routine in the ROM, but to get weirder
sound effects and noises it is better to turn the speaker
and MIC bits on and off directly, and use your own
timing loops to get sliding tones and the like. This is a
great area for experimentation, and some programmers
have even managed to get limited voice synthesis from
4 standard Spectrum by directly manipulating this
port.

Sound routines should be located in the higher
address memory beyond location 32768, The stack
must also be located beyond this address, otherwise
there will be a ragged quality to the sound. This is
because the ULA has priority over the CPU at RAM
addresses below 32768, a consequence of the video
circuitry. The interrupts should also be disabled to
avoid a 50-cycle buzz being overlaid on the desired
sound.

When using the ROM beeper routine, however,
both of these problems are handled by the ROM and
you needn't worry about them.

To use the beeper in Program VI, DE is loaded with
a counter to set the duration, and HL is loaded with a
number that governs the pitch of the note. Both of these
numbers are calculated from the frequency of the
desired note. DE is set to a number equal to the desired
duration (in seconds) times the frequency. HLissettoa
number equal to 437,500 divided by the frequency, less
30. So in our example, half a second of the note A
above middle C — sometimes called “International A”

— with a frequency of 440 Hz requires 1/2 times 440 in
DE, and (437,500/440)-30 in HL. Yes, I know it’s a
bind — that’s what makes it such fun!

nm n TEFE L1 11 LD DEAMROC jDuration tiser
mn N TEFS OC B
e TEFE M M

me n TEFT 21 21 LD HL,MB3CA jPitch valus
hr-] LR [TEFS C4 C4

uses 3 TEFF B B

e TEFA €D CD CALL W03B3 jCall the besper
nm e TEFR M M

M] TEFC B B
W WM OTEFD O 07 RET {That ‘s all, folks
Program VI

The next example, Program VII, is a simple rising
note sound effect, with border colour changes
incorporated. This time we ignore the ROM routines
and drive the port direct, Zap!

M 243 GEEE FI F3 I |Disable intarrupts

e o BOES BE BE LD C,MFF Counter

e 2 BIEA FF FF

e a2 BOER JE 3E LD A RIA INIC on, Border red

mM BOEC 1A 1A

e 21 BIED D3 DI OUT (WFE),A jBend to Port LFE

MM 2 BIEE FE FE

T &5 BOEF 41 M1 LD AL jCounter to B

e 1 BIF I D DINZ WFE jCountdown and loap

e 2N BOFL FE FE Jte 13008

mn a2 B#FZ 3 3 LD aam JMIC off, Border
jreen

- TR | BOFT M W

32 oL ME D3 D3 OUT (WELA jBed it

I3 2 WY FE FE

LT BF6 41 4L LD B, jCounter to B again
s TLA TS BFT L0 10 DINIWE jloop to JIEIS
IS 24 BFR FE FE

mr o BIFY @0 M DECC jraduce counter
e 1 BOFA 20 20 IR NI MEE |Jump back to 33083
By e BIF} EE EE jif counter not 1ere
a s BFC FB FB EI |Enable interrupts
m M BFD CY (9 JRET 1Ta Basic

Program VII

The Spectrum ROM contains almost 16k of code
routines — far more than we can cover in this series. If
you wish to get further into Spectrum machine code,
you will need to obtain a few reference books on the
subject.

The most important of these is the assembly listing
of the Spectrum ROM itself. This is available from
Melbourne House under the title “The Complete
Spectrum ROM Disassembly”. It is by no means easy
reading, but many people believe that this book is one
of the major reasons why there is so much good
software for the Spectrum.

There are other books about machine code and the
Spectrum, all with something to contribute, but another
source of information is other people’s programs.
These are not always easy to investigate, as most
software has some kind of protection nowadays, but
some of the earlier game programs from a few years
ago are fairly easy to get into and the effort is well
worthwhile.

Our faithful hex handler can be used to examine
other people’s code, but a disassembler would be
preferable, as it will render the opcodes into more
readable assembler mnemonics.

Don’t be shy about breaking in and investigating
protected software. This is neither illegal not immoral —
as long as you don’t make copies — and everyone does
it, including the top programmers!

