]

= HISOFT
DEVPAC™

Programmer's Manual

GENS2/ MONS2

© Copyright Hisoft 1983

The following document details the essential differences between DEVPAC 1 and
DEVPAC 2; it should be used i1n conjunction with the DEVPAC 1 manual with which you
should have been supplied.

The complete DEVPAC 2 manual will be available soon at a price of £2 plus VAT.

It is advisable to have the DEVPAC 1 manual handy when using this document since it
simply gives the parts of the DEVPAC 1 manual that should be changed or added to.
Please read both this booklet and the DEVPAC 1 manual carefully before attempting
to use DEVPAC 2, it is a power ful, advanced piece of software.

Please follow these instructions in relation to the DEVPAC 1 manual:

Page | — delete and replace with:

GENS2 is a powerful and easy—to—use ZB@ assembler which is very close to the
standard Zilog assembler in definition. Unlike many other assemblers available for
the ZX SPECTRUM, GENS2 is an extensive, professional piece of software and you are
urged to study the following sections, together with the example in Appendix 3, very
carefully before attempting to use GENS2.

GENS2 is roughly 7K bytes in length and uses its own internal stack so that it is a
self-contained piece of software. It contains its own integral line editor which
places the textfile immediately after the GENS2 code while the assembler’s symbol
table is created after the textfile. Thus when loading GENS2 you must allow enough
room to include the assembler itself and the maximum symbol table and text size
that you are likely you use in the current session. It will often be convenient,
therefore, to load GENS2 into low memory.

To load GENS2 proceed as follows:

Place the supplied tape in your cassette recorder, type ‘LOAD "GENS2" CODE xxxxx’
and press PLAY on the recorder — where “xxxxx' is the decimal address at which you
want GENS2 to run.

Once you have loaded the GENS2 code into the computer you may enter the assembler
by ‘RANDOMIZE USR xxxxx' where ’xxxxx’ is the address at which you loaded the
assembler code. If at any subsequent time you wish to re-enter the assembler
then"you should execute address ‘xxxxx + 5@° for a cold start (destroying any text)
ar address ‘xxxxx + 55 for a warm start (preserving any previously created
textfile). Note that you should only enter GENS2 once via address “xxxxx' since this
performs the relocation of the master code.

For example, say you want to load GENS2 so that it executes from address £5E00 (or
24864 decimal) — proceed as follows:

LOAD "GENS2" CODE 24064
RANDOMIZE USR 240464

To re—enter the assembler use RANDOMIZE USR 24114 for a cold start and RANDOMIZE
USR 24119 for a warm start.

Once you have entered GENS2 for the first time via address xxxxx, you will first be
prompted with the message ‘Buffer size? 1 you should enter a number between @ and
9, inclusive, followed by ENTER, or default by simply hitting ENTER alone, in which
case the number 4 will be assumed. The number you enter, or default, is taken as the
size of the ‘Include’ buffer in 256 byte units (see Section 2.8 for more details on

1

the 'Include’ option). Thus, if you want to minimise the space occupied by GENS2 and
its workspace (and don’t care too much about using the ‘Include’ option efficiently)
then you should reply to the prompt with ‘@° and then ENTER — this will assign the
smallest possible ‘Include’ buffer, which is 64 bytes.

After you have replied to the ‘Buffer size? ‘' question you will be prompted with a »>*
sign, the editor’'s command prompt — consult Section 3 for how to enter and edit text
and Section 2 for what to enter.

Important Note: Throughout this manual the ‘£ sign that denotes a hexadecimal
number is actually reached by the hash sign (SYMBOL SHIFT 3) on the SPECTRUM. DO
NOT use the ‘£’ sign (SYMBOL SHIFT X).

Page 3 — add the following after line 10.

Note that when using the ‘Include’ option you may have to specify a larger than
normal symbol table size; the assembler cannot predict the size of the file that will
be included.

