
HiSoft Devpac
Assemb l e r / Debugger

Version 4 , for all ZX Spectrums

High Quality
Microcomputer

Software

HiSoft Devpac
Fast Interactive l8D Development Kit

s;rstemReqahemeD .. :
zx: SpectruIn {48K and 128JQ. zx Spectrum Plus. zx Spectrum Aus 2

CoPJrlahl le _It 1987

VenIo1l4.0 ... ,.1987

Set ustng an Apple Madntosh'"" and lAserwrtter.

All Rights Reserved Worldwl:de. No part of this publication may be reproduced
or transmitted In any form or by any means. including photocopytng and
record1ng. without the written perml.ss1on of the copyright holder. Such I
wrttten ~on must also be obtaln~ before any part of this pubUcatlon Is
stored 111 a retr1eval system of any nature.

The information contafned In this document is to be used only for modifying
the reader's personal copy al8pectnan o..,.c.

It is an Infrlngement of the copyr1ght pertaJn1ng to BlSoft Dnpae and Its
assodated. dOC\llIlC!lltaUon to copy. by any means wba~. any part of BISoft
DeYpu fur any reason other than for the purposes of making a securtty back­
up copy of the ot!fect code.

.

HiSoft GENS
ASSEMBLER/EDITOR

CONTENTS

SECTION 1 GETTING STARTED 1

1.1 Introduction and Loading
Instructions 1

1.2 Making a Backup Copy 2

SECTION 2 DETAILS OF GENS4 3

2.0 How GENS4 Works,
Assembler Options,
Listing Format etc. 3

2.1 Assembler Statement
Format 8

2.2 Labels 9

2.3 Location Counter 10

2.4 Symbol Table 10

2.5 Expressions 11

2.6 Macros 13

2.7 Assembly Directives

2.8 Conditional
Pseudo-mnemonics

2.9 Assembler Commands

SECTION 3 THE INTEGRAL EDITOR

3.1 Introduction to the Editor

3.2 The Editor Commands
3.2.1 Text Insertion
3.2.2 Text listing
3.2.3 Text Editing
3.2A Tope/ Microdrive Commands
3.2.5 Assembling and Running from the Editor
3.2.6 Other Commands

3.3 An Example of the use of
the Editor

APPENDIX 1 ERROR NUMBERS AND
THEIR MEANINGS

APPENDIX 2 RESERVED WORDS,
MNEMONICS ETC.

APPENDIX 3 A WORKED EXAMPLE

15

17

17

21

21

23
23
24
24
27
29
32

35

37

39

41

SECTION 1 GETTING STARTED

1.1 Introduction and Loading
Instructions

G£NS4 is a powerful and easy-ta-use 280 assembler which is very close to the
standard Zilog assembler in defInition. Unlike many other assemblers available for
the SpecU"Um, GENS4 is an extensive. professional piece of software and you arc
urged to study the following sections, together with the example in Appendix 3,
very carefully before attempting to use the assembler. If you are a complete
novice. work through Appendix 3 first or consult one of the excellent books given
in the Bibliography.

GEN54 is compatible with the Disciple disc interface and we have a version. on
disc. for the Opus Discovery system. These versions work exactly as described
here. simply replace the word Microdrive where it occurs with Opus Disc or
Disciple Disc as appropriate.

GENS4 is roughly IOK bytes in length, once relocated, and uses its own intemal
stack so that it is a self-conlained piece of software. It contains its own integral
line editor which places the textfile immediately after the GENS4 code while the
assembler's symbol table is created after the textfile. Thus when loading GENS4
you must allow enough room to include me assembler itself and the maximum
symbol table and text size mat you are likely you use in me current session. It will
often be convenient, therefore, to load GENS4 into low memory.

There are two versions of the assembler on me cassette, both are on side I . First
comes me 51 characters-per-line version, followed by me regular 32 characters­
per-line version. Their names on the tape are GENS4 - 51 and GENS4 repedively
and you should use whichever version suits you best, me 51-colwnn code is some
400 bytes longer than the 32-column one.

To load GENS4. place the supplied tape in your cassette recorder and type:

LOAD CODE xxxx x {ENTER] and press P LA '{ on the recorder.

xxxxx is the decimal address at which you wanl GENS4 10 run.

HiSoft Devpac 41 ZX Spectrum Page Gen-l

Once you have loaded the GENS4 code into the compute_r you may enter the
assembler by RANDOMIZE USR xxxxx where xxxxx is the address at which you
loaded the assembler code. If al any subsequent time you wish to re-enter the
assembler then you should simply execute address xxxxx which will preserve any
previously-created textfile.

For example, say you want to load GENS4 so that it executes from address 26000

decimal - proceed as follows:

LOAD "" CODE 26000 [ENTER]
RANDOMIZE USR 26000 [ENTER]

To re-enter the assembler use RANDOMIZE USR 26000 from within BASIC.

Once you have entered GEN, a help screen will appear and you will be prompted
with a > sign, the editor's command prompt - consult Section 3 for how to enter
and edit text and Section 2 for what to enter.

1.2 Making a Backup Copy

Once you have loaded GENS4 into your Spectrum's memory then you can make
a backup copy of the assembler as foUows:

SAVE " GENS4-51 " CODE x xxxx , 11392 [ENTER] or
SAVE " GENS 4" CODE xxxxx,10880 [ENTER] to cassette

SAVE "' ''M''; 1 ;'' GENS4-51'' COD E xxxxx,11392 (ENTER] or
SAVE * "M"; 1 ; "GENS4" CODE xxxxx,10880 [ENTER] to Microdrive

where: xxx xx is the address al which you loaded GENS4. You should do this
backup before entering GENS so as 10 preserve the relocation infonnation within
[he program.

Please note that we allow you to make a backup copy of GENS4 for your own
use so that you can program with confidence. Please do nOI copy GENS4 to give
(or worse, sell) to your friends, we supply very reasonably priced software and a
full after-sales support service but if enough people copy our software we shall
not be able to continue this; please buy, don'r steal.

HiSoft Devpac 4/ ZX Spectrum

SECTION 2 DETAILS OF GENS4

2.0 How GENS4 Works,
Assembler Options, Usting Format

GENS4 is a fast. two-pass Z80 assembler which assembles all standard 7..80
mnemonics and has added features which include macros, conditional assembly,
many assembler commands and a binary-tree symbol table.

When you invoke an assembly. you use the A command like this:

A4,2000 ,1:TEST [ENTER]

TIle firsl number (4 above) after the A speciflCs the assembly options you want
this time. these options are listed below. If you don't want any options then don't

type a number, just a comma.

TIle second number (2000 above) is the size of the assembler's symbol table, in
decimal bytes. If you default this (by simply using a comma instead of a number)
then GENS4 will choose a symbol table size that it thinks is suitable for the size of
the text - nonnally this will be perfectly acceptable. However. when using the
Include option, you may have to specify a larger than normal symool table siU;
the assembler cannot predict the size of the file that will be included.

After the symbol table size you can type a microdrive filename (1 : TEST above).
If you do, then the resulting object code generated by the assembly will be saved
to microdrive, automatically. It doesn't matter how much object code you
generate, all will be saved. If you don', want to use this feature, then don', type a
filename (don't type the conuna either. otherwise GENS will think you have a
blank ftlename). See the A command in Section 3 for more details of this feature

and its effect on the use of ORG.

HiSofl Devpac 4/lX Spectrum Page Gen-3

Assembler Options

Option 1 produce a symbollable listing al the end of the second pass of the

assembly.

Option 2 Do nOI generate any object code.
Option 4 Produce an assembly listing, note this is the reverse of previous

versions of Ihe assembler!

Option 8 Direct any assembly listing 10 the printer.

Option 16 Simply place the object code. if generated, after the symbol table.
The Location Counter is still updated by the ORG so that object
code can be placed in one section of memory but designed to run

elsewhere.

Option 32 Turn off the check of where the object code is going - useful for

speeding up assembly.

To combine options, simply add them together e.g. A33 produces a fast assembly -

no listing is generated, no checks are made to see where the object code is being

placed and a symbol table listing is produced at the end.

Note that if you have used Option 16 then the ENT assembler directive will have
110 effect. You can work out where the object code has been placed if Option 16
has been specified by using the edilOr X command to find out the end of the text
(lhe second number displayed) and then adding to this Ihe amount of symbol table
alloc:.ued + 2.

Assembly takes place in two passes; during the first pass GENS4 searches for
errors and compiles the symbol table, {he second pass genemtes object code (if
option 2 is not specified). During the first pass nothing is displayed on the screen
or printer unless an error is detected, in which case the rogue line will be
displayed with an error number below it (see Appendix 1). The assembly is
paused - press E to rerum to the editor or any other key to continue the assembly
from the next line.

At the end of the first pass the message:

Pass 1 errors : nn

Page Gen-4 HiSott Devpac 4/1X. Spectrum

will be displayed. If any errors have been detected the assembly will then halt and

not proceed to the second pass. If any labels were referenced in the operand field

but never declared in a label field then the message:

WARNING label absent

will be displayed for each missing label declaration.

11 is during the second pass that object code is generated (unless generation has
been turned off by Option 2 - see above). An assembler listing is not generated
during this pass unless it has been switched on by Option 4 or the assembler

command *L+.

In the 32-column version. the assembler listing is normally on two lines and is of

the form:

COOO 210 100 25 label
LO HL,1

1 6 15 21 26

whereas in the 51-colWlUl version the liJ!ting is continuous, in one line, wmpping

round onto the next line if too long to fit on one.