The Complete Spectrum (211

—

The finishing touches to our
well-structured game

LAST time we met our friends called Smileys. We
started to put together a simple game and the idea was
to structure the program to demonstrate the benefits of
such programming. This should have enabled you to
follow it through line by line and — provided you have
made no typing erros — when you RUN it you should
see 10 asterisks displayed in the main grid showing the
locations of our temporarily-revealed hidden Smileys.
These will soon be concealed again, but just for the time
being we'll leave them showing so that we can test the
program works correctly.

Right then, we've drawn the grid, initialised the array
elements and hidden the Smileys in 10 random
locations. We are now ready for the input routine.

What goes in must come out

First of all remove our temporary line 75 and type in
lines 1010 to 1080.

1018 PRINT AT 3,8; INK 1y"Input x,y =
L]

1015 IF INKEY$<)"" THEN B0 TO 1B13

1828 LET k$=INKEY$: IF k#<"@" OR k$)"

9® THEN 60 TO 1820

1030 LET quessx=VAL (k)1 PRINT AT 3,

28 INK 1jquessx;”,";

1840 IF INKEY$<)"" THEN 60 TO 1dd@

1050 LET k$=INKEY$: IF k$("0" OR k$)*

9* THEN &0 TO 1050

1068 LET quessy=VAL (k$): PRINT AT 3,

22; INK 1jquessy

1870 LET turns=turns+l

18808 PRINT AT 12,3;turns

These deal solely with our input to the computer.
Line 1010 prints the text prompt where originally the
titte was displayed. It simply asks us to input the
coordinates of our guess, column first, then row. Lines
1020 and 1050 use the INKEY$ command to await
our entry, and lines 1015 and 1040 ensure that
INKEY$ is empty or null before we actually press a
key.

It's worth noting here, by the way, that lines 1020
and 1050 won't let us go any further until we press a
key with a value between 0 and 9 inclusive. This is
called validating the input and is another important
factor that sorts out good programming from bad.
There are people who delight in being able to crash
such an input with entries like —255, 99999999.99 or
even King Kong. A good programmer will put the
necessary checks in an input routine to make sure that
nothing, other than the response he wants, gets
through.

Using the VAL command we assign the numeric
value of the input string to the variables guessx and
guessy then print these out with a comma already

212/ The Complete Spectrum

Smileys all round

between them. Lines 1030 and 1060 are responsible for
this. Line 1070 simply adds 1 to the variable turns to
keep tabs on how many attempts we've had, and we use
this to update the numbers of guesses on the screen
display.

Unfortunately you can't really check whether this
routine is working correctly at this stage as it needs a
routine to process the information you have input.

Is there anybody there?

So let’s continue by typing in the check routine from
lines 1210 to 1330. As this calls another subroutine
starting at line 1700 you must also type in lines 1710
and 1720 as well.

121@ IF INKEY${)"" THEN 60 TO 1218
1220 IF blguessx+l,quessy+l)=2 THEN
BEEP .2,4: BEEP .3,8: PRINT AT 21,4y
INK 8;"You've had that one !": FOR x=
1 TO 1@88: NEXT xx PRINT AT 21,6;"

"1 RETURN 1 REM 21 s
paces
1238 LET flagu=@: LET flagy=8
124@ IF b(guessx+l,gquessy+i)=l THEN
60 SUB 178@: BO TD 1240
125@ PRINT AT guessy+l®,quessx+%;" "t
FOR z=18 T0 @ STEP -1: BEEP .B1,z1 N
EXT 21 LET blguessx+!,quessy+l)=2
1268 FOR x=1 TO 18: IF bix,guessy+l)=
1 THEN LET flagy=l
1278 NEXT x
1280 FOR y=1 TO 18: IF biguessxtl,yl=
1 THEN LET flage=l
129@ NEXT y
1300 IF flagx=1 AND flagy=R THEN PRI
NT AT 21,9;"Right colusn®
1310 IF flagy=t AND flagx=8 THEN PRI
NT AT 21,9;"Right row*
1320 IF $lagy=1 AND flagx=1 THEN PRI
NT AT 21,43"Right calusn L row®
1330 FOR w=1 TO 188: NEXT x1 PRINT AT
21,8)" "1 REM 18 sp
aces

1710 PRINT AT guessy+18,quessx+%; INK
@;CHRS 145: FOR z=28 TO 4@: BEEP .81
2t NEXT z3 LET smileys=smileys+i: LE
T blguessx+l,quessy+l)=2

1728 PRINT AT 15,27;smileys

We now have to check the input to see whether or
not we have found a Smiley. To do this the micro
checks our selected element of the array b() for certain
numbers, and responds according to what it finds there.