Page 4 — delete lines 21-22 inclusive and insert:

The #*C assembler command may be used to produce a shorter assembly listing line —
its effect is to omit the 9 characters representing the object code of the line thus
enabling most assembler lines to fit on one screen line. See Section 2.8 below.

It is possible to modify the form in which each line of the listing is split by POKEing
3 locations within GENS2. Details of how to do this are given below. We distinguish
between ‘assembly line’ which is the current line of the assembly listing held in an
internal buffer and ‘screen line’ which is a line that actually appears on the
SPECTRUM screen. An assembly line will normally generate more than one screen line.

1. Location ‘Start of GENS + 3995 (EF9B) dictates at which column position — 5 the
first screen line of the assembly line will be terminated. Change this byte to zero
to cause the line to wrap round (useful if you have a full-width printer) or any
other value (<256) to end the first screen line at a particular column.

2. Location ‘Start of GENS + 4012 (£FBB)’ gives the column position (starting at 1) at
which each subsequent screen line of the assembly line is to start.

3. Location ‘Start of GENS + 4@17 (£FBD) gives how many characters from the
remainder of the assembly line are to be displayed on each screen line after the
first screen line.

As an example, say you wanted the first screen line of each assembly line to contain
2@ characters (i.e. not including the label field) and then each subsequent screen
line to start at column 1 and fill the whole line. Also assume that you have loaded
GENS at £5E0@ or 240464 decimal. To effect these changes, execute the following
POKE instructions from within BASIC:

POKE 28059,20 .
POKE 28@88,1 there must be at least one space at the
POKE 28093,31 start of each subsequent screen line.

The above modifications are only applicable if the #C command
has not been used - use of the #C command causes lines to roll over where
necessary.

The assembly listing may be paused at the end of a line by hitting CAPS SHIFT and
SPACE together — subsequently hit ‘E’" to return to the editor or any other key to
continue the listing.

Page S — add the following after line 24.

Spaces and tab characters are treated identically.

Labels may be present alone in an assembler statement; useful for increasing the
readability of the listing.

Page 11 - add the following after line 14,

*C—
Shorten the assembler listing starting from the next line. The listing
is abbreviated by not including the display of the object code
generated by the current line - this saves 9 characters and enables
most assembler lines to fit within one 32 character screen line, thus
improving readability.

*C+

Revert to the full assembler listing as described in Section 2.0.

*F {filenamel

This is a very powerful command which allows you to assemble text
from tape — the textfile is read from the tape into a buffer, a block
at a time, and then assembled from the buffer; this allows you to
create large amounts of object code since the text being assembled
does not take up valuable memory space.

The filename (up to 1@ characters) of the textfile you wish to
“include’ at this point in the assembly may, optionally, be specified
after the F’ and must be preceded with a space. If no filename is
given then the first textfile found on the tape is included.

Any textfile that you wish to include via this option must have been
previously dumped to tape using the editor’s 'T° command and not the
‘P’ command — this is necessary because a textfile to be included
must be dumped out in blocks with sufficient length inter—block gaps
to allow the assembly of the current block before the next block is
loaded from the tape. The size of the block used by this command (and
the editor’'s ‘T* command) is determined on the initial entry to GENS2
from your response to the ‘Buffer size? ' prompt, see Section 1. The
number you enter (fraom @ to 9) following this question is taken as the
size of the include buffer in 256 byte units with a default of 4#256
bytes. The ability to select the size of this buffer enables you to
optimise the size/speed ratio of any inclusion of text from tape; for
example, if you are not intending to use the F’' command during an

3

assembly then you may find 1t useful to specify a buffer size of @ to
minimise the space taken up by GENS2 and its workspace.

Note that the buffer size specified in the session in which you
dumped out a file to be included must be the same as the buffer size
given in the session in which you are actually including the text.

Whenever the assembler detects an F' command it asks you to ‘Start
tape..’, this will happen in the first and second passes since the
include text must be scanned in each pass. The tape is then searched
for an include file with the required filename, or for the first file. If
an include file is found whose filename does not match that required
then the message ‘Found filename’ is displayed and searching
continues, otherwise ‘Using filename’ is displayed, the file loaded,
block by block, and included.

