TWO IMPLEMENTATIONS

ASSESSED

INTRODUCING THE
PRINCIPLES OF 68xxx
M/C PROGRAMMING

CPC MUSICIANS TAKE
NOTE

GETTING A LINE ON
COMPUTER GRAPHIC
TECHNIQUES

lcome to the
third part of
the Your
Computer
Course. We
hope that you have found the
lectures so far both stimulat-
ing and refreshing, as well as
informative.

This month’s instalment
features articles which cover
all aspects of home comput-
ing. We begin by looking at
computer graphics. It is one
of the major growth areas in
the home computer market -
a wealth of high-quality soft-
ware and hardware add-ons
has reached the market in
recent months. Those tools
mean that the creation of
professional-quality graphics
is no longer the sole province
of the graphic artst but is
within grasp of every micro
user.

Our guide 0 computer
jargon continues on page 20;
this month John Lettice cov-
ers letters [to L, from IBM
1o Loops.

Those who are interested
in machine code programm-
ing will find an introduction
1o low-level coding on the
68xxx series of MPUs.

Music is another area gain-
ing in popularity and this
month we show users how 1o
make the most of the Pro-
grammable Sound Generator
which is responsible for the
generation of music on the
Amstrad CPC range of com-
puters.

To round off this instal-
ment of the course, Geof
Wheelwright assesses two
implementations of the Pas-
cal programming language.

INDEX

Computer Graphics . 18
Glossary (I-L) 20
68xxx programming 22
Amstrad music 23
Pascal in action 24

Contributors:
David Janda

John Lettice
Geof Wheelwright

Computer generated

YOUR COMPUTER COURSE, MAY 1986

19

f all the applica-
tions which can be
set for a micro, few

are immediately as

rewarding as the
generation of on-screen pictures
or graphics. With the advent of
modern paint software and
sophisticated input devices such
as the mouse, the touch tablet
and the light pen, developing
graphics is much easier than it
used to be when all vou had 1o
hand was a grid sheet and a table
of available screen colours.

You can, of course, still draw
pictures on-screen by using pro-
gramming methods, although
many pictures used by commer-

cial software programmers these”

davs are either digitised using a
video camera and an interface to
a micro or painted using some
form of sophisticated computer

raphics

paint soltware,

On this page vou will see
some examples of both
methods, Figures one and two
show short programs for the
Commuodore 64 and Spectrum
respectively which allow you to
gencrale Vour own very
rudimentary pictures using the
computer's existing character
set and the keyboard, while
the photos show the kind of
drawing program - in this case il
18 QL Paini for the Sinclair QL -
which make painting vour mas-
terpieces 4 much easier job.

Piinting attractive-looking
pictures, however, is not likely
ta be the only application vou
will have for the graphics
capabilities of vour micro. With
the high resolution available on
many of the new machines -
i.€., the 640 by 400 pixel resolu-

tion on the new Atari 520STM -
and even the medium resolution
on older machines you can con-
sider various forms of real-
world modelling.

Dedicated programs 1o
accomplish it are often found
only on more expensive
machines — often under the
name CAD/CAM, Computer
Aided Design/Computer Aided
Manufacturing - and relate
largely 1o the design of three-
dimensional shaded widgets in
colour on-screen.

Again, however, such soft-
ware is more often an applica-
tions solution rather than a pro-
gramming solution to the prob-
lems of real-world modelling.
You are simply given the tools
for design, just as a
draughtsman might be given an
casel and a set of rulers and pen-

cils, and you go ahead and draw.

A far more interesting idea
has been developed in recent
years with the discovery of a
mathematical model of the real
world known as a fractal. Frac-
tals work on much the same
principles as calculus; by chop-
ping sections of a picture into its
smallest possible components
vou will be able to obtain a series
of straight lines from which it
can be built.

Fractal drawings can be used
1o develop a highly-realistic
image. The kind of work that
can be done on bigger machines

using fractal modelling
techniques is helping designers
to replace the conventional

drawing board with sophisti-
cated design and simulation
sysiems.

Geof Wheelwright.