You may remember that we originally put Os in all
the array locations, then scattered some Smileys
randomly around the grid in the form of 1s. In order to
provide more information I've also introduced the
number 2 to indicate that a particular location has
already been chosen. Line 1220 first of all checks the

Nc
chi
the

fig
suj

'P"—i"__

X,y location in the array for that number 2. If if finds
one we sound a couple of beeps then print a message to
the effect that we have previously chosen that location.
After a short pause the message is blanked out and the
RETURN takes us back immediately for another
input.

If a 2 is not encountered, line 1230 sets up two flags
flagx and flagy. These are used later to provide some
useful clues if and when you select an element
containing a 0, or in other words a blank.

Line 1240 continues the search and if a 1 is found —
one of our hidden Smileys — the subroutine at line 1700
is immediately called. This prints our smiling face
character, CHRS$(145), at the location selected,
accompanied by a suitably triumphant noise.

Then the variable smileys is incremented by 1 to be
printed out on the screen by line 1720. Finally a 2 is put
in the array element to indicate that it has been used.

We then RETURN to the original subroutine to go
through the clue sequence. This is designed to provide
information on the location of any Smiley in the same
row or column as the current guess.

If a location is found with a 0 in it, line 1250 prints a
space in the grid. We put a 2 in the array element and
the program goes straight through to the clue sequence.

This uses two FOR ... NEXT loops to scan the
rows and columns, and sets flagx or flagy depending on
what it finds. For instance, if there is a Smiley on the
same row that you selected, flagx is set to 1. If there’s
one in the same column, flagy is set, and naturally, if
there's one in both column and row, both flags are set.

Lines 1300 to 1320 then print out one of three simple
messages corresponding to the contents of these flags
which is removed by line 1330 after a short delay.

Testing, testing

Now comes the bit you've been waiting for — a quick
check that the game is running correctly so far. Enter
the following lines:

138 IF swileys(3 THEN 60 TO 108
135 sTOP

Now you can test your input and detection routines
by running the program again. You can try out any
figure you want in place of the 3 in line 130, but I would
suggest that to save time you only use a small number
to start with.

When that number is reached on your Smiley count,
the program will drop through to the STOP statement
it line 135, because the game continues condition,
smileys< 3, no longer exists. You can probably see now
the reason for indicating the whereabouts of the
Smileys — it does make testing so much easier. But
don't just bash away getting bullseyes all the time, It’s
imperative that you also test the miss routine and
occasionally select a location that has already been
used.

If after one or two tests you are happy that
everything is working smoothly, remove line 135 and
change the number 3 in line 130 to 10, because that’s
the number of Smileys we've got to find before the
game finishes.

That’s all folks

We are now ready for the routine called by line 140
to signify the end of the game. Type in lines 1410 to
1470 and lines 150 and 160.

1418 BEEP .5,1: PRINT AT 21,7; INK 0
"That's the lot !!*®

1420 PAUSE L0

1438 IF turns<best THEN LET best=tur
ns

1440 PRINT AT 18,3;best

1458 FOR x=1 TO 208@: NEXT x: PRINT AT
21,7 "Another game y/n ?*

1468 LET k$=INKEYSs IF k$()'Y* AND k$
C2"y" AND K$CO'N* AND k$C)"n" THEN 6
070 1460

1470 LET again=81 IF k$="Y" OR k$='y"
THEN LET again={

158 IF again=1 THEN G0 TO &8
168 STOP

Line 1410 immediately prints a message indicating
that we've found the last Smiley and your score is then
checked by line 1430 to see whether it qualifies as the
best so far. Line 1450 prompts for another game and
uses the INKEYS command again to await your
response validated for presses of only the Y and N
keys. If the response is affirmative the variable again is
set to 1.

Returning from the subroutine takes us to line 150,
which, should it find again set, sends the program to
line 60 to re-run the game completing our main loop.
This carefully avoids the variable rurns at line 20 which
must not be reset otherwise a best score display would
be pointless.