See Appendix 3 for an example of the use of this command.
Assembler commands, other than #F, are recognised only within the second pass.
If assembly has been turned off by one of the conditional pseudo—mnemonics then

the effect of any assembler command is also turned off.

Page 13 - insert the following after line 5.

In order to reduce the size of the textfile, a certain amount of compression of
spaces is performed by the editor. This takes place according to the following
scheme: whenever a line is typed in from the keyboard it is entered, character by
character into a buffer internal to the assembler; then, when the line is finished
(i.e. you hit RETURN), it is transferred from the buffer into the textfile. It is during
this transfer that certain spaces are compressed: the line is scanned from its
first character, if this is a space then a tab character is entered into the textfile
and all subsequent spaces are skipped. If the first character is not a space then
characters are transferred from the buffer to the textfile until a space is
detected whereupon the action taken is the same as if the next character was the
first character in the line. This is then repeated a further time with the result
that tab characters are inserted at the front of the line or between the label and
the mnemonic and between the mnemonic and the operands and between the operands
and any comment. Of course, if any carriage return (RETURN) character is detected
at any time then the transfer is finished and control returned to the editor.

This compression process is transparent to the user who may simply use tab control
characters (CI — see below) to produce a neatly tabulated textfile which, at the
same time, is economic on storage.

Note that spaces are not compressed within comments and spaces should not be
present within a label, mnemonic or operand field.

Page 14 - insert the following after line 13:

If, during text insertion, the editor detects that the end of text is nearing the top
of RAM it displays the message ‘Bad Memory'. This indicates that no more text can be
inserted and that the current textfile, or at least part of it, should be saved to
tape for later retrieval.

Page 17 — delete Section 3.2.4 and insert:

3.2.4 Tape Commands.

Text may be saved to or loaded from tape using the commands ‘P, ‘T" and ‘G'.

Command: P n,m,s

The line range defined by n< x<m is saved to tape under the filename specified by
the string s. Remember that these arguments may have been set by a previous
command. Before entering this command make sure that your tape recorder is
switched on and in RECORD made. Do not use this command if you wish, at a later
stage, to ‘Include’ the text — use the ‘T' command instead.

Command: G,,s

The tape is searched for a file with a filename of s; when found, it is loaded at the
end of the current text. If a null string is specified as the filename then the first
textfile on the tape is loaded.

After you have entered the 'G' command, the message ‘Start tape..’ is displayed — you
should now press PLAY on your recorder. A search is now made for a textfile with
the specified filename, or the first textfile if a null filename is given. If a match is
made then the message ‘Using filename’ is displayed, otherwise ‘Found filename’ is
shown and the search of the tape continues.

Note that if any textfile is already present in the memory then the textfile that is
loaded from tape will be appended to the existing file and the whaole file will be
renumbered starting with line 1 in steps of L.

Command: Tn,m,s

Dump out a block of text, between the line numbers n and m inclusive, to tape in a
format suitable for inclusion at a later stage via the assembler command #F — see
Section 2.8. The file is dumped with the filename s. The dump takes place immediately
you have pressed RETURN so you should ensure that your tape recorder is ready to
record before entering this command line.

Note that you should not use this command if you simply wish to append the text
later, neither should you use the ‘P’ command if you wish to “include’ the text.

FPage 18 - delete lines 12-15 inclusive and insert:

Command: C

This command allows you to convert textfiles produced by GENSI1 to the compressed
text format of GENS2. Simply load up the BENS1 textfile, using the ‘G' command, use
the ‘C’' command to convert the file and then dump the compressed file out using the
‘P’ command.

‘C* takes no arguments and may take a substantial time to complete the conversion
of the file.

Command: V
The 'V’ command displays the current values of N1, N2, S1 and S2 i.e. the two default

line numbers and the default strings. This is useful before entering any command in
which you are going to use default values, to check that these values are correct.