Figure 1 - Commodore listing

10 PRINT CHRs(147)

12 POKE 53280,0:POKE 53281.,0

15 Q=1484:C=55750

40 S=1

SO CET B8%: IF Bs="" 'THEN 50

60 IF Bs=CHRs(17) THEN Q@=Q+40:C=C+49

70 IF Bs=CHR=(145) THEN =Q-4C:C=C-40C

80 |F B$=CHRS$(157) THEN Q=0Q-1:C=C-1

00 I Bs=CHRS$(29) THEN Q=Q+1:C=C+1

98 F 02023 THEN Q=Q0-40:C=C-49:GO0T0O 50

OF IF <1024 THEN @=Q+40:C=C+40:50T0O 50

100 POKE G,27

110 POKE C.S

120 S [NT(RND(1)%15)

130 GOTO 50

Figure ! -~ Spectrum listing

10 CLS

IR 7

12 PAPER O

13 BORDER ©O

14 CLS

IOREET X=11:LET ¥Y=16

RONMBRINT AT X, Y ;"I'"

GONLET Bs=INKEY$: |IF Bs="" THEN GOTQ 30
SONIEF B$="A" THEN LET NX=X-1:PRINT AT X,¥:;"1"
e Bs="5S" THEN LET X=X-1:PRINT AT X, ¥:" "
auabl Bs="7" THEN LET X=X+1:PRINT AT X,Y;"I"
Serdl Bs="X" THEN LET X=X+1:PRINT AT X,Y;" "
GONF Bs="N&" THEN LET Y=Y-1:PRINT AT X, Y;"("
Ol B%=".J" THEN LET Y=Y¥-1:PRINT AT X,Y:" "
T [F Bs="M" THEN LET Y=Y+1:PRINT AT Y,¥,"I*"
e Ba="K" THEN LET Y=Y+1:PRINT AT X,Y¥Y:" " .
80 GOTOD 30

YOUR COMPUTER COURSE, MAY 1986

W IBM: International Business
Machines is what the world’s
largest microcomputer manu-
facturer would claim IBM
stands for. Other suggestions

are Incredibly Boring
Machines, Imperialism By Mar-
keting and Infinite Bucks
Made.

B IC: Integrated circuit, which
is a collection of transistors,
capacitors and so on built on to
one small silicon chip. Also
Investors’ Chronicle.

W IF ... THEN: One of the
basic constructions of struc-
tured programming, telling the
computer that IF a certain con-
dition exists THEN it should
do something specified. Most
Basics have an ELSE addition to
the construct, allowing the com-
puter to potter on without show-
ing the slightest bit of initiative
itself. Easy life.

B Impact printer: A printer
designed specially to survive
being thrown out of windows,
or other comparable impacts.
Alternatively, a printer which
transfers the image to paper by
hitting an inked ribbon.

B Increment: To increase a
sum by adding a number is
known as an increment. No
connection to annual incre-
ment, which is a sum added to
your salary infrequently and
under protest by your
employer.

B Initialise: Initialisation is the
process undergone when a bank
cashier notices you have put the
wrong date on vour cheque. It
can also mean setting the value
of a variable some time before its
use,

B Input: The raw material, or
garbage, sent to the computer
through the keyboard or other
peripheral device, to be acted
on. See Error message.

B Instruction: A part of the
computer manual referring
obscurely to a part of the com-
puter which has been fitted/has

been modified since the manual
was printed/has fallen off. Alsoa
command in a Basic listing. See
Error message.

M Instruction set: A manual
which has not been collated by
the manufacturer, or the com-
plete set of instructions a given
processor can understand.

M Integer: A whole number,
whether negative, positive or
ZCT0.

B Integer variable: A variable
which can only be a whole
number, but as it is variable,
one you can’t remember.

M Intel: A company responsi-
ble for the CPUs in the best-sel-
ling IBM PC series. Despite
this, Intel is a highly successful
manufacturer.

M Intelligent device: Any
device which has processing
power of its own, as opposed to
a dumb terminal, which can
only send and receive data from
elsewhere. By this definition,
the merest simpleton or status
quo fan/Arsenal supporter is
“intelligent”.