The first entry in the line is the value of the Location Counter at the start of
processing this line, unless the mnemonic in this line is one of the pseud~­
mnemonics ORG, EQU or ENT (see Section 2. T) in which case the first entry Will
represent the value in the operand field of the instruction. This entry is normally
displayed in hexadecimal but may be displayed in unsigned decimal through use of

the assembler command *0+ (see Section 2.9).

TIle next entry. from column 6, is up to 8 characters in length (representing up to
4 bytes) and is the object code produced by the current instruction - but see the

*c assembler command below.

1ben comes the line nwnber • an integer in the range 1 to 32767 inclusive,

Columns 21-26 of the first line contain the first 6 characters of any label defmed

in this line,

After any label comes the mnemonic which is displayed from columns 21-24 (in
the 32-coIWlUl vefSion, this will be on a new line unless *C- has been used).

HiSofl Devpac 4 / lX Spectrum Page Gen-5

Then comes the operand field from column 26 of this . line and finally any
comments that have been inserted at the end of the line with new lines being
generated. as necessary.

1be *C assembler conunand may be used to produce a shorter assembly listing
line - its effect is to omit the 9 characters representing the object code of the line
thus enabling mOSt assembler lines to fit on one 32-column screen line. See
Section 2.8 below.

Modifying the Lisfing Format
32-co/umn ver.s/on only

It is possible to modify the form in which each line of the listing is split by POKEing
3 locations within the 32-column version of GENS4. Details of how 10 do this are
given below. We dislinguish between assembly line which is the current line of
the assembly listing held in an intemal buffer and screen line which is a line that
actually appears on the screen. An assembly line will normally generate more than
one screen line.

I.Localion Start of GENS4 + 51 (133) dictatesalwhichcolumnposition-
5 the first screen line of the assembly line will be temlinated. Change this byte to

zero to cause the line to wrap round (useful if you have a full-width printer) or any
other value «256) to end the first screen line at a particular column.

2. Location Start oE GENS4 + 52 (/34) gives the colurTUl position (from 1)
at which each subsequent screen line of the assembly line is 10 start.

3. Location Start DE GENS4 + 53 (135) gives how many characters from
the remainder of the assembly line are to be displayed on each screen line after
the ILrst screen line.

As an example, say you wanted the first screen line of each assembly line 10

contain 20 characters (i.e. not includ ing the label field) and then each subsequent
screen line to start at column I and fill the whole line. Also assume that you have
loaded GENS4 at 26000 decimal. To effect these changes, execute the following
POKE instructions from within BASIC:

Page Gen-6 H&>tt Devpoc 4/ ZX Spectrum

POKE 2605120
POKE 26052,1
POKE 26053,31

there must be at least one space at the
stan of each subsequent screen line.

TIle above modifications are oo1y applicable if the "C corrunand has not been used -
use of the *C command causes lines to roll over where necessary.

TIle assembly listing may be paused at the end of a line by hitting [CAPS SHIFT]
and [SPACE] together - subsequently hit E to rerum to the editor or any other key
to continue the listing.

TIle oo1y errors that can occur during the second pass are *ERROR* 10 (see
Appendix 1) and Bad ORG! (which occurs when the object code will overwrite

-") GENS4, the textfile or the syinbol table - the detection of this can be turned off by
Option 32). "'ERROR* 10 is non-fatal and you may continue the assembly as for
first pass errors whereas Bad ORG! is fatal and immediately returns control to

the editor.

At the end of the second pass the message:

Pass 2 errors: nn

will be displayed followed by warnings of any absent labels - see above. The

following message is now displayed:

Table used: xxxxx from yyyyy

This infonns you of how much of the symbol table was used compared with how

much was allocated.

At this point, if the assembler directive ENT has been used correctly, the message
Executes : nnnnn is displayed. This shows the run address of the object code -
you can execute the code by using the editor R command. Be careful using the R

command unless you have just fmished a successful assembly and seen the
Executes: nnn nn message.

HiSOft Devpac 4/lX. Spectrum Page Gen-7

Finally, if option I has been specified, an alphabetic list of the labels used and their
associated values will be produced. 1be number of entries displayed on one line
may be changed by POKEing Start of GENS4 + 50 with the relevant value;
the default is 2

Control now returns to the editor.

2.1 Assembler Statement Format

Each line of text that is to be processed by GENS4
fonnal where certain fields are optional:

should have the following

LABEL
start

MNEMONIC
LD

OPERANDS
HL,label

COMMENT
;pick up ' label '

Spaces and tab characters (inserted by the editor) are generally ignored. TIle line
is processed in the following way:

The first character of the line is checked and subsequent action depends on the
nature of this character as indicated below:

•

<CR>

the whole line is trealed as a comment i.e. effectively ignored.

expects the next character(s) 10 constitute an assembler command
(see Section 2.8). Treats all characters after the command as a

comment.

(end-of-line character) simply ignores the line.

(space or tab) if the fIrst character is a space or a tab character
then GENS4 expects the next non-space or non- tab character to be

the start of a Z80 mnemonic.

If the f1rst character of a line is any character other than those given above then
the ,Issembler expects a label to be present - see Section 2.2. After processing a
valid label, or if the first character of the line is a space/tab, the assembler

searches for the next non-spaceltab character and expects this to be either an end­
of-line character or the start of a Z80 mnemonic (see Appendix 2) of up to 4
characters in length and tenninated by a space/tab or end-of-line character.

Page Gen-8 HiSoft Devpac 4/lX Spectrum

If the nmemonic is valid and requires one or more operands then spaces/tabs are

skipped and the operand field is processed.

Labels may be present alone in an assembler statement; this is useful for

increasing the readability of the listing.

Comments may occur anywhere after the operand field or, if a mnemonic takes

no arguments, after the mnemonic fteld.

2.2 Labels

A label is a symbol which represents up to 16 bits of infonnation. A label can be
used to specify the address of a particular instruction or data area or it can be

used as a constant via the EQU directive (see Section 2.7).

If a label is associated with a value greater than 8 bits and it is then used in a
context where an 8 bit constant is applicable then the assembler will generate an

error message e.g.

label EQU
LD

11234
A, label

will cause *ERROR* 10 to be generated when the second statement is processed
during the second pass. A label may contain any nwnber of valid characters (see
below) although only the first 6 are treated as significant; wese first 6 characters
must be unique since a label cannot be re-defined (*ERROR* 4). A label must not

constitute a Reserved Word (see Appendix 2) although a Reserved Word may be
embedded as part of a label.

The characters which may be legally used within a label are 0-9, S and A-z. Note
that A- z includes all the upper and lower case alphabetics together with the

characters (, \ . J, ", t and . A label must begin with an alphabetic character.

Some examples of valid labels are:

LOOP
loop
a long label
L(1) -
LI2J
a
LDIR LDIR is not a Reserved Word.
two"5

HiSoft Devpac 4 / lX Spectrum

2.3 Location Counter

The assembler maintains a Location Co"unter so that a symbol in the label field
can be associated with an address and entered into the Symbol Table. This
Location Counter may be set to any value via the ORG assembler directive (see

Secfion 2.7).

'The symbol $ can be used to refer to the current value of the Location Counter
e.g. LD HL, $+5 would generate code that would load the regisrer pair HL wilh a
value 5 greater than the current Location Counter value.

2.4 Symbol Table

When a label is encoutered for the first time it is entered into a table along wim
twO pointers which indicate, at a later time. how this label is related alphabetically
10 other labels within the table. If the first occurrence of the label is in the label
field then its value (as given by the Location Counter or the value of the
expression after an EQU assembler directive) is entered into the Symbol Table.
Otherwise the value is entered whenever the symool is subsequently found in the
label fie ld.

This type of symbol table is called a Binary Tree Symbol Table and its structure

cnables symbols to be entered into and recovered from the table in a very short
limc - essential for large programs. The size of an entry in the table varies from 8
bytes to 13 bytes depending on the length of the symbol.

If, during the first pass, a symbol is defined more than once then an error
(* ERROR * 4) will be generated since the assembler does not know which value

should be associated with the symbol.

If a symbol is never associated with a value then the message *1'lARNING*

symbol absent will be generated at the end of the assembly. The absence of a
symbol definition does not prevent the assembly from continuing.

Note that only the first 6 characters of a symbol are entered into the Symbol ·

Table in order to keep down the size of the table.

Page GerrlO HiSoft DevpoC 4/lX Spectrum

At the end of the assembly you will be given a message stating how much
memory was used by the Symool Table during this assembly - you may change
how much memory is allocated to the Symbol Table when staning the assembly
(see Section 2.0).

2.5 Expressions

An expression is an operand entry consisting of either a single TERM or a
combination of tenns each separated by an OPl:RATOR. 1be definitions of term
and Opt!rator follow:

TERM
decimal conSlaIlt e.g. 1029

hexadecimal constant e.g. '405

binary constant e.g. %10000000101
character constant c.g. "a"
label e.g. LI029

also S may be used to denote the current value of the Location COWlter.

OPERATOR
+

&

@

•
I
?

addition
subtraction
logical AND
logical OR
logical XOR
integer multiplication
integer division

MOD fimction (a ? b '"' a - (a /b) "'b)

Notes: • is used to denote the start of a hexadecimal number. % for a binary
number and " for a character constant. When reading a number (decimal.
hexadecimal or binary) GENS4 takes the least significant 16 bits of the number

(i.e. MOD 65536) e.g. 70016 becomes 4480 and ,SA2C4 becomes 'A2C4.

HiSoft Devpoc 4/lX Spectrum PogeGen-ll

A wide variety of operators are provided but no operator precedence is observed;
expressions are eualuated strictly from left to right The operators *, /
and ? are provided merely for added convenience and not as part of a full
expression handler which would increase the size of GENS4. If an expression is
enclosed within parentheses then it is taken as representing a memory address as
in the instruction LD HL , (loc+ 5) which wowd load the register pair HL with the
16 bit value contained at memory location loc+5.