It also avoids the array at line 30 which cannot be
redimensioned unless it has been cleared. There is
nothing to be achieved in doing this in these
circumstances so it might as well be left alone. We also
avoid the routine that would redefine the two graphic
characters as this is time wasting and unnecessary.

Should line 150 find the variable again equal to 0—a
negative response — line 160 throws you
unceremoniously out of the program, and quite rightly
too.

It’s not every day you get the chance to play
something as exciting and infinitely rewarding as
Smiley Hunt.

Now you see me, now you don’t

If, having played the game a few times, you are happy
that it is working correctly you can remove line 845,
the one that shows you where the Smileys are. You'll
find it’s a different game altogether now! It may not be
the most sparkling program in the world, but it works,
and contains some useful techniques. For instance, the
input routine could be used in any program — it
probably already has been — and the checking routines
could always prove useful.

The important thing to us, though, is that it is well
structured and as a result you should have been able to
follow it through line by line, subroutine by subroutine,
and see how it was put together.

1 hope you enjoy playing it, but even more I hope
you've learned something about structured program-
ming style by typing it in. There’s a popular song that
says: “You've either got or you haven't got style!”
Believe me, if your programs have it, progressing on to
something more ambitious will not be the enormous
step you may have imagined.

The Complate Spactrum [/ 213

On the move...

Final part of the series which
clearly explains the complex
area of machine code graphics

SO far in this series we've looked at the display file, the
section of RAM responsible for the characters’ shapes,
and the attribute file which is responsible for their
colour. Now we’ll see how to get things moving.

There are two listings this month, though they're
actually the same program. Program 1 is an Assembly
language listing of the demonstration and Program ILis
the same program with the machine code stored in data
statements.

If you've got an assembler enter Program I If not
type in and run Program II.

When run you'll see some text printed down the
centre of the screen and a large character on the left.
Hold down the 2 key and the character will move
smoothly across the screen to the right. Hold down 1
and it moves back again.

There are a couple of points worth noting. As you've
discovered if you've just tried the program, moving
things around in machine code isn’t like Basic. When I
first wrote the program the character whizzed off the
screen so fast I never saw it move — [must have blinked
at the time. You'll see from Program I that a 0 to 2000
delay loop is executed every time the character moves
to slow it down, otherwise it’s uncontrollable.

There are no boundaries round the screen and if the
character slides off one side it reappears on the other
This is because we aren’t using coordinates like Basic,
just an address in RAM at which the character data is
to be stored.

One way of keeping it on the screen is to store its x
coordinate yourself along with the address. Every time
the character moves to the right increment x so you can
check x before the character is moved and if it's at the
right edge you know it can’t be moved any further.
Similarly, you can just as easily check for the left edge.

Another point worth noting is that the character
moves smoothly through the text in the centre of the
screen without affecting it. That's because an XOR
print routine is used.

The second instruction after loop5 in print is XOR
(HL). This XORs the character data with the screen
data. You can remove this if you want and do a straight
poke. The character will then destroy any background
it passes over. The advantage of a straight poke is that
it's faster.

Call print with the print address in HL, the character
data address in DE and the size in BC. The number of
columns isin C and the rows in B. Calling it once places
the character on the screen. Calling it again with the
same parameters erases it.

For a further explanation of the print routine take a
look at the first article in this series — it’s the same one.

There’s only one other routine used and you haven't
met this before — it’s called key. Call this when you
want to read the keyboard. If a key is being pressed it

214 | The Complete Specitrum

returns with the Ascii code or token in the A register
and the Carry flag clear. If carry is set then either there
aren’t any keys being pressed or too many are being
held down. Either way the result in A is garbage.

Have a look at key. Three calls to the ROM are
required plus some fiddling in between to find the Ascii
code or token for the key being pressed.

The first call to &28E scans the keyboard and
returns an intermediate code in the D and E registers. If
the code is a valid result the Zero flag is set, otherwise
it's clear. You'll see that straight after the call in key
there’s a JR NZ to nokey to check for this. The Carry is
set indicating an invalid result and the routine ends.