M Interface: Varying degrees
of assault, ranging from joystick
interface — three months -
through to printer interface —
life imprisonment, no remis-
sion. Also the link between two
devices, for example allowing a
micro to drive a printer.

B Interpret: To change a high-
level language like Basic into
machine language understand-
able by the computer.

B Interrupt: A way of stopping
the execution of a program for a
small amount of time while
another action is performed,
giving the impression that two
things are being done at the
same time.

M Inversion: In binary, turning
a number upside down so that
all the ones become zeros and
the zeros ones. You can’t easily
do this in decimal, unless you
have a dodgy accountant.

B 1/O: An expression first used
by Walt Disney - “1/10, IO, it’s
off to work we go . . ." —but now
used to mean input/output. The
various sockets allowing a com-
puter to communicate with the
outside world are known as 1/O
ports.

M Iteration: An iteration is one
cycle of a loop, while the process
of iteration means repeating
cycles over and over again. You
probably know someone who

i

The jargon which pervades the com;
language than a tool to effective com
know. By following John Lettic:

can be fluent in the hi-tech p:

N

]

does this, 1.e., an irritant, and
iterant is a corruption of this.
An itinerant is someone who is
so irritative/iterative that they
are forced to move house a good
deal.

B Joystick: A device used for
input by people whose fingers,
through thumping the cursor
keys too hard, have grown too
dumpy and calloused for them
to use the keyboard.

B Jump: The same as branch,
i.e., a point in a program where
it can go in two directions. Jump
sounds much faster and is there-
fore used if the program is
appallingly slow.

M Junction: A point where rail-
ways branch away from one
another, or where -eclectrical
lines do likewise. The com-
puter-related meaning is far too

esoteric 10 worry about but
there aren’t many Js.

M Justify: Having to explain
the entry above to the editor.
Also a technical term used by
manufacturers when their
machines are late. See hook. See
line. See Sinclair. Of printed
text, it means having the text
aligned on both sides. Left-jus-
tified means aligned on the left,
right-justified aligned on the
right. There aren’t many Js, are
there?

B K: Short for kilobyte, from
the Greek kilo, which means
1,000. Computers, however,
understand it as meaning 1,024.
See Arithmetic.

B Key: You used 1o be able to
tell the difference between com-

YOUR COMPUTER COURSE, MAY 1986

GLOSSARY 4 I

industry seems more like a foreign
ations for those who are not in the
de to computer-speak you, too,

e spoken by computer people.

puter keys and door keys by the
way you couldn’t lose the
former. Then Sinclair launched
the Spectrum Plus.

B Keyboard: A device used to
trap fluff, dandruff, cigarene
ash and biscuit crumbs which
would otherwise make a mess of
the desk.

B Keyboard scan: The act of
looking for the biscuit crumb
which makes the scrunching
noise whenever you hit the
Return key. Alternatively, the
scanning of the keyboard by the
CPU at regular and very small
intervals to see if you have pres-
sed a key. If you think about it,
typing, “Oi, I've pressed a key!”
wouldn’t help.

B Keystroke: A press of a key
on the keyboard, or a heart
attack suffered while searching
for your key. See Key.

B Keyword: A command the
computer recognises as needing
a response defined in the com-
puter operating language, or an
expletive used when looking for
your keys.

B Kill: Synonomous with
delete and erase, invented by a
programmer who read many
Marvel comics. He tried
Kapow! as well, but it didn’t
catch on.

B Kludge: An improvised or
boiched 'quick fix' to hardware,
or the sound made when you hit
your dealer with the said
botched hardware.

N

1%

B Label: A number of letters or
numbers used 1o mark a part of
a program, often used in assem-
bly listings.

B Language: A collection of
words, symbols or unintelligible
squiggles which, when used in
the correct order, are under-
stood by the computer. As the
language is defined by the prog-
rammer, there is no logical
reason why a computer

language should make sense to
real people. That’s why they
don’t.