Command: W n,m

The ‘W command causes the section of text between lines n and m inclusive to be
output to the printer. If both n and m are defaulted then the whole textfile will
be printed. The printing will pause after the number of lines set by the 'K’ command —
press any key to continue printing.

Command: X

‘X’ simply causes the start and end address of the textfile to be displayed in
decimal. This is useful if you wish to save the text from within BASIC, or if you want
to see how much memory you have left after the textfile. GENS2 always expects the
text to start at the first address given by the ‘X' command and holds the end
address of the text in location TEXTEND which is at ‘Start of GENS2 + 6434'. Thus, if
you wish to ‘patch in’ a textfile (perhaps produced by MONS2) you must move the
textfile to the address specified by the first address displayed by the ‘X" command,
modify TEXTEND to contain the end address of the file and finally enter GENS2 via a
warm start. For example, say you have generated a textfile in the correct place and
that it ends (the address after the final end—of-line marker) at £9A02. Then,
assuming that you have loaded GENS2 at 24864, you should, from BASIC, POKE
24064+6434,2 (£@2) and POKE 24@64+6435,154 (£9A) and then enter GENS2 by
RANDDMIZE USR 24119. You will now be able to work with the textfile normally from
within the editor.

Page 21 — add, at the bottom of the page:

Bad Memory! This is displayed if there is no room for any more text to
be inserted i.e. the end of text is near the top of RAM.
You should save the current textfile, or part of it, to tape.

Page 22 - delete the last line and add:

#D *E #H %L %5 #C *F

After page 22 add the following new Appendix.

APPENDIX 3 A WORKED EXAMPLE.

There follows an example of a typical session using GENS2 - if you are a newcomer
to the world of assembler programs or 1f you are simply a little unsure how to use
the editor/assembler then we urge you to work through this example carefully.

Session objective:

To write and test a fast integer multiply routine, the text of which is to be saved
to tape using the editor’s ‘T command so that it can easily be ‘included’ in future
programs.

Session workplan:

1. Write the multiply routine as a subroutine and save it to tape using the editor’s
‘P’ command so that 1t can be easily retrieved and edited during this session, should
bugs be present.

&

2. De-bug the multiply subroutine, editing as necessary.

3. Save the de-bugged routine to tape, using the editor’'s ‘T" command so that the
routine may be ‘included’ in other praograms.

Stage | — write the integer multiply routine.

We use the editor’'s I' command to insert the text using CI (the tab character) to
obtain a tabulated listing. We do not need to use Cl, a list of the text will always
perform the tabulation for us. We have not indicated where CI's have been used
below but you can assume that they are used before the mnemonic and between the
mnemonic and the operand.

110,18 RETURN
18 ;A fast integer multiply RETURN
20 jroutine. Multiplies HL RETURN
30 ;by DE. Returns the result RETURN
48 ;in HL. € flag set on an RETURN
5@ :overflow. RETURN
4@ RETURN
a OURG £7E00 RETURN
88 RETURN
9@ Mult OR A RETURN

1a2 SBC HL,DE :HL>DE?RETLRN
112 ADD HL,DE RETURN

12@ JR NC,Mul 3 yes RETURN
130 EX DE HL RETURN

140 Mul Or D RETURN

152 SCF j;overtlow 1+RETURN
162 RET NZ :DE-255 RETURN
170 0OF E itimes @PRETURN
144 (W3] E,D RETURN

190 JR NZ MU4 :no RETURN
200 EX DE,HL :@ RETURN
214 RET RETURN

220 RETURN
2320 Main routine. RETURN
240 RETURN

250 Muz EX DE ,HL RETURN
260 ADD HL,DE RETURN
270 EX DE ,HL RETURN
280 Mul ADD HL,HL RETURN
i | RET C j;overflow RETURN
00 Mu4 RRA RETURN

310 JR NC ,MuZ RETURN
320 OR A RETURN

3320 JR NZ ,Mu2 RETURN
z40 ADD HL,DE RETURN
I50 RET RETURN

3460 CC

10,350, Mult

>

The above will create the text of the routine and save it to tape. Remember to have
your tape recorder running and in RECORD mode before issuing the ‘P’ command.