Certain Z80 instructions (JR and DJNZ) expect operands which have an 8 b it
value and not a 16 bit one - this is called relative addressing. When relative
addresses are specified GENS4 automatically subtIacts the value of the Location
Counter at the next instruction from the value given in the operand· field of the
current instruction in order to obtain the relative address for the current
instruction. The range of values allowed as a relative address are the Location
Counter value of the next instruction -128 to +127.

If. instead, you wish to specify a relative offset from the Location Counter value
of the current instruction then you should use the symbol $ (a Reserved Word)
followed by the required displacement. Since this is now relative to the current
instruction's Location Counter value the displacement must be in the range -126
to + 129 inclusive.

Examples of valid expressions

'5000 - label
%1001101 ! %1011
13456 ? flOOO
4 + 5 * 3 - 8
$- labe1+8
2345/7 - 1
" y " -"; " +7
(5 * label - '1000 & %111 1)
17 @ %1000

gives %1000110
gives 1456
gives 1 9

gives 334

gives 25

Note that spaces may be inserted between tenns and operators and vice versa
but not within tenns.

If a multiplication operation would result in an absolute value greater than 32767
then *ERROR * 15 is reponed while if a division operation involves a division by
zero then *ERROR* 14 is given - otherwise overllow is ignored. All aritlunetic
uses the two's complement fonn where any numbers greater than 32767 are
treated as negative e.g. 60000 '" -5536 (600CM).65536).

Page Gen-12 HiSoft Devpoc 4 / lX Spectrum

If a multiplication operation would result in an absolute value greater than 31:167
then *ERROR* 15 is reported while if a division operation involves a division by
zero then II'ERROR* 14 is given - otherwise overflow is ignored. All arithmetic
uses the two's complement form wbere any numbers greater than 32767 are
treated as negative e.g. 60000 '" -5536 (6(XXX)..65536).

2.6 Macros

Macros allow you to write shorter, more meaningfw assembler programs but they
must be used with care and must not be confused with subroutines. A macro
defmition consists of a series of assembler statemenlS, together with the name of
the macro; when this macro name is used subsequently in the mnemonic field then
it will be replaced by all the assembler statementS that made up the defmition e.g.
the macro NSU8 may be defmed thus:

NSUB MAC
OR A
SBC HL , DE
ADD HL, DE
ENDM

and then, whenever NSUB is used as a mnemonic, it will generate the three
assembler statements OR A SBC HL, DE and ADD HL, DE. This saves you typing
and makes your program easier to Wlderstand but you must remember that every
occurrence of NSUB reswts in code being generated and it may be more efficient
to use a CALL to a subroutine instead. Below, we g.ive the fonnat of macro
definitions and invocation together with some more examples, please study these

carefully.

A macro defmition takes the following form:

Name MAC

macro defin i t ion

ENDM

where Name is the macro name that will invoke me text of the macro whenever
Name is used subsequently in the mnemonic field. MAC indicates the start of the
macro definition and ENDM indicates the end of the definition.

HiSoft DevpaC 4/lX Spectrum Page Gen.-13

Parameters of the macro may be referenced within the macro defmition by the
use of the equals sign = foUowed by the parameter number (0·31 inclusive). For
example, the macro:

MOVE MAC
LD HL,:O
LD DE, : !
LD BC,=2
LDI R
ENDM

Lakes 3 par.nneters. source address, destination address and length, loads the
relevant values into HL, DE and BC and then perfonns the instruction LDIR. To
invoke this macro at a later stage in your program, simply use the name of the
macro in the mnemonic field followed by the values that you wish the 3
pammeters 10 take e.g.

MOVE 16384 ,1 6385 , 4096

We have used specific addresses in this example but we can, in fact, use any valid
expression to specify the value of the macro parameter e.g.

MOVE start , start+1,1ength

ll1ink is the above a good use of a macro? Could it have been a subroutine?

Within the macro definition, the parameters may appear in any valid expression
e.g.

HMS MAC
LD
LD
ADD
LD
ADD
ENDM

HL , =O*3600
DE ,=1* 60
HL ,DE
DE ,:2
HL , DE

is a macro, taking 3 parameters . hours. minutes, seconds, that produces in
register HL the total number of seconds specified by the parameters. You might
use it like this:

Page Gen-14 HiSOft Devpac 4/ ZX Spectrum

Hours EQU
Minutes EQU
Seconds EQU
Start EQU

2
30
12
o

HMS Hours,Minutes,Seconds
LD DE, Start
ADD HL,DE ;HL gives the finish time

Macros may not be nested so that you cannot defme a macro within a macro
definition nor can you invoke a macro within a macro definition.

At assembly time, whenever a macro name is encountered in the mnemonic fie ld,
the tex. of the macro is then assembled. Nonnally this text is not listed in the
assembly listing - only the macro name is shown. However, you can force a listing
of the expansion of the macro by using the assembler command *"M+ before you
want macro expansions to be listed· use *M- to switch off this expansion.

If you run out of Macro Buffer space then a message will be displayed and the
assembly aborted; use the editor's C command to allocate a larger Macro Buffer.

2.7 Assembler Directives

Certain pseudo-mnemonics are recognised by GENS4. 1bese assembler
directives, as they are called, have no effect on the Z80 processor at run-time i.e.
they are not decoded into opcodes, they simply direct the assembler 10 take
cenain actions at assembly time. These actions have the effect of changing, in
some way. lhe object code produced by GENS4.

Pseudo-mnemonics are assembled exactly like executable instructions; they may
be preceded by a label (necessary for EQU) and followed by a comment. The
directives available are:

ORG expression

sets the Location Counter to the value of expression. If option 2 and option 16 are
both not selected and an ORG would result in the overwriting of the GENS4
program. the textfile or the symbol table then the message Bad ORG! is displayed
and the assembly is aborted. See Section 2.0 for more details on how options 2
and 16 affect the use of ORG. See the A command in Section 3 for some
precautions on using ORG when automatically saving the object code.

HiSott DevpoC 4/ ZX Spectrum Page Gen·1 5

EQU expression

must be preceded by a label. Sets the value of the label 10 lIle value of
expression. 1be expression cannot contain a symbol which has not yet been
assigned a value (*ERROR* 13).

DEFB expresslon.expression •...•

each expression must evaluate to 8 bits; the byte at the address currently held
by the Location Counter is set to the value of expression and the Location
Counter advanced by 1. RepealS for each expression.

DEFWexpresslon.expresslon

sets the 'word' (two bytes) al the address currently held by the Location Counter
to the value of expression and advances the Location Counter by 2. The lesser
significant byte is placed first followed by the more significant byte. RepealS for
each expression.

DEFS expression

increases the Location Counter by the value of expression - equivalent 10

reselVing a block of memory of size equal 10 the value of express ion.

DEFM ·s·

defines the coments of n byt.es of memory to be equal to the ASCll
representation of the suing s. where n is the length of the string and may be, in
theory, in the range I to 255 inclusive although, in practice, the length of the string
is limited by the length of the line you can enter from the editor. 1be first
character in the operand field (" above) is taken as the string delimiter and the
string s is defined as those characters between two delimiters; the end-of-[ine
character also acts as a tenninator of the string.

ENT expression

this has no effect on the generated object code, it is simply used to define an
address to which the editor's R command will jump to. ENT expression sets this
address to the value of expression - used in conjunction with the editor R
command (see Section 3). There is no default for the execute address.

Page Gen-16 HiSoft Devpac 4/lX Spectrum

2.8 Conditional Pseudo-mnemonics

Conditional pseudo-mnemonics provide the programmer with the capability of
including or not including certain sections of source text in the assembly process.
This is made available through the use of fF, ELSE and END.

IF expression

this evaluates expression. If the result is zero then the assembly of subsequent
lines is turned off until either an ELSE or an END pseudo-mnemonic is
encountered. If the value of expression is non-zero then the assembly

continues normally.

ELSE

this pseudo-mnemonic simply flips the assembly on and off. If the assembly is on
before the ELSE is encountered then it will subsequently be turned off and vice

versa.

END

END simply wrns the assembly 00.

Note: Conditional pseudo-mnemonics cannot be nested; no check is made for
nested IFs so any attempt 10 nest these nmemonics will have unspecified results.

2.9 Assembler Commands

Assembler commands, like assembler directives, have no effect on the 280
processor at runtime since they are not decoded into opcodes. However, unlike
assembler directives, they also have no effect on the object code produced by the
assembler _ assembler commands simply modify the listing format. An assembler
command is a line of the source text that begins with an asterisk "0:.

The letter after the asterisk determines the type of the command and must be in
upper case. The remainder of the line may be any text except that the commands

L and 0 expect a + or a - after the command.

HiSoft Devpac 4 /lX Spectrum Page Gen-l?

The following commands are available:

(ejecl) causes Ihree blank lines to be sent to the screen or printer - useful for
separating modules.

causes string s to be taken as a heading which is printed after each eject (-E). * H

automatically performs a -E.

causes the listing to be stopped at this line. The listing may be reactivated by
pressing any key on 'he keyboard. Useful for reading addresses in the middle of
the listing. Note: *S is still recognised after a *L- , *5 does not halt printing.

causes listing and printing to be turned off beginning with this line.

causes listing and printing to be lumed 011 starting with this line.

causes the value of the Location Counter 10 be given in decimal al the beginning
of each line instead of the normal hexadecimal. Unsigned decimal is used.

reverts to using hexadecimal for the value of the Location Counter al the stan of
each line.