B Large scale integration
(LSI): See bus. see bussing.
Also a small but dense inte-
grated circuit. The progression
from LSI is VLSI, or Very
Large Scale Integrartion,

B LCD: Liquid crystal display,
a kind of screen display which is
light, draws little power and is
therefore used on portable com-
puters.

M Leader: The non-recording
section at the beginning of a
tape.

B Least significant bit: The
key on your computer with “}”
and *)"” on it, or in a numbering
system the bit — in binary the
rightmost — which has least
effect on the number’s total
value.

B Least significant character:
A junior programmer, or the
character at the far right of a
number or word.

B Lecast significant digit: Your
little finger, or the part of a
number, usually the right-most,
which makes least difference to
its value.

B LED: Light emitting diode,
one of those dinky little lights
which tells you your battery is
going flat,

W Library: A collection of sub-
routines and programs com-
monly used by a computer.
Computers can’t afford their
own books.

B LIFO: Last in, first out. The
usual way for a computer stack
to operate — the last information
placed on the stack is the first to
be operated on. Hospitals don’t
work this way.

B Light pen: A small pen-like
device used by amateur Darth
Vaders to zap information on to
a CRT line driver. See Junction.
Also an amplifier used to
increase a signal between
devices when they are far
enough apart for the signal to
degrade on the way.

M Line feed: A character sent
to a printer — see production
editor — or display to make it
move to the next line down.

M Line noise: Roaring sound
heard in zoos when the lions’
feed is late. Also crackling on
telephones or other data lines
which interferes with the signal
carried.

W Linc printer: A printer

which produces a whole line of
text at a time. Not to be con-
fused with a lying printer, who
produces no text at all but
claims he has an excuse.

W Lisp: A language uthed in
artifithial intelligence
applicathionth.

W List: A printout or listing of a
program, the command used to
obtain a listing, or what happens
to your desk when you put an
Incredibly Big Machine (see
IBM) on it.

M Listing: You haven't moved
that IBM yet, have vou?

M Load: Technical term mean-
ing to put an IBM somewhere,
or to enter data into the com-
puter from a disc or tape.

B Loader: A short program
used to load other programs,
often machine code data, into
memory. Also an IBM ware-
houseman.

B Loading error: You should
have moved that IBM when 1
told you to do so. Also an error
caused by whatever vou are
loading the program from not
getting through to the com-
puter, or vice versa.

M Local variable: A variable
used only in one part of a pro-
gram, and invalid elsewhere.

M Location: A cell of memory
used for data storage. If you
think of a character set as a col-
lection of actors filming on loca-
tion you will get completely con-
fused.

B Logarithm: A musical
system used by lumberjacks
working in unison, or a way of
keeping track of numbers which
are far apart. Log tables are
made from trees with square
roots.

B Logic: The parts of hardware
which govern logic operations in
a computer, or the system by
which philosophers avoid gain-
ful employment.

B Log-on: The act of signing
on to an electronic mail service
or database. Also a technical
term used by lumberjacks.

B Look-up table: A table of
values which will be used in a
program directly rather than
being calculated by the com-
puter first.

M Loop: A sequence of
instructions to the computer
which is repeated for a set
number of times, or forever,
depending on how good a pro-
grammer you are,

YOUR COMPUTER COURSE, MAY 1986

rograms of any con-
siderable size are
usually made up of

smaller sections. In

Basic, GOSUB or
PROC is used to transfer pro-
gram control to a section of the
program which does a specific
task. A large program, then, is
often made up of smaller sub-
programs which are called
routines.

Writing a machine code pro-
gram of only 1K in length is a
real task, so it is a good idea to
break the program into smaller
routines. Some of those routines
may be applicable only for the
program but others may be use-
ful in other programs, so if writ-
ten correctly it is possible to
build a library of routines for
future use.

The structure of a machine
code routine can be described as
a piece of self-contained code
which performs a certain task,
The routine should have one
entry and exit point. The excep-
tion to this rule is when the
routine. The diagram - figure
one — shows the program flow
for a self-contained subroutine
and one which in turn calls
another.