Next there’s a call to &31E. This converts the
intermediate code into an offset into a look-up table.
Obviously keys like Caps Shift do not produce proper
codes so these are weeded out. This is indicated by the
Carry being clear when the call returns. Again key
checks for this and jumps to nokey if necessary.

A call to &333 is made to convert the offset into an
Ascii code or token. The result is dependent upon the
values of the registers on entry. Table I shows the entry
conditions required. Finally, the Carry is cleared
indicating a valid result and key ends.

There are other ways of reading the keyboard, but

Table I: Entry conditions for the ROM routine ar £333

vou should find this general routine satisfactory for
Most purposes.

The main loop checks for Ascii 1 and Ascii 2, and
either moves the character left or right. You’ll see that
there’s also an additional check for Ascii 3 which I've
set up as an Escape key to return to Basic.

No doubt you've already discovered when using
commercial software written in machine code that
pressing the Break key has no effect at all. It's Basic
that checks this and since we’re not using Basic it’s not
checked at all.

You have to do all the work yourself when in
machine code. If you don't specifically test the Break
key now and then, or any key for that matter, and take
action when it’s pressed then nothing will happen. It's a
point worth bearing in mind when writing a machine
code routine — always make sure there’s a way out,
otherwise the only solution is to pull the mains plug.

Obviously there's a lot more to writing a machine
code arcade game than the routines presented here.
There are score routines, high score tables, animation
and so on. It's not so difficult once you know how the
screen is mapped, have a print routine and know how
to read the keyboard.

I've started you off, now it’s up to you to carry on.

wr

-F'———‘i T

0R8 30800 POP HL LD AM
P loop jagain aND 7
jereaeess Keyboard Read serns cP7
LD HL, k400 jstart address jCarrysl...no key pressed JR I,botton
jCarry=0...key prassed, Aschr INC H
«loop P here
LD (address) ,HL jstore ey Jbotton
LD DE,data jdata address CALL &28E jscan keyboard LD AH
LD BC,ki082 jrows/celusns R NI,nokey jvalid result? RRCA
CALL print Jprint new chr CALL U3IE jget code RRCA
LD HL, ko0 JE-LEOD delay JR NCynokey pvalid? RRCA
Jdelay LD E,A LD H,A
DEC HL LbC,8 LD BC,L24
LD AH LD 0,8 ADD HL,BC
OR L CALL 4333 joet Final code BLA K
JR NI,delay AND A BLA H
it jwait for a key RET BLA H
CALL key .nokey jkey not pressed «here
iR Cymait 8CF POP BC
LD HL, (address) RET DINT loopd jrows-1
CP *1* jcheck direction JHAFEEHER Print HeedHHEHRE RET
JR 1,1left «print
e "2*
R 1,right jHL=address vaddress DEFNW §
e i jend? jDE=data
IR NI, mait 3BC=rows/coluans
RET j#ed#t Character Data #esines
«looph data jléx 2
Jeft jgo left PUSH BC jsave counter
DEC HL PUSH HL DEFB 125,1%8,138,63
IR wove +loop3 DEFB 130,63,154,89
.right jgo right LD A, (DE) jet data DEFB 154,89,130,43
INC HL X0R (HL) JX0R with scraen DEFD 124,52,128,1
JROveE LD (HL),A jutore DEFB 184,29,147,229
PUBH HL jsave new INC HL DEFB 149,143,241
LD HL,(address) jget old INC DE DEFB 94,6,31,248
LD BC k1082 jysize DEC ¢ jceluans-1 DEFB 24,24,128,38
LD DE,data jdata address IR NZ,laopS
CALL print jarase old chr POP HL jnext row END
Program [
18 REN PROBRAM [1 168 LET a$=a${3 T0) 250 DATA "Recaaaer"
180 CLEAR 29999 172 60 TO 138 260 DATA "TDBEB24182419A399A5982417C