Page Gen-1B HiSoft Devpac 4/ LX Spectrum

·c-
Shorten the assembler listing starting from the next line. The listing is abbreviated
by not including the display of the object code generated by the current line - this
saves 9 characters and enables most assembler lines to fit within one 32-
character screen line, thus improving readability.

Reven. to the full assembler listing as described in SectIon 2.0.

Tum on the listing of macro expansions.

Tum off the listing of macro expansions.

·F filename

This is a very powerful command which allows you to assemble text from tape or
microdrive - the textfile is read from the tape or microdrive into a buffer, a block
al a time, and then assembled from the buffer, this a1lows you to create large
amounts of object code since the text being assembled does not take up valuable

memory space.

The filename (up to 10 characlers) of the textfile you wish to 'include' at this
poinl in the assembly may, optionally, be specifted after the F and must be
preceded with a space. If the file is on microdrive cartdridge then you indicate this
by starting the filename with a drive number and a colon e.g

*F 2:TE5T
*F TEST

to include from Microdrive Drive 2
to include from tape

If no filenarne is given then the first textfile found on the tape is induded, this is

nOI allowed for microdrive inclusion.

HiSoft Devpac 4/lX Spectrum Page Gen-19

If you are including from microdrive then the text to be included should have been
saved previously using the editor's P(ut) command in the normal way.

If including from tape then you must have saved the flle previously to tape using
the editor's T command and not the P command - this is necessary because a
textfile to be included from tape must be dumped out in blocks with sufficienl

length inter-block gaps to allow the assembly of the current block before the next
block is loaded from the tape. The size of the block used by this command (and

the editor's T corrunand) is set using the editor's c command (see next section),
The ability to select the size of this buffer enables you to optimise the size/speed
ratio of any inclusion of text from tape; for example, if you are nOI imending to

use the F command during an assembly then you may flJ'ld it useful ' to specify a
buffer size of 1 to minimise the space taken up by GENS4 and its workspace.

Whenever the assembler detects an F command it searches the tape or

microdrive cartridge for the relevant rlk; this wiU happen in the first and second
passes since the include text must be scanned in each pass. If including from tape,
the the tape is then searched for an include file with the required filename, or for
the first file. If an include file is found whose filename does not match that

required then me message Found filename is displayed and searching
continues, otherwise USing file name is displayed, the file loaded, block by
block, and included.

See Appendix 3 for an example of the use of this command.

Assembler commands, other than *F, are recognised only within the second pass.

If assembly has been tuned off by one of the conditional pseudo-mnemonics then
the effect of any assembler command is also turned off.

Page Gen-2Q HiSoft Devpac 4 / ZX Spectrum

SECTION 3 THE INTEGRAL EDITOR

3.1 Introduction to the Editor

The editor supplied with all versions of GENS4 is a simple, line-based editor

designed to work with all Z80 operating systems while maintaining ease of use
and the ability to edit programs quickly and efficiently.

In order to reduce the size of the textfile, a certain amount of compression of
spaces is perfonned by the editor. This takes place according to the following
scheme: whenever a line is typed in from the keyboard it is entered. character by
character uuo a buffer internal to the assembler. then. when the line is finished

(i.e. you hit I ENTER 1), it is transferred from the buffer into the textfile.

It is during this transfer that certain spaces are compressed: the line is scanned
from its first character, if this is a space then a tab character is entered into the

textfile and all subsequent spaces are skipped. If the first character is not a space
then characters are transferred from the buffer to the textfile until a Spltce is
detected whereupon the action taken is the same as if the next character was the
fi rst character in the line. This is then repeated a funher time with the resull that
tab characters are inserted at the front of the line or between the label and the

mnemonic and between the mnemonic and the operands and between the
operands and any commenL Of course, if any carriage return [ENTER 1 character
is detected at any time then the transfer is fUlished and control returned to the

editor.

lbis compression process is transparent and you may simply use cursor right (-+)

to produce a neatly tabulated textfile which, at the same time, is economic on

storage.

Note that spaces are not compressed within comments and spaces should not be
present within a label, mnemonic or operand field.

The editor is entered automatically when GENS4 is execUled and displays a help

screen, foUowed by the editor prompt >.

HiSoft Oevpac 4/1)(SpectJum Page Gen-21

In response to the prompt you may enter a command line of !he following fomtat:

C Nl, N2, S i , S2 followed by [ENTER]

C is the command to be executed (see Section 3.2 below). Nl is a number in the
range I - 32767 inclusive. N2 is a nwnber in the range 1 - 32767 inclusive. Si is a
string of character.; with a max.imwn length of 20. S2 is a string of characters
with a maximum length of 20.

The comma is used to separate the various arguments (although this can be
changed - see the S command) and spaces are ignored, except within the strings.

None of the arguments are mandatory although some of the cOnuIlaJ)ds (e.g. the
Delcte command) will not proceed without Nl and N2 being specified.

The cditor remembers the previous nwnbers and strings that you en!ered and uses
these former values. where applicable, if you do not specify a particular argument
within the command Line. The values of Nl and N2 are initially set to JO and the
strings are initially empty. If you enter an illegal command Line such as F-

1,100, HE LLO then the line will be ignored and the message Pardon?
displayed - you should then retype the line comcdy e.g. Fl, 1 0 0, HELLO. This

error message will also be displayed if the length of S2 exceeds 20; if the length
o f S 1 is greater than 20 then any excess characters are ignored.

Commands may be entered in upper or lower case.

While entering a command line certain key combinations may be used to edit the

tine viz. f- to delete to the beginning of the line. -+ to advance the cursor 10 the

next lab position. [CAPS SHIFT] 0 or [DELETE] to delete the previous
character.

111e following sub-section gives the various commands available within the editor -

nOlI! that wherever an argument is enclosed by the symbols < > then that
argument must be present for the command to proceed.

Page Gen-22 HiSoff Devpac 4 / LX Spectrum

3.2 The Editor Commands

3.2.1 Text Insertion

Text may be inserted ill[o the textflle either by typing a line nwnber. a space and
then the required text or by use of the I command. Note that if you type a line
nwnber followed by (ENTER] (i.e. without any text) then that line will be deleted

from the text if it exists. Whenever text is being entered +-- (delete to the

beginning of the line). --t (go to the next tab position) and {EDIT] (return to the

command loop) may be employed

1be (DELETE] ({CAPS SHIFT] 0) key will produce a destructive backspace

(but not beyond the beginning of the text line). Text is entered into an internal
buffer within GENS4 and if this buffer should become full then you will be
prevented from entering any more teX.1 • you must then use (DELETE:) or +-- to

free space in the buffer. If. during text insenion. the editor detects thal the end of
!ext is nearing the top of RAM it displays the message Bad Memory!. This
indicates that no more text can be inserted and that the current textfile, or at least

part of it, should be saved to tapelmicrodrive for later retrieval.

Command: I n.m

Use of this command gains entry to the automatic insen mode: you are prompted
with line numbers starting at n and incrementing in steps of m. You enter the
required text after the displayed line nwnber, using the various control codes if
desired and terminating the text line with I ENTER). To exit from this mode use
{ED I T] .

If you enter a line with a line nwnber that already exists in the text then the

existing line will be deleted and replaced with the new line. after you have pressed
(ENTER]. If the automatic incrementing of the line number produces a line

nwnber greater than 32767 then the Insen mode will exit automaticaUy.

If, when typing in text, you get to the end of a screen line without having entered

64 characters (the buffer size) then the screen wiU be scrolled up and you may
continue typing on the next line - an automatic indentation will be given to the text
so that the line numbers are effectively separated from the text.

HiSoft DevpoC 4/7X Spectrum Page Gen-23

3.2.2 Text Listing

Text may be inspecled by use of the L command; the number of lines displayed at
anyone time during the execution of this command is fixed initially but may be
changed through use of the K conunand.

Command: L n,m

This iis[S the current text to the display device from line number n to line number
m inclusive. The default value for n is always 1 and the defau" value for m is
always 32767 i.e. defauil values are not taken from previously entered arguments.

To list the entire textfile simply use L without any argumenlS. Screen lines are
fonnaned with a left hand margin so that the line number is clearly displayed.
Tabulation of the line is automatic, resulting in a clear separation of the various
fields with the line. The number of screen lines listed on the display device may be
conlrolled through use of the K command - after listing a cenain Dumber of lines
the list will pause (if not yet at line number rn), hit (EDIT] to return to the main
editor loop or any other key to continue the listing.

Command: Kn

K selS the number of screen lines to be listed to the display device before the
display is paused as described in L above. The value (n MOD 256) is computed
and stored. For elUlfflple use KS if you wish a subsequent List 10 produce five
screen lines at a time.

3.2.3 Text Editing

Once some text has been crested there will inevitably be a need to edit some
lines. Various commands are provided to enable lines to be amended. deleted,
moved and renumbered:

Command: 0 <n,m>

All lines from n to m inclusive are deleted from the texrfile. If m<n, or less than
two arguments are specified. then no action will be taken; this is 10 help prevenl
careless mistakes. A single line may be deleted by making m""n; this can also be
accomplished by simply typing the line number followed by {ENTER].

HiSoff Devpac 4/lX Spectrum

Command: M n,m

'This causes the text at line n to be eDlered at line m deleting any text that already
exists there. Note that line n is left alone. So this conunand allows you to Move a
line of text to another position within the textfde. If line number n does not exist
then no action is taken.

Command: N <n,m>

Use of the N command causes the textfile to be renumbered with a first line
number of n and in line number steps of m. Both n and m must be present and if
the renumbering would cause any line number to exceed 32767 then the original
numbering is retained.

Command: F n,m,l,s

1be text existing within the line range n~ is searched for an occurrence of the

string f . the 'find' string. If such an occurrence is found then the relevant text
line is displayed and the Edit mode is entered · see below.