It is considered good pro-
gramming practice that if sub-
routine A calls B and that B in
turn calls C, that at the end of C
control should then pass back to
the next instruction in B, and so
on. In other words, try to ensure

One of the best ways
to learn machine code
is to write small

routines and the best

way to use them is
from within a Basic

program,

that program flow does not skip
past any preceding subroutines
on the way back to the main pro-
gram. That will ensure modu-
larity and portability.

Writing machine code pro-
grams in smaller portions has a
number of advantages. First, it
makes the whole program easier
to understand. It also makes the
program easier to debug, as
problems can be tracked down
to a specific routine which can
then be checked independently
of the main program. Time in
developing other programs can

also be saved by writing small
routines which may be used in
more than one program.

One of the best ways to learn
machine code is to write small
routines and one of the best
ways to use them is from Basic -
that is, writing a Basic program
and calling a machine code
routine when necessary.

Basic is a general-purpose
language and lacks speed. Writ-
ing a program in Basic and
machine code is useful if, for
example, there is a task which
needs to be carried-out very
quickly — graphics being one
example. This combination of
two languages — one high-level
and the other low-level = is often
referred toas hybrid programm-
Ing.

Basic has a number of built-in
commands and functions which
facilitate that. PEEK and

Machine code
sub-routines

routine it is best to assume
nothing. That is, you should not
expect any of the CPU registers
to contain a specific value unless

you put it there. That can be

something of a problem if, for
example, routine A needs to call
routine B without having any of
the registers altered. One
method round that is tostore the
contents of all the registers tem-
porarily at the start of a routine
and then restore the registers to
their original contents at the
end.

Writing machine code programs in small sections
has a number of advantages. David Janda
introduces the techniques involved when using
sub-routines within machine code programs.

POKE, which are used to read
and write to memory locations
directly, can be used to pass
values — results and so on — to
and from machine code
routines. On the Commodore
64, SYS n is used to transfer
program flow to a machine code
program slarting at memory
location n. The BBC micro hasa
more powerful command,
CALL. That not only transfers
control to a machine code pro-
gram but also enables paramet-
ers to be passed to the A, X and
Y registers of the 6502 micro-
processor. A function common
to practically all Basics is USR.
It can be used in two ways.

LET V=USR n

or
PRINT USR n

where v is a numeric variable
and n is the address of the
machine code program to be cal-
led. The difference between
USR and SYS or CALL is that it
allows one parameter to be
transferred from the machine
code program into a Basic vari-
able, or printed on the screen.
The parameter is passed from
one or more of the CPU registers
depending on what machine it
is.
When calling a machine code

The stack is used for the oper-
ation and can be considered as a
temporary storage area. To pre-

tional jump to the subroutine at
the address a. The routine
which was called should end
with RET - short for return —
which transfers program control
to the next instruction after the
CALL.

There are several variants of
the CALL and TER instruc-
tions. They include CALLs and
RETs which will be executed,
depending on the state of vari-
ous bits in the status register.

The 6502 uses the JSR -
Jump SubRoutine - and RTS -
ReTurn Subroutine - in place of
the CALL and RET in Z-80.
There are no variants of those
IWO Instructions.

Both the Z-80 and 6502
microprocessors have, as part of
their instruction sels,
instructions which are similar to
Basic GOTO. They can be used