* Stage 2 — de-bug the routine.

First, let's see if the text assembles correctly. We will use option & so that no
listing is produced and no abject code generated.

A RETURN
fable size: RETURN {detault the symbol table sizel
Optiaons: & RETURN

HISOFT BENSZ2 ASSEMHELER
Copyright Hisoft 1983
All Rights Reserved

Fass 1 errors: 00

.y

Fass 2 errors: 00

WARNING MU4 absent
Table used: 74 from 162
>

We see from this assembly that we have made a mistake in line 190 and entered MU4
instead of Mu4 which is the label we wish to branch to. So edit line 17@:

»F190,190,MU4 ,Mud4 RETURN
17@ JR NZ , {now use the 'S’ sub-command}

Now assemble the text again and you should find that it assembles without errors.
So now we must write some code to test the routine:

SNZTAQ, 10 RETURN {renumber so that we can write some more text)
110,10 RETURN

10 ;Some code to test RETURN

20 ;the Mult routine. RETURN

20 RETURN

40 LD HL ,S@ RETURN

S0 LD DE,2@ RETURN

=1 CALL Mult ;Multiply RETURN
70 LD A,H 30/p result RETURN
a0 CALL Aocut

9@ LD AL

19 CALL Aout RETURN

11@ RET jReturn to editor RETURN

120 RETURN
12@ ;Routine to o/p A 1n hex RETURN

14@ RETURN

150 Aocut FPUSH AF RETURN

16@ RRCA RETURN

1702 RRCA RETURN

18@ RRCA RETURN

190 RECA RETURN

2oa CALL Nibble RETURN

z1e FOF AF RETURN

22Q Nibble AND %1111 RETURN

230 ADD A,£90 RETURN

24Q DAA RETURN

250 ADC A,£40 RETURN

260 DAA RETURN

270 LD 1Y, £5C3A ;for ROM RETURN
280 RST £10 ;ROM call RETURN
290 RET RETURN

v cCC

Now assemble the test routine and the Mult routine together.
8

A

Table size: RETURN

Options: & RETURN

¥HISOFT GENSZ ASSEMBELER
Copyright HISOFT 1983
All rights reserved

7290 190 RECA
ERROR @2 {hit any key to continuel

Fass 1 errors: 01

Table used: 88 from 208

We have an error in our routine; RECA should be RRCA in line 190. So:

>E190
190 RECA
170 Cienter change mode)R RETURN RETURMN

Now assemble again, using simply option 4 (no list), and the text should assemble
correctly. Assuming it does, we are now in a position to test the warking of our Mult
routine so we need to tell the editor where it can execute the code from. We do this
with the ENT directive:

>335 ENT & RETURN

Now assemble the text again and the assembly should terminate correckly with the
messages:

Table used: 88 from 209
Executes: 41105

»

or something similar. Now we can run our code using the editor’s ‘R° command. We
should expect it to multiply 5@ by 20 producing 10@8 which is £3EB in hexadecimal.

SR
0052 >

It doesn’t work! Why? List the lines 380 to 500 (L380,500). You will see that at line
43@ the instruction is an OR D followed, effectively, by a RET NZ. What this is doing
is a logical OR between the D register and the accumulator A and returning with an
error flag set (the C flag) if the result is non—zero. The object of this is to ensure
that DE<256 so that the multiplication does not overflow — it does this by checking
that D is zero ... but the OR will only work correctly in this case if the accumulator
A is zero to start with, and we have no guarantee that this is so. We must ensure
that A is zero before doing the OR D, otherwise we will get unpredictable overflow
with the higher number returned as the result. From inspection of the code we see
that the OR A at line 380 could be made into a XOR A thus setting the flags for the
SBC HL,DE instruction and setting A to zero. So:

SETE0
=80 Mult OF A
‘B0 __Itenter 1nsert modelX RETURN RETURN

Now assemble again (option 4) and run the code, using ‘R'. The answer should now be

9

correct — £3E8.