You may then use commands within the Edit mode to search for subsequent
occurrences of the string f within the defined line range or to substitute the string
s (the 'substitute' string) for the cwren! occurrence of f and then search for the
next occunence of f; see below for more details. Note that the line range and the
two strings may have been set up previously by any other command so that it may
only be necessary to enter F to initiate the search . see the example in Section
3.3 for clarification.

Command: En

Edit the line with line number n. If n does not ex ist then no action is laken;
otherwise the line is copied into a buffer and displayed on the screen (with the line
number), the line nwnber is displayed again underneath the line and the Edit mode
is entered. All subsequent editing takes place within the buffer and not in the text
itself; thus the original line can be recovered at any time.

In this mode a pointer is imagined moving through the line (starting at the first
character) and various sub-commands are supponed which allow you to edit the
line. 1be sub-commands are:

HiSott Devpac 4 / lX Spectrum Page Gen-25

r ('p,ee)

[DELETE]

[ENTER]

Q

R

L

K

z

F

Page Gen-26

increment the text pointer by one Le. point 10 the next
charncter in the line. You cannot step beyond the end
of the line.
decremenl the text pointer by one to point at the
previous character in the line. Y OIl cannot step
backwards beyond the first character in the line.
step the text pointer forwards to the next tab position

on each screen line.
end the edit of this line keeping all the changes made.
quit the edit of lhis line Le. leave the edit ignoring a11
the changes made and leaving the line as it was before
the edit was initiated.
reload the edit buffer from the text i.e. forget all
changes made on this line and restore me line as it
was originally.
list the rest of the]iI¥= being edited i.e. the remainder
of the line beyond the current pointer position. You
remain in the Edit mode with the pointer re-positioned
at the start of the line.
kill (delete) the character at the current pointer
position.
delete all the characters from (and including) the
current pointer position to the end of the line.

find the next occwrence of the 'find' string previously
defmed wilhin a conunand line (see lite F command
above). 11lis sub-cornmand will automatically exit the
edit on the current line (keeping the changes) if it does
not find another occunence of the 'find' string in the
current line. [f an occunence of the 'find' string is
deteCted in a subsequent line (within the previously
specified line range) then the Edit mode will be
entered for the line in which the string is found. Note
that the texI pointer is always positioned at the start of
the found string.

HiSOft Devpac 4/lX Spectrum

s

I

x

c

substitute the previously defmed 'substitute' string for
the currently found occurrence of the 'find' string and
then perfonn the sub-command F i.e. search for the
next occurrence of the 'fmd' string. 11lis, together
with the above F sub-conunand, is used to step
through the lelltfile optionally replacing occurrences of
the 'fuxl' string with the 'substitute' string - see
Section J.3 for an example.
insert characters at the cunent pointer position. You
will remain in this sub-mode until you press [ENTER]
this will return you to the main Edit mode with the
pointer positioned after the last character inserted.
Using [DELETE 1 within this sub-mode will cause the
character to the left of the pointer to be deleted from
the buffer while the use of will advance the pointer

to the next tab position, inserting spaces.
this advances the pointer to the end of the line and
enters the insert sub-mode detailed above.
change sub-mode. This allows you to ovelWrite the
character at the cunent pointer position and then
advances the pointer by one. You remain in the change
sub-mode until you press [ENTER] whence you are
taken back to the Edit mode with the pointer
positioned after the last character you changed.
[DELETE J simply decrements the pointer by one i.e.
moves it left while has no effect

3.2.4 Tape/Microdrlve Commands

Tellt may be saved to tapelmicrodrive or loaded from tape/microdrive using the
conunands P, G and T. Object code may be saved 10 tapelmicrodrive using the 0
conunand.

Command: P n,m,s

The line range n m is saved to tape or microdrive under the filename specified

by the string s. TIle texl will be saved 10 microdrive if the filename begins with a
drive number followed by a colon (:). Remember that these arguments may have
been set by a previous command. Examples:

HiSoft Devpac 4/lX Spectrum Page Gen-27

P10,200 ,EXAMPLE
P500,900 , l:TEST

save lines 10-200 to tape as EXAMPLE
save lines 500-900 to microdrive 1

Before entering this command make sure that your tape recorder is switched on
and in RECORD mode, if saving to tape. Do not use this command if you wish, at

a later stage, to 'Include' the text from tape ~ use the T command instead If you
intend to 'include ' from microdrive then you should use this P command.

When Putting to microdrive and the filename you have specified already exislS on
the canridge, you will be asked:

File Exists Delete (Y/N)?

answer Y to delete the me and continue saving or any other key to return to the
editor without saving the file.

Command: G"s

The tape or microdrive is searched for a file with a filename of s; when found, it
is loaded at the end of the current text. If a null string is specified as the filename
then the first textfile on the tape is loaded. For microdrive, you must specify a
fliename and it should begin with a drive nwnber followed by a colon.

If using cassene, after you have entered the G conunand, the message Start
tape .. is displayed ~ you should now press PLAY on your recorder. A search is
made for a textfile with the specified filename, or the rust textfile if a null
fliename is given. If a match is made then the message Using filename is
displayed, otherwise Found filename is shown and the search of the tape
continues.

If using microdrive and the specified file cannot be found then the message
Absent is displayed.

Note that if any textfile is already present in the memory then the textfile that is
loaded from tape will be appended to the existing file and the whole file will be
renumbered staning with line 1 in steps of 1.

Page Gen-28 Hl'loft Devpoc 4 /l)(Spectrum

Command: rn,m,s

Dump out a block of text. between the line numbers n and m inclusive, to tape in a
fonnat suitable for inclusion at a later stage via the assembler command *F - see
Section 2.9. The file is dumped with the fllename s. The dump takes place
immediately you have pressed [ENTER) so you should ensure that your tape

recorder is ready to record before entering this command line.

If you intend to indude from microdrive then use the P command to save the

text.as usual, and not this T command.

Note that this corrunand is 10 be used only if you want to assemble the text from

tape at a later stage.

Command: 0,,5

Dump out your object code to cassette or microdrive. 1he fllename s can be up t~
8 characters in length and should begin with a drive number (1 -8) and a colon If

you wish to save the object code to microdrive.

Only the lasl 'block' of code produced by the assembler can be saved in this way
i.e. if you have more than one ORG directive in your source program then only the

code produced after the last ORG is saved.

Code must have been produced in memory before it can be saved using o.

It will often be more convenient to automatically dump the object code by using

the A" filename command rather than the 0 conunand. See below.

3.2.5 Assembling and Running from the Editor

Command: Ao,s,!

This causes the text to be assembled from the first line in the textfile.

o allows you to specify the options to be used in this assembly, see page 3 for

details. Nonnally, you will be able to use the default options by typing a conuna.

HiSoft Devpoc 4/l)(Spectrum Page Gerr29

l

s gives you the faciility to change the symbol table size for this assembly. Look at

pa&e 3 and Section 2.4 for discussions OIl the symbol table. Again, the default
size will often be satisfactory, eltcept when Including.

f should be a valid microdrive filename, starting with d: where d is the
microdrive drive number of the file. 1lle presence of a filename here causes the
assembler to behave in a different way from nonnal.

Instead of simply assembling the object code into memory and stopping when the
top of memory is reached, the assembler will now assemble into memory until it
reaches the top of memory (you can set the top of memory using the U command)
and then it will save the object code assembled so' far to microdrive in the file you
asked for.

The assembly will then continue from the bottom of memory again and this
process wiU continue until aU the program has been assembled and saved to
microdrive.

There is thus no limit (eltcept the available space on your microdrive cantridge) to
the size of program you can assemble.

There are a couple of imponant points regarding the use of the ORG directive
when using this facility:

1. TIle ORG directive will cause object code to be placed at the ORG address
initially and also after each time code has been saved to the object ftle unless
option 16 is used to ensure that object code is placed directly after the symbol
table.

11lerefore, it will nonnally be sensible 10 use option lrrwhen assembling directly to
rnicrodrive since this gives the maximum size for your object code buffer, the
execution addresses of your object code will not be affected.

2. You should avoid using more than one ORG in your program unJess you pad out
any intervening memory with zeros by using DEf'S e.g.

HiSoft Devpoc 4/lX Spectrum

ORG 50000

;some code
RET
ORG 60000

;some more code

will not be saved 10 microdrive correctly because the second ORG effectively
redefines the start of the object code buffer. However.

ORG 50000

;some code
RET

;pad ou~ until 60000
DEFS 60000-$

;some more code

wiU be saved correctly since the DEFS 60000-$ generates sufficient zeros to
ensure that subsequent code starts at address 6(XX)().

This is obviously inefficient in terms of the amount of code stored on microdrive
but its simplicity keeps the assembler small and fasL Eltamples of the A command:

A20 ,, 1:TEST [ENTER]

assembles. with listing on. putting the object code inunediately after the symbol
table (thus maximising the object code buffer in memory), using a default symbol
table size and saving the object code [0 microdrive I under the name TEST.

A,3000 (ENTER]

Assemble the program, using default options and with a symbol table size of 3000
bytes.

See Section 2 for further details of what happens during an assembly.

HiSoft Devpoc 4/"lX Spectrum Page Gen-31

I Command:R

If the source has been assembled without errors and an execute address has been

specified by the use of the ENT assembler directive then the R command may be
used to execute the object program. The object program can use a RET (fC 9)

instruction to retum to the editor so long as the stack is in the same position at the

end of the execution of lhe program as it was at the beginning.

Note that ENT will have no effect if Oplion 16 has been specified for the
assembly.

Before entering the code. interrupts are enabled and register I'f is I~ded with the
value #5C3A. imponant for the Spectrum ROM interrupt routine.