From high-level
language

Back to next
statementin
main program

routine

Figure 1
-------- start
-------- end
routine
-------- start
~~~~~~~~ end

serve the registers and restore
them in Z-80 code, the
instructions shown in figure two
would have to be done.

In 6502, things are a little
simpler as figure three illus-
trates.

There are various ways in
which a machine code routine
can be called from another
machine code routine. In Z-80,
the simplest manner is to use
CALL a. That is an uncondi-

in one of two ways, absolute or
relative. In the absolute mode a
jump is made into a specific
address and in the relative mode
control is passed to an instruc-
tion x number of bytes from the
relative jump — no more than
256 bytes in either direction.

It is a good idea to keep
machine code routines as porta-
ble as possible, that is, write
them so they can be used at
different places in memory. To

YOUR COMPUTER COURSE, MAY 1986




do that it is necessary 1o try o
use relative jumping as much as
possible rather than use abso-
lute addressing. This idea is
similar o Basic GOSUB,
GOSUB requires a line number

| =it is absolute. Because of that

| the subroutine must always be

at that line number. BBC Basic

provides PROC, which is fol-
lowed by the name of the sub-
routine; therefore the sub-
routine can be anywhere in the
program. S50 PROC is a relative
method of calling a subroutine.

INSTRUCTION FUNCTION
PUSHHL Save contents of H and L
PUSH DE Save contents of D and E
PUSHBC Savecontents of Band C
PUSH AF Save contents of Aand F
CALLSUB Call subroutine
POP AF Restore original contents to Aand F
POPBC Restore original contents to B and C
POP DE Restore original contents to D and E
POPHL Restore original contents to H and L
PUSH stores the contents of a register on to the
stack while
POP removes it
Figure 2
INSTRUCTION
PHA Save contents of A
PHP Save contents of status
suB Call subroutine
PLP Restore status Figure 3
PLA Restore A

repeated until it does.

6502 EXAMPLE

LDA #$LB1
CLC

ADC #8LB2
STA$200
LDA #3HB1
ADC #HB2
STA #201

tions. — David Janda.

Z-80 EXAMPLE

ASSEMBLER COMMENTS

LDHLFROM LoadHL with source address

LDDE,DEST Load DE with destinationaddress

LDBD,AMNT  Load BC with amount of bytes to be
transferred

LDIR Transfer data

RET Finished

The example is a general-purpose copy routine which can
transfer a section of memory. Registered pairs HL, DE and BC
are loaded with the start address of the data to be copied, the
start address where it is to be copied to, and the amount of
data in bytes to be copied. The LDIR instruction is one of the
most powerful in the Z-80 instruction set. The contents of the
memory location pointed to by HL are transferred to the loca-
tion pointed to by DE. The contents of HL and DE are then
incremented by one of the contents of BC decremented by
one. If BC does not equal one, the set of instructions is

Load accumulator with low byte of first number
Clear carry flag before adding

Add low byte of second number to accumulator
Store result at memory address 200

Load accumulator with high byte of first number
Add high byte of second number to accumulator
Store result at memory address 201

This routine will add two two-byte numbers and store the
results at memory locations $200 and $201, with the low byte
at $200. The routine works by performing two one-byte addi-

Amstrad s

| application packages. In a small
| Basic program, handling sound

Imost all applications

can benefit from the
useofsound,

whether it be zaps

nd bangs in games

or warning bleeps and buzes in

should not be difficult but if you
are short on memory, making
music by machine code may be
the answer.

Sound on the Amstrad is
achieved through the AY8912
programmable sound
generator. The device is capable
of producing a variety of sounds
with its three independently-
controllable sound channels, A,
B and C which produce pure
done. That can be done by
counting the drames or by using
one of the timers.

While the sound is playing,

tones, or white noise.,

Once a sound has been set up
the sound chip will take over,
leaving you to do other tasks,
That does not mean that you can
program the chip with Beeth-
oven's Fifth and leave it to its
own devices. Only one sound
per channel may be pro-
grammed at any time. To play a
complete tune and do some-
thing else, some basic steps need
to be followed:

ound generator

Define a format for your
second data which is 1o be read
and placed into the appropriate
registers. Each piece of darta
should include the number of
the register 10 be loaded,
together with the duration for
which the note should be
played. ;

Set up or amend the approp-
riate register(s).

Activate the appropriate
channel, noting the time it was

routine, check to see if the
desired duration of the sound
has expired. This isa very rough