We can further check the routine by editing lines 40 and S@ to multiply different
numbers and then assembling and running — you should find that the routine works
perfectly.

Now we have perfected the routine we can save it to tape in ‘Include’ format:
*TI00,999 ,Mult RETURN

Remember to start the recorder in RECORD mode before pressing RETURN. Once the
routine has been saved like this it may be included in a program as shown below:

S0 RET

510

520 ;Include the Mult routine here.
520

540 *F Mult

550

560 ;The next routine.

When the above text is assembled the assembler will ask you to ‘Start tape..’ when it
gets to line 548 on both the first and second pass. Therefaore you should have the
Mult dump cued up on the tape in both cases. This will normally mean rewinding the
tape after the first pass. You could record two dumps of Mult on the tape, following
each other, and use one for the first pass and the other for the second pass.
Please study the above example carefully and try it out for yourself.

Page 25 — delete lines 12-25 inclusive, and insert:

MONS2 is well under SK in length ance it has been relocated but you should allow
5086 bytes on loading MONS2 owing to the table of relocation addresses which comes
after the main code. MONS2 contains its own internal stack so that it is a
self-contained program.

Once you have entered MONS2 the message "“#MONS2 @ Copyright Hisoft 1983#%" will
appear for a few seconds to be replaced by a "front panel’ display (see the Appendix
for an example display). This consists of the Z80 registers and flags together with
their contents plus a 24 byte section of memory centred (using > and <) around the
current value of the Memory Pointer which is initially set to £6000 (24576 decimal).
On the top line of the display is a dis—assembly of the instruction addressed by the
Memory Pointer.

On entry to MONS2, all the addresses displayed within the Front Panel are given in
hexadecimal format (i.e. to base 16); you can change this so that the addresses are
shown in decimal by using the command SYMBOL SHIFT 3 — see the next section. Note,
however, that addresses must always be entered in hexadecimal.

Commands are entered from the keyboard in response to the prompt > under the
memory display and may be entered in upper or lower case. Some commands, whose
effect might be disastrous if used in error, require you to press SYMBOL SHIFT as
well as the command letter. Throughout this manual the use of the SYMBOL SHIFT key
may be represented by the symbol '™ e.g. ~Z means hold the SYMBOL SHIFT and Z key
down together.

Page 27 - insert after line 4:

IMPORTANT NOTE.

Throughout the rest of this manual, it should be noted that the commands ‘K’, ‘R, ‘S’
and ‘Z° are now reached by holding SYMBOL SHIFT down as well as the relevant command

10

letter e.g. the ‘continue’ command is activated by SYMBOL SHIFT and ‘K’ etc.

SYMBOL SHIFT 3

flip the number base in which addresses are displayed between base 16 (hexadecimal)
and base 10 (denary). On entry to MONS2, addresses are shown in hexadecimal, use ~3
to flip to a decimal display and ~3 again to revert to the hexadecimal format. This
affects all addresses displayed by MONS2 including those generated by the
dis—assembler but it does not change the display of memory contents — this is
always given in hexadecimal.

Page 28 — delete line 4-1@ and insert:

H

convert a decimal number to its hexadecimal equivalent.

You are prompted with t° to enter a decimal number terminated by any non—digit (.e.
any character other than 8..9 inclusive). Once the number has been terminated, an ‘=’
sign is displayed on the same line followed by the hexadecimal equivalent of the
decimal number. Now hit any key to return to the command mode. Example:

H:41472_=A200 here a space was used as the terminator.

Page 28 - insert after line 2é:

You may abort this command before you terminate the address by using CAPS SHIFT 5.

Page 32 — delete from line 10 to the bottom of the page, and insert:

each label generated. If you default by simply hitting ENTER then an address of
£6000 (hex) is assumed.