3.2.6 Other Commands

Command: B

This simply returns control to the operating system. To re-enter the assembler use
RANDOMI ZE USR xxxxx where xxxxx is the address at which you loaded
GENS . .

Command:C

This aUows yOU to configure the: size of the Include and Macro buffers.

The Include buffer is the buffer in which lext is held when assembling directly
from cassette or microdrive - the larger this buffer, the more text that will be read
in from cassette or microdrive at one go and therefore the faste r the assembly will

proceed. On the other hand, more memory is used. Thus, there is a compromise to
be made between speed of assembly and use of memory; the C command allows

you to comrol this lradeoff by giving you the opportunity of setting the size of the
Include buffer.

The Macro buffer is used to hold the text of any macro definitions that you may
use.

Page Gen-32 HiSoft Devpac 4/lX Spec1rum

TIle C conunand prompts you to enter the Include buffer size and then the
Macro buffer size. In both cases simply enter the number of bytes (in decimal)

that you wish to allocate, followed by [ENTER]. If you press (ENTER] by itself
without entering a number then no action is taken. If you specify an Include buffer

size then the size is forced to be a minimum of 256 bytes. You may abort the
command using {CAP S S H I FT J 1.

C does not destroy your text; it it moved up and down in memory as the buffers

ch-ange in size. It is best to allocate the buffers as' large as you will need them at
the swt of a sessioo.

Command: S"d

TItis command allows you to change the delimiter which is taken as separating the
arguments in the conunand line. On enay to the editor the comma , is taken as
the delimiter; this may be changed by the use of the S command to the first
character of the specified string d .

Remember that once you have defined a new delimiter it must be used (even

wilhin the s command) until another one is specified. Please do not confuse this
conunand wilh the Substitute sub-command within edit mode.

Note that the separator may nol be a space.

Command: Un

Allows you to set the top of memory to n. If n is not presem (i.e. you just type u
[ENT ER]) then the current top of memory is displayed.

GENS4 will not allow your textfile or your object code to grow above top of
memory and will repon an error message if either gets close 10 it.

By default, the top of memory is taken initially as the top of the Spectrum's

system stack.

HiSoft Devpac 4/lX Spectrum Page Gen-33

I~

Command: V

The v conunand gives a display of useful infonnation; the values of the default
command parameters NI and N2, lIle default command delimiter. the stan and end
of lext (in decimal) and the vaJue of the first command string, S 1.

Command: W n,m

1be W command causes the section of lext between lines n and m inclusive to

be output to the printer. If both n and m are defaulted then the whole textfile
will be printed. 1be printing will pause after the number of lines set by the K
command - press any key to continue printing.

Command:Xn

The X command gives a catalogue of microdrive n. In 51 column mode, the
screen is cleared flfSt. The cataJogue is always displayed in 32 columns.

Command:Z

The z command effectively deletes all your text and therefore asks you whether
you are sure that you want to proceed.: answer Y or y to delete lhe text. Apart
from being a quick shortcul [or 01 , 32767, the Zap command allows you to clean
up your lextfile if it has somehow become conupted. For example, you might have
loaded a code flIe in enor.

TIle z command obviates the need for a cold stan enuy point into GENS4.

Command:H

Displays the help screen which is a list of the commands available in twO columns
with a capital letter indicating the command letter e.g. the command V displays the
current Values of cenain important parameters.

Page Gen-34 HiSoft Devpac 4 /lX Spectrum

I
1

3.3 An Example of the use of the
Editor

Let us assume that you have typed in the following program (using no, 10):

10 'h 16 BIT RANDOM NUMBERS
20
30 ; INPUT : HL contains previous random number or
40 ; OUTPUT: HL contains new randon number.
50
60 Random PUSH AF ; save registers
70 PUSH BC
Ba PUSH HL
90 ADD HL,HL ;*2
100 ADD HL,HL ;*4
110 ADD HL,HL ;*8
120 ADD HL,HL ;*16
130 ADD HL,HL ;* 32
140 ADD HL,HL ; *64
150 PIP BC ; old random number
160 ADD HL , DE
170 LD DE,41
IBa ADD HL,DE
190 POP BC ;restore registers
200 POP AF
210 REY

1lt.is program has a number of errors which are as follows:

Line ID:
Line 40:

a lower case h has been used in the assembler command * H.

randon instead of random.
Line 70: PUSH BC starts in the label fie ld.

Line 150: PIP instead of POP.
Line 160: needs a comment (not an error - merely scyle).
Line 2ID: REY should be RET.

s eed.

Also 2 extra lines of ADD HL, HL should be added between lines 140 and ISO and
all references to the register pair DE in lines 160 to ISO should be 10 register pair

BC.

To put alllhis right we can proceed as follows:

HiSaft Devpac 4/lX Spectrum Page Gen-35

EI0 [ENTER] then (I Spacc)C(cnlefchangemodc)H[ENTER } [ENTER]

F40,40,randon,random[ENTER}

then the S sub-rommand.

E70 {ENTER] then I (inscrtmodc) (1 spacc:)[ENTER] [ENTER]

1142,2 [ENTER] 142 ADD HL,HL ;·128

144 ADD HL,HL ;*256

[EDIT]

F150,150,PIP,POP [ENTER]

then the S sul).command.

E160 [ENTER] then x (2 spaces); ·257 t 41 [ENTER] [ENTER !

F160, 180, DE,BC {ENTER]

then repeated use of the sub-command S.

E210 [ENTER] --t (2 spaces) c (change modc) T [ENTER] [ENTER]

NI0,10 {ENTER] torenumberthelc:>It.

You are strongly recommended to work through the above example actually using

the editor.

Page Gen-36 HiSoft Devpac 4 / ZX Spectrum

·ERROR" 1
·ERROR" 2
*ERROR" 3
" ERROR" 4
"ERROR" 5

*ERROR" 6
"ERROR" 7
·ERROR" 8
"ERROR" 9
"ERROR" 10

"ERROR" 11
"' ERROR" 12
"'ERROR" 13

"' ERROR" 14
~ERROR'" 15
"' ERROR" 16
"'E RROR" 17
~ERROR~ 18
*ERROR'" 19

APPENDIX 1

ERROR NUMBERS AND THEIR
MEANINGS

Error in the oontext of this line.
Mnemonic oot recognised.
Statement badly formed.
Symbol defmed more than once.
Line contains an illegal character i,e. one
which is not valid in a particular context.

One of the operands in this line is illegal.
A symbol in this line is a Reserved Word.

Mismatch of registers.
Too many registers in this line.
An expression that should evaluate to 8 bits

evaluates to more than 8 bits.
The instructions JP (IX+n) and JP (I'Un) are illegal.

Error in the formation of an assembler directive.

Illegal forward reference i.e. an EQUate has been
made to a symbol which has not yet been defmed.

Division by zero.
Overflow in a multiplication operation.

Nested macro defmition.
This identifier is not a macro.
Nested macro call.
Nested conditional statement.

HiSoft Devpac 4/lX Spectrum Page Gen-37

Bad ORG! An ORG has been made to an address lhat would
conupt GENS. its textfile or the Symbol 'Table.
Control retums 10 the editor.

Out of Table space!
Occurs during the fmt pass if insufficient
memory has been allowed for the Symbol Table.
Control returns immediately to the editor.

Bad Memory! No room for any more text to be inserted i.e.

Page Gen-38

the end of text is near the top of RAM. You should
save the current textfile. or part of it.

HiSoft Devpac 4/lX Spectrum

APPENDIX 2

RESERVED WORDS, MNEMONICS ETC.

11te following is a list of the Reserved Words within GENS. These symbols may
not be used as labels although they may fonn pan of a label. All the Reserved
Words are composed of capitalleners.

A B
AF
IY
P

C D
AF'
SP
PE

E
BC
NC
PO

H L
DE
Z

I R $
HL IX
NZ M

1bere now follows a list of the valid Z80 mnemonics. assembler directives and
assembler commands. These also must be entered in capilalletters.

ADC ADD AND BIT CALL
CCF CP CPD CPDR CPI
CPIR CPL DAA DEC DI
DJNZ El EX EXX HALT
IM IN INC IND INDR
1Nl INIR JP JR LD
LDD LDDR LDI LDIR NEG
Nap OR OTDR OTIR OUT
OUTD OUT! POP PUSH RES
RET RETl RETN RL RLA
RLC RLCA RLD RR RRA
RRC RRCA RRD RST SBC
SCF SET SLA SRA SRL
SUB XOR

OEFB DEFM DEFS DEFW ELSE
END ENT EQU IF ORG

MAC ENDM

' 0 'E 'H 'L 'S

'C *F *M

HiSoft Devpac 4/lX Spectrum Page Gen-39

Page Gen-40 HiSoft Devpac 4 / lX Spectrum

APPENDIX 3

A WORKED EXAMPLE

'There follows an example of a typical session using GENS4 - if you are a
newcomer to the world of assembler programs or if you are simply a lilLle unsure
how to use the editor/assembler then we urge you to work through litis example
carefully. Nore that (ENTER] is used to indicate that you should press the ENTER

key on the keyboard.

Session objective:

To write and test a fast integer multiply routine, the text of which is to be saved to
tape using the editor's T command so that it can easily be 'included' from tape in
future programs.

Session workplan:

1. Write the multiply routine as a subroutine and save it to tape using the editor's P
corrunand so that it can be easily retrieved and edited during this session, should
bugs be present.

2. De-bug the multiply subroutine, editing as necessary.

3. Save the de-bugged routine lO tape. using the editor's T command so that !he

routine may be 'included' from tape in other programs.

Before we stan we must load GENS4 into the computer - do this by typing LOAD

"" CODE 26000 [ENTER) loloadtbeassemblerataddress26000.Nowtype
RANDOMIZE USR 26000 {ENTER). You are now in editor mode ready to

create assembly programs.