algorithm and needs finer
details before trying it.
Programming the sound

generator chip directly as
described is possible and useful
at rimes but is not encouraged
by Amstrad. Instead, the offi-
cial entry points, of which there
are 11, are recommended.

execute another part of the pro-
gram. At the end of a sub-

PSG REGISTERS SOUND ENTRY POINTS

RO High notes value Ch A RESET BCA7, 1E6S
R1 Low notes value Ch A QUEUE BCAA, 1F9F
R2 High notes value CHB CHECK BCAD, 206C
R3 Low notes value Ch B ARM EVENT BCRBO, 2089
R4 High notes value Ch C HOLD BCB6, IECB
RS Low notes value Ch C CONTINUE BCBY, IEE6
R6 Noisevalue RELEASE BCRB3, 204A
R7 Tone enable/disable AMPL ENVELOPE BCRBC, 2338
RS Ch A volume TUNE ENVELOPE BCBF, 233D
RY Ch B volume A ADDRESS BCC2, 2349
R10 ChC volume T ADDRESS BCCS5, 2ME

YOUR COMPUTER COURSE, MAY 1986



Languages &

Metacomco.

0Sl programmers
go through the
quest for the per-
fect  language.
After  moving
from Basic, most will sample a
little Forth, take a trip down
memory lane with Fortran and
even list along with Prolog.

For most, howerver, there
will inevitably be a prolonged if
not permanent stop when they
reach Pascal. It has long been
considered a powered, struc-
tured high-level language which
had much to offer the experi-
enced programmer — long, in
this case, being a little more
than 12 years. The definitive
work on the language was pub-
lished in 1974 under the name
Pascal User Manual and Report
and outlined how the language
would operate.

Since then, and particularly
since the advent of the home
micro, Pascal has become a
popular portable language for
writing software which would

Geof Wheelwright reviews Pascal compilers from DR and

move easily from one machine
to another. To give some idea of
how that has translated into
real-live software, we offer the
following examples of Pascal
software on two popular
machines; the Amstrad 8256
and the Sinclair QL.

The Digital Research Pascal/
MT+ for the Amstrad 8256 is
one of the most recent versions
of the language. It claims to be a
full implementation of Pascal as
set down in the International

Standards Organisation
standard DPS/7195 bur also
includes several extensions

which enhance I/O operations,
allow additional data types,
offer access to the run-time
system and offer modules and
overlays.

The system includes a com-
piler, linker and programming
tools and has been developed to
run on a variety of operating
systems and processors, the
Joyce version of CP/M and its Z-
80 processor being among them.

DR claims a high degree of por-
tability for this Pascal as it is
consistent among its implemen-
tations, thus permitting you to
switch easily between proces-
sors and operating systems.
Unlike many such systems, Pas-
cal/MT+ will let you generate
software for use in a ROM-
based environment, to operate
with or without an operating
system.

Expressions and assignments
can handle input respectively
from and to [/O ports; long and
short integer data types are sup-
ported; and interrupt, external
and assembly language proce-
dures are included.

QL Pascal by Metacomeo was
one of the first 1o develop an
extensive line of programming
languages for the Sinclair QL
and subsequently has made use
of that 68000 expertise 1o
develop for the Atari ST series
of machines.

Its Pascal was particularly
popular as it arrived at a time
when powerful development
languages for the machine were
still relatively thin on the

Pascal — two popular implementations

ground. Like the Digital
Research offering for the
Amstrad, QL Pascal is a high-
specification implementation of
Pascal designed to meet 1SO
7185 standard, while taking full
advantage of the rarget
machine; in this case that means
direct access to the QL Qdos
windows, graphics, traps and
file-handling operations.

The built-in compiler is a
fast, single-pass job which pro-
duces native 68000 code.
Metacomco claims compiled
programs arc compact and effi-
cient, easy to use with assembler
and do not require special run-
time environments.

QL Pascal can address all the
memory space available on the
QL - up w 512K on an
expanded machine - and will
take variable names of any
reasonable length, as well as 32-
bit integers. Error-handling
information is also reasonable,
with more than 150 errors rec-
ognisable to the compiler and
more than 30 English-language
error messages generated by the
run-time system,

SUBSCRIBE

Taking out an annual subscription
to Your Computer is the only way
to make sure of receiving a regular
copy of your favourite computer
magazine.

At only £14, a price that is fully
inclusive of postage and packing, a
subscription is also excellent value

for money.

Do not delay, send your cheque/
PO for £14 to:

Your Computer,
(Subscriptions)
Oakfield House,
Perrymount Road,
Haywards Heath,
RH16 3DH

YOUR COMPUTER COURSE, MAY 1986