183 INK 1: BRIBHT Bz PRINT "Thinking
118 LET p=30004

120 LET aga*"

130 IF a$="" THEN READ a#: IF a$="S
TOP® THEN G0 TO So@

148 LET y=CODE a$-48: IF y)9 THEN L
ET y=y-7

150 LET x=CODE a$(2)-48: IF x)9 THEN
LET x=x-7

168 POKE p,1by+x

178 LET p=p#l

208 DATA "Z21884822B8751 147501821000
g

283 DATA "218008287CES20FB"

210 DATA *CD717538FB2ABATSFEI12809FE
J22680BFEII2NECCY"

220 DATA "2B1BA123ES2ABO730102101 104
73CDB7TIEICIZITS"

230 DATA "CDBEAZ20QFCDIERIIMASFIEM
16B8CD3383ATCTITCH"

248 DATA "CSESIAAETT2T13AD20FBEITCEL
B7FER7200424CIACTSTCOFOFOF 6712000090
B24CB24CB24C118DBCY"

JEBD1BB1DATESNIEFF 16004 1FFE1818781
El

300 DATA *STOP*

T e — -

S8 CLS : INK 2: BRIBHT |

518 PRINT AT §,14)"8"JAT 6,14;"P*;AT
7,165 "R*JAT 8,165 *1"JAT 9, 16;°T*5AT
18,165 "E* ;AT 11,161"8"3AT 12,16)"7"
528 LET x=USR (30800)

538 BRIGHT 9

Program I

The Complete Spectrum [215

iIndex

A Adventures — creating

—playing
— software
Analysis
Animation
AND
Arrays
Assembly language
AT

B Basicinterpreter
Binary
Beginners
Books
BORDER
BRIGHT
Bulletin boards

C Cassette tape
Character set
CHRS
CIRCLE
Colour
Communications
Conditional operators
CPU

D DATA
Databases
DIM
Disc drives
DRAW

E Editing
Education
Educational software
Electronic mail
EOR
Error handling
Etch-a-sketch
Extended mode

F Faultfinding
Flags
FLASH
FOR

(G Graphics
Graphics hardware
Graphics software

|H Hacking
Hexadecimal

] INK
INPUT
Inside the Spectrum
Interfaces
INVERSE

J Jargon
Joysticks

216/ The Complete Spectrum

202

198

206
61,144,169
62,84,118
194
149,182
105,172

22

160
30,32,58,173,194
2,38,74,110, 146, 182
72

2,55

22,134

152

5,180
27

27

96
34,134
150
183

16

146
90
149
42
96

3,8,41
186
187,189
151,156
194

191

129

11

12,107
170
22,134
110

28,57,94,i22, 164, 124
114,162,178
130

158
66, 98, 103

22,54

76

24,117
78,126,153
22,135

16
126

K Keyboard upgrades

L LOAD
LET
LIST
Loops

M Machine code

Memory map
Memory upgrade
MERGE

Microdrive commands
Microdrives
MicroLink

Micronet

Mnemonics

Modems

Mouse packages

NEXT

OR
OVER

02

P PAPER
PEEK
PLOT
Plotter
POKE
Prestel
PRINT
Printers

R RAM
READ
Repairs
ROM

§ SAVE
Screen
SCREENS
Sir Clive Sinclair
Spectrum 128
Speech
Spreadsheets
Stack
STEP
Strings
Structured programming
Systems

T TAB

ULA
User defined graphics
USR

c

V VERIFY
Video monitors

XOR

N X

Z80 registers
ZB0 instruction set

88

5,180

38

22
76,110,183

32,66, 103,122, 140,
164,170,209, 214
122,195

0

180

49

45,190

156

150

69,104

153

114

110

196
22,135

22,54

68

95

178

68

150
7,22,54,134
78,81

16,192
146,182
107

16, 209

3,180
94,122,209
23,180

35
100,117,176
101

137

141

111
8,74,185
166,212
18,20

22

17
28

69

5,180
52

197

25,140
24,142,170

=

Make sure

you've got a
COMPLETE set of

If you missed the first five issues you can order them for just
£7.50 for all five. Single copies of the issues already
published can be sent to you for £1.75 (including postage).

Please use the order form below.

A dust cover for your
*Spectrum and
*Spectrum Plus

Made of soft pliable
water-resistant black
vinyl and decorated

A luxury binder for The
Complete Spectrum

Keep all your copies
neat and clean in
this handsome

j i / with The Complete binder.
i PO bl Spectrum logo in
I * Please ensure that you ordar silver.