HiSott Devpac 4 / lX Spectrum Page Gen-41

Stage 1 - write the integer multiply routine

We use the editor's I command to insert the text using -) (the tab character) to

obtain a tabulated listing. We do not need to use --+, a list of the text will always

perfonn the tabulation for us. We have not indicated where tabs have been used
below but you can assume that Ihey are used before the mnemonic and between
the mnemonic and the operand. Note that the addresses shown in the example
assembler listings that follow may not correspond to those produced on your
machine; they serve an illustrative pUIpose only_

>I10,10 [ENTER)
10 :A fast integer multiply [ENTER]
20 ;routine. Multiplies HL [ENTER] ·
30 ;by DE. Return the result [ENTER]
40 ;in HL. C flag set on a n [ENTER]
50 ;overflow. [ENTER]
60 [ENTER)
70 ORG i7FOO [ENTER]
80 [ENTER]
90 Mult OR
100 SBC
110 ADD
120 JR
130 EX
140 Mul OR
150 SCF
1 60 RET
170 OR
18 0 10
190 JR
200 EX
2 10 RET
220 [ENTER)

A [ENTER]
HL,DE ;HL>DE? [ENTER]
HL, DE [ENTER]
NC,Mul ;yes (ENTER]
DE,HL [ENTER]
o (ENTER]

;overflow if [ENTER]
NZ ;D£>255 [ENTER]
£ ;times O? [ENTER)
E,D [ENTER]
NZ,MU4 ;no [ENTER]
DE,HL ;0 [ENTER)

[ENTER]

230 ;Main routine. [ENTER]
240 [ENTER]
25 0 Mu2 EX
260 ADD
270 EX
280 Mu3 ADD
290 RET
300 Mu4 RRA
310 JR
320 OR
330 JR
340 ADD
350 RET
360 {EDIT]

Page Gen-42

DE,HL [ENTER]
HL,DE [ENTER]
DE, HL [ENTER]
HL,HL [ENTER]
C ;overflow [ENTER]

[ENTER]
NC, Mu3 [ENTER)
A {ENTER]
NZ,Mu2 (ENTER]
HL,DE (ENTER]

[ENTER]

HiSoft Devpac 4 / lX Spectrum

'"

TIle above will create the text of the routine, now save it to tape using:

>PlO,350 ,Mult [ENTER)

Remember 10 have your tape recorder running and in RECORD mode before
issuing the P command.

Stage 2 - de-bug the routine

First, let's see if the text assembles correctly. We will use option 2 so that no
listing is produced and no object code genemted.

>A2 (ENTERJ

HISOFT GENS4 ASSEMBLER
Copyright HiSoft 1983,84,87
All Rights Reserved

Pass I errors: 00

Pass 2 errors: 00

WARNING MU4 absent Table used:

>

74 from 161

We see from this assembly that we have made a mistake in line 190 and entered
MU4 instead of Mu4 which is the label we wish to branch to. So edit line 190:

>F190 ,190 , MU4,Mu4 [ENTER)
190 JR NZ, (nowusetheSsub-conunand)

Now assemble the text again and you should find that it assembles without errors.
So now we must write some code to test the routine:

>N300,10 [ENTER]

HiSott Devpac 4 / lX Spectrum

(renumber so that we can write
some more text)

Page Gen-43

>IlO,10 (ENTER]
10 ;Some code to test [ENTER]
20 ;the Mult routine. [ENTER]
30 (ENTER]
40 LO HL,50 [ENTER)
50 LO DE,20 (ENTER]
60 CALL Mult ;Multiply [ENTER]
70 LD A, H ;o/p result [ENTER]
80 CALL Aout [ENTER]
90 LD A, L (ENTER]
100 CALL Aout [ENTER]
110 RET :Return to editor (ENTER]
120 [ENTER]
130 ;Routine to olp A in hex {ENTER]
140 [ENTER]
150 Aout PUSH
160 RRCA
170 RRCA
180 RRCA
190 RECA
200 CALL
210 POP
220 Nibble
230 ADD
240 DAA
250 ADC
260 DAA

AF [ENTER]
(ENTER]
[ENTER]
[ENTER]
[ENTER]
Nibble [ENTER]
AF [ENTER]
AND %1111 {ENTER]
A,M-90 [ENTER]

[ENTER}

270 LO
280 RST

A,140 [ENTER]
[ENTER}
IY,t5C3A ; f or

call HO :ROM
[ENTER]

ROM [ENTER]
[ENTER)

290 RET
300 [EDIT]
>

Now assemble the test rouLine and the Mult routine together.

>A2 (ENTER]

HISOFT GENS4 ASSEMBLER
Copyright HiSoft 1983,84,87
All rights reserved

7EAC 190
"ERROR" 02

RECA

(hit any key to continue)

Pass 1 errors : 01

Table used: 88 from 210

Page Gen-44 HiSOft Devpac 4/ IX Spectrum

We have an error in our routine; RECA should be RRCA in line 190. So:

RECA
>E190

190

190 -+ (1 space) C (enter change mode) R [ENTER] I ENTER]

>

Now assemble again, using the default options Gust use A (ENTER]), and the text
should assemble conectly. Assuming it does, we are now in a position to test the

working of our Mul t routine so we need to tell the editor where it can execute the
code from. We do this with the ENT directive:

>35 ENT $ (ENTER]

Now assemble the text again and the assembly should tenninate conectly with
the messages:

Table used :

>
88 from 211 Executes: 32416

or something similar. Now we can run our code using the editor's R command.
We should expect it to multiply 50 by 20 producing 1000 which is 13E8 in
hexadecimal.

>R [ENTER]
0032>

It doesn't world Why nOl? List the lines 380 to 500 (L38 0 , 500). You will see that
ut line 430 the insuuction is an OR 0 followed, effectively, by a RET NZ. What

this is doing is a logical OR between the D register and the accumulator A and
returning with an error flag set (the C flag) if the result is non-zero. The object of
this is to ensure that DE<256 so that the multiplication does not overflow - it does
this by checking that 0 is zero ... but the OR will only work correctly in this case if
the accumulator A is zero to start with, and we have no guarantee that this is so.

We must ensure that A is zero before doing the OR 0, otherwise we will get
unpredictable overflow with the higher number returned as the result. From
inspection of the code we see that the OR A at line 380 could be made into a
XOR A thus setting the flags for the SBC HL, DE insuuction and setting A to zero.
So:

HiSoft Devpoc 4/ IX Spectrum Page Gen-4S

>E380 [ENTER]
380 Mult OR A
380 -+ I (enter insert mode) X [ENTER) [ENTER)
>
Now assemble again and run the code, using R. The answer should now be
correct ~ BE8.

We can further check the routine by editing lines 40 and SO to multiply different
numbers, assembling and running; you should frod that the routine now works.

Now we have perfected the routine we can save it to tape in 'Include' format:

>T300,999,Mult [ENTER)

Remember to start the recorder in RECORD mode before pressing [ENTER).

rf you want 10 include the program from microdrive rather than from tape then
you do not need to use the T conunand; programs saved with the nonnaJ p

command can be included from microdrive.

Once the routine has been saved like this it may be included in a program as
shown below:

500 RET
510
520 ; Include the Mult routine here.
530
540 *F Mult
550
560 ;The next routine.

When the aoove text is assembled the assembler wiU ask you to Start tape . .
when it gets to line 540 on both the first and second pass. Therefore you should
have the Mult dump cued up on the tape in both cases. This will nonnally mean
rewinding the tape after the first pass. You could record two dumps of Mult on the
tape, following each other, and use one for the first pass and the other for the
second pass.

When including from microdrive, no messages are displayed, it all happens
automatically.

Please study the above example carefully and try it out for yourself.

Page Gen-46 HiSoft Devpoc 4/ ZX Spectrum

HiSoft MONS
Disassembler /Debugger

CONTENTS
SECTION 1 GETTING STARTED 1

Making a Backup Copy 1

SECTION 2 THE COMMANDS
AVAILABLE 3
flip hex/dec 3

page disassembly 3

forward 1 3

back 1 3

back 8 3

forward 8 4

get stack 4

GetpaHern 4

convert to Hex 5

Intelligent copy 5

Jump to address 5

continue execution 6

APPENDIX

List memory

set Memory address

Next pattern

relative Offset

fill memory

flip register sets

skip call

disassemble

back to offset

return to indirection

set a breakpoint

go to indirection

enter ASCII

single step

worked example

Print list

Modifying Memory

Modifying Registers

AN EXAMPLE FRONT
PANEL DISPLAY

7

7

7

8

8

9

9

9

12

13

13

14

15

15

16

18

18

19

21

SECTION 1

GETTING STARTED

MONS4 is supplied in a relocatable fonn; you simply load it at the address that
you wish it to execute from and then enter MONS4 via that address. IT you wish
to enter MONS4 again (having returned from MONS4 to BASIC) then you should
execute the address at which you originally loaded the debugger.

Example:

Say you want to load MONS4 at address 'COQO (49152 decimal) • proceed as
follows:

LOAD "" CODE 49152 [ENTER]

RANDOMIZE USR 49152 (ENTER)

To enter MONS4 again use:

RANDOMIZE USR 49152 (ENTER]

MONS4 is roughly 6K in length once it has been relocated but you should allow
nearer 7K bytes on loading MONS4 owing to the table of relocation addresses
which comes after the main code. MONS4 contains its own internal stack so that
it is a self-contained program.

MONS4 is loaded, by default. at 55000. allhough you may load it at any sensible
address; it is usually convenient to load MONS into higb memory.