Now you are prompted with ‘Text:’ to enter, in hexadecimal, the start address of any
textfile that you wish the dis—assembler to produce. If you do not want a textfile
to be generated then simply press ENTER after this prompt. If you specify an
address then a textfile of the dis—assembly will be produced, starting at that
address, in a form suitable for use by GENS2. If you want to use a textfile with
GENS2 then you must either generate it at, or move it to, the first address given by
the assembler editor’s ‘X’ command because this is the address of the start of the
text expected by GENS2. You must also tell GENS2 where the end of the textfile is;
do this by taking the ‘End of text’ address given by the dis—assembler (see below)
and patching it into the TEXTEND location of GENS2 — see the GENS2Z manual, Section
3.2. Then you must enter GENS2 by the warm start entry point, to preserve the text.

1f, at any stage when you are generating a textfile, the text would averwrite MONS2
then the dis—assembly is aborted — press any key to return to the Front Panel.

After Text:, you are asked repeatedly for the ‘First:’ and ‘Last:’ (inclusive)
addresses of any data areas that exist within the block that you wish to
dis—assemble. Data areas are areas of, say, text that you do not wish to be
interpreted as 780 instructions - instead these data areas cause DEFB assembler
directives to be generated by the dis—assembler. If the value of the data byte is
between 32 and 127 (£20 and £7F) inclusive then the ASCII interpretaion of the byte
is given e.g. £41 is changed to "A" after a DEFB. When you have finished specifying
data areas, or if you do not wish to specify any, simply type ENTER in response to
both prompts.

The screen will now be cleared and there will be a short delay (depending on how

1

large a section of memory you wish to dis—assemble) while the symbol table 1s
constructed. This having been done, the dis—assembly listing will appear on the
screen or printer — you may pause the listing at the end of a line by hitting any key,
subsequently hit ‘M’ (capital ‘M’ only) to return to the ‘front panel” display or any
other key (except CAPS SHIFT 1) to continue the dis—assembly. If an invalid opcade 1s
encountered then it is dis—assembled as NOP and flagged with an asterisk '* after
the opcode in the listing.

At the end of the dis—assembly the display will pause and, if you have asked for a
textfile to be produced, the message ‘End of text xxxxx’ will be displayed; xxxxx 1s
the address (in hexadecimal or decimal) that should be POKEd (low order byte first)
into the BGENS2 location TEXTEND in order that the assembler can pick up this
dis—assembled textfile on a warm start. When the dis—assembly has finished, press
any key to return to the ‘front panel’ display, apart fram CAPS SHIFT 1 which will
return you to BASIC.

Labels are generated, where relevant (e.g. in C30@78), in the form LXXXX where “XXXX*
is the absolute hex address of the label, but only if the address concerned is within
the limits of the dis—assembly. If the address lies outside this range then a label
is not generated, simply the hexadecimal or decimal address is given. For example, if
we were dis—assembling between £7000 and £800@, then the instruction C30078B
would be dis—assembled as JP L7800; on the other hand, if we were dis—assembling
between £9000 and £9880 then the C30078 instruction would be dis—assembled as JP
£7800 or JP 3@72@ if a decimal display is being used. If a particular address has
been referenced in an instruction within the dis—assembly then its label will appear
in the label field (before the mnemonic) of the dis—assembly of the instruction at
that address but only if the listing is directed to a textfile. Example:

T
First:8B ENTER
Last:9E ENTER
Frinter?Y
Worlspace: 7000 ENTER
Text: ENTER

First:95 ENTER
Last:9E ENTER

First: ENTER

Last: ENTER

AR FE1&6 CP £16

JusD 801 JR C,L0090
QueF 2% INC HL

e =7 SCF

w71 225DSC LD (£SCSD) (HL
wne4 C9 RET

0095 BFS24E DEFE £BF,"R","N"
VU8 Ca494E DEFE £C4,"I","N"
BA%E 4B455 REF B oSG o MEL g Y
QBFE A4 DEFEB £A4

Page 37 — delete line 46 and insert:

“* SYMBOL SHIFT P

Page 38 — delete line 1 and insert:
Modifying Memory.

#%¥*END OF MODIFICATIONS * %%

12