Yo ONLY £3.95 ONLY £3.95

Flease enter quantity as required in box . c i
1 P P
i The Complete Spectrum RedArrows i
Issues 1-5 T U UNSSN iy ; 3. | S -, |
= UK £7.50, Europe £11, Overseas £13 srrr 1 epe — :
[”m . Binder i
l mgg R o C b s T gK 5335 9030 l
o urnpa.f[?vsrseas cinsarmransesnns B0 8037
I No.4 . e e OVBrseasoceenees _£10.85 8032 .
7 No.5 . wieninans S020
UKELTS Europa £2.25, Uversaasiz ?5 SR I
I Dust Covers |
= Micro Ol'vmplcs *Spectrum Dust Cmarislandard IGMSR? :
UK i .£3.95 8035
| I RLE o O . 1| |- 2003 D_ Eurnpa,ﬂﬁverseas .- £6.95 9035 E I
Spectrum Plus Dust Caver
. . T .- - |- ']
= Mini Office Europa/Overseas E8.85 2038 E =
- *Ploass e that rder tha
i Tape . £3.95 - 001 [o th hvr:;r ;‘rodd TOTAL i
| |
| Send to: The Complete Spectrum Payment: Please indicate method (-)]
| FREEPOST, Expry date]
1 Europa House, [CJ Access/Mastercharge/Eurocard/Barclaycard/Visa L 1
] 68 Chester Road, i
l Hazel Grove Card No. L0 4 o Ll L1 L1 | S N O T | I
L
t rt Y. .
l Stockport SK7 SN =3 Cheque/PO made payable to Database Publications Ltd. | |
| Order at any time of the day or night .]
Name
l Telephone Qrders: COrders by Prestel: Microlink/Telecom Gold I
I || 061-a28 7931 | [key *89, then 614568383 72:MAG001 Address 1
l Don'’t forget to give your name, address and credit card number 5;1&‘1) .
] [ENQUIRIES ONLY: 061480 0171 9am- 5pm | Please allow 28 days for delivery.]
l-------------—------------—----------------------I

-_

|

|
5
i

AT LAST A SPECTRUM GRAPHICS PACKAGE THAT IS FUN AND EASY TO USE.

THE OCP ART STUDIO CONTAINS EVERY FEATURE YOU WILL NEED TO CREATE
BEAUTIFUL ILLUSTRATIONS. IT WORKS WITH THE AMX MOUSE FOR EVEN GREATER
EASE AND OUR HARD COPY OFFER MEANS YOU CAN HANG YOUR MASTERPIECE ON THE WALL

DO IT ALL - CREATE AN IMAGE. SHRINK [T, EXPAND IT, MOVE IT, ROTATE, COPY IT, COLOUR IT, SPRAY ON A PATTERN OR SHADE. MAKE

ELASTIC LINES, TRIANGLES, RECTANGLES, CIRCLES - STRETCH AND MANIPULATE. ADD TEXT OR CHARACTERS, UP, DOWN, SIDEWAYS - ANY

Pull down menus. * lcon driven
Keyboard, joystick, mouse conlrol
Dot matrix pnnter dumps. 5 sizes
and grey scale — up to B0 columns
Supports 17 printer interfaces,
16 pens, B sprays and 16 brushes
32 user-redefinable lexture fils
Wash texture * Undo tacility
Snap facility * Pixel edit
Cut, paste, tum, enlarge, reduce
Magnify (3 levels} pan and zoom
Text. 9 sizes, 2 directions, bold
Font editor with invert, rotate flip
| clear, capture from window
I * Elastic line, triangle, rectangle
* Low cost full colour prints offer
Upgrade offer * Mouse offer

“An extremely powerfull utility which should be of use to

professional artists and designers as well as the home user”

THE

2

@ RAINBIRD is a division of British Telecommunications plc

"ART STUDIO

MAKE CHEQUES OR P.O. PAYABLE TO RAINBIRD SOFTWARE
BARCLAYCARD AND ACCESS ORDERS TEL: 01-240-8837 (24 HOURS)

SIZE OR PROPORTION. ZOOM IN TO DRAW IN FINE DETAIL. SHRINK THE WHOLE PICTURE TO ADD BACKGROUND.

OR

For use with disc or mic
with K DOS and SP DO
cassette). Includes disc
systems, screen compres:
fonts and Kempston mowse
AMX). {Available Mail Order Only)

FOR 48K ZX SPECTRUM