Making a Backup Copy

Once you have loaded MONS4 into your Spectrum's memory then you can make
a backup copy of the package as follows:

SAVE "MONS4" CODE xxxxx,6656 [ENTER] to cassette
SAVE *"M"; 1; "MONS4" CODE xxxxx,6656 [ENTER] to Microdrive

where: xxxxx is the address at which you loaded MONS4.

HiSott Devpac 4/lX Spectrum Page Mon-l

Please note that we allow you to_make a backup copy of MONS4 for your own
use so that you can program with confidence. Please do not copy MONS4 to give
(or worse, sell) to your friends, we supply very reasonably-priced software and a
full after-sales support service but if enough people copy our software we shall
not be able to continue this; please buy, don't steal.

Having entered MONS4 the message MON4 • 0 Debugger © HiSoft 1987

will appear for a few · seconds to be replaced by a front paneJ display (see the
Appendix for an example display). This consists of the Z80 registers and flags
together with their contents plus a 24 byte section of memory centred around the
Memory Pointer, initially set to address O. On the top line of the display is a
disassembly of the instruction addressed by the Memory Pointer.

On entry to MONS4, all the addresses displayed within the Front Panel are given
in hexadecimal fonnat (i.e. to base 16); you can change this so that the addresses
are shown in decimal by using the command [SYMBOL SHIFT] 3 - see the next
section. Note, however, that addresses must always be entered in hexadecimal.
Commands are entered from the keyboard in response to the prompt > wuier the
memory display and may be entered in upper or lower case.

Some commands, whose effect might be disastrous if used in error, require you to
press [SYMBOL SHIFT] as well as the command letter. TIuoughoul this manual
the use of the [SYMBOL SHIFT) key may be represented by the symbol" e.g.
"Z means hold the [SYMBOL SHIFT] and Z key down together.

Commands take effect immediately - there is no need to press [ENTER] . Invalid
commands are simply ignored. The entire 'front panel' display is updated after
each command is processed so that you can observe any results of the particular
command.

Many commands require the input of a hexadecimal number - when entering a
hexadecimal number you may enter as many hexadecimal digits (0 -9 and A·F or a­
f) as you wish and tenninate them with any non-hex digit. If the terminator is a
valid command then the command is obeyed after any previous command has
been processed. If the terminator is a minus sign • - ' then the negative of the
hexadecimal number entered is returned - in two's complement fonn e.g. 1800-

gives E800. If you enter more than 4 digits when typing a hexadecimal number
then only the last 4 typed are retained and displayed on the screen.

To return to BASIC from MONS4 simply press [STOP]' i.e. "A.

Page Mon-2 HiSott Devpac 4 / LX Spectrum

SECTION 2

THE COMMANDS AVAILABLE

The following commands are available from within MONS4. In this section,
whenever [ENTER] is used to tenninate a hexadecimal nwnber this in fact can be
any non-hex character (see Section 1). Also is used to denote a space where
applicable.

[SYMBOL SHIFT] 3 or * flip hex/dec

nip the number base in which addresses are displayed between base 16
(hexadecimal) and base 10 (decimal). On entry to MONS4, addresses are shown
in hexadecimal, use "3 to flip to a decimal display and A 3 again to revert to the
hexadecimal fonnat. This affects all addresses displayed by MONS4 including
those generated by the dis-assembler but it does not change the display of
memory contents - this is always given in hexadecimal.

[SYMBOL SHIFT] 4 or $ page disassembly

display a page of dis-assembly starting from the address held in the Memory
Pointer. Useful to look ahead of your current position to see what instructions are
coming up. Hit "4 again or [EDIT] to return to the Front Panel display or another
key 10 get a further page of dis-assembly.

[ENTER] forward 1

increment the Memory Pointer by one so that the 24 byte memory display is now
centred around an address one greater than it was previously.

i back 1

decrement the Memory Pointer by one.

backS

decrement the Memory Pointer by eight - used to step backwards quickly.

HiSott Devpac 4/7)(Spectrum Page Mon-3

--> forward 8

incre'!'ent the Memory Pointer by eight. used to step forwards quickly.

(comma) get stack

update the Memory Pointer so that it contains the address currently on the slack
(indicated by SP). This is usefu] when you want to look around the return address
of a called routine etc.

G Get pattern

search memory for a specified string.

You are prompted with a : and you should then enter the first byte for which you

want 10 search followed by [ENTER 1. Now keep entering subsequent byleS (and

[ENTER) in response to Ihe : until you have defmed the whole slring.

Then just press (ENTER) in response to the :; this will tenninate the definition of

the string and search memory, starting from the current Memory Pointer address,
for the first occurrence of the specified s tring. When the string is found the front
panel display will be updated so that the Memory Pointer is positioned at the first
character of the string. Example:

Say that you wish to search memory, starting from laOOo, for occurrences of the

pattern jf3E 'FF (2 bytes) - proceed as follows;

M: 8000 [ENTER]

G:3E [ENTER]

FF {ENTER]

(ENTER)

set the Memory Pointer to ,aooo.
define the first byte of the string.
defme the second byte of the string.
terminate the string.

After the final [ENTER) (or any non-hex character) G proceeds to search
memory from ,aooo for the first occurrence of I3E 'Fr. When fOWld the
display is updated - to find subsequent occurrences of the string use the N
command.

Page Mon-4 HiSOft Devpac 4/ zx. Spectrum

H convert to Hex

: ou are prompted with to enter a decimal number tenninated by any non-digil
(I.e. any character other than 0 .. 9 inclusive), Once the number has been
tenninated, an = sign is displayed 00 the same line followed by the hexadecimal
equivaJent of the decimal number. Now hit any key to rerum. to the command
mode.

Example:

H:41472_=A200 here a space was used as the tenninator.

I Intelligent copy

This is used to copy a block of memory from one location to another - It IS

intelligent in that the block of memory may be copied to locations where it would

overlap its previous locations. I prompts for the inclusive start and end addresses
of the block to be copied (F i r st :, Las t :) and then for the address to which the

block is to be moved (To:); enter hexadecimal numbers in response to each of
these prompts. If the start address is greater than the end address then the
command is aborted - otherwise the block is moved as directed.

J Jump to address

execute code from a specified address.

This corrunand prompts, via :, for a hexadecimal nwnber - once this is entered the

imemal stack is reset, the sclttn cleared and execution transferred to the
specified address. If you wish to return to the from panel after executing code
then set a breakpoint (see the w command) at the point where you wish to return

to the display.

Example:

J :BOOO [ENTER] executes the code starting at 'BOOO.

HlSoft Devpac 4/lX Spectrum Page Mon-5

You may abort this command before you tenninate the address by using [EDIT).
Note !hat J conupts the Z80 registers before executing the code; thus the
machine code program should make no assumptions as to the values held in
registers. If you wish to execute code with lhe registers set to particular values
then you should use the [SYMBOL SHIFT) K command· see below.

[SYMBOL SH IFT] K continue execution

continue execution from the address current1y held in the Program Counter (PC).

This command will probably be used most frequently in conjunction with the W
conunand - an example should help to clarify this usage:

say you are single-stepping (using "Z) through the code given below and you have
reached address #8920 . You are now not interested in stepping through the
subroutine at il90 0 0 but wish to see how the flags are set up after the call to the
subroutine at lI8800.

89lE 3EFF LD A,-l
8920 COO090 CALL #9000
8923 2A0 080 LD HL, (#8000)
8926 7E LD A, (HL)
8927 111488 LD OE,/t 8814
892A COO088 CALL /t8800
8920 2003 JR NZ,lab1
892F 320280 LD (#8002) ,A

8932 211488 lab l LD HL, #8914

Proceed as follows: set a breakpoint, using w. at location f892D (remember to use
M first to set the Memory Pointer) and then issue a K command. Execution
continues from the address held in the PC which, in this case. is #9920. Execution
will then cominue until the address at which the breakpoint was set (19920) at
which point the display will be updated and you can inspect the state of the flags
etc. after the eall to the subroutine at 11880 O. Then you can reswne single·

stepping through the code.

So A K is useful for executing code without first resetting the stack or compting

the registers. as J does.

Page Mon-6 HiSoft Devpac 4 / ZX Spectrum

L List memory

tabulate. or list. a block of memory starting from the address currently held in the
Memory Pointer.

L clears the screen and displays the hexadecimal representation and ASCII
equivalents of the 80 bytes of memory staning from the current value of the
Memory Pointer. Addresses will be shown in either hexadecimal or decimal
depending on the current state of the Front Panel (see "3 above). The display
consists of 20 rows with 4 bytes per row. the ASCII being shown at the end of
each row. For the purposes of the ASCII display any values above 127 are
decremented by 128 and any values between 0 and 31 inclusive are shown as ..

At the end of a page of the list you have the option of returning to the main front
panel display by pressing [EO-IT) or continuing with the next page of 80 bytes by
pressing any other key.

M sel Memory address

set !he Memory Pointer to a specified address.

You are prompted with : to enter a hexadecimal address (see Section 1). The
Memory Pointer is then updated with the address entered and the memory display
of Ihe front panel changes accordingly.

M is useful as a prelude to entering code. tabulating memory etc.

N NexlpaHern

fmd the next occurrence of the hex string last specified by the G command.

G allows you to defme a string and then searches for the first occurrence of it; if
you want further occurrences of the string then use N. N begins searching from
the Memory Pointer and updates the memory display when the next occurrence
of the string is found.

HlSoft Devpac 4/LX Spectrum Page Mon·?

o relative Offset

go to the destination of a relative displacement

The command takes the byte currently addressed by the Memory Pointer. treats it

as a relative displacement and updates the memory display accordingly.

Example:

say the Memory Pointer is set to #6800 and that the contents of locations i67FF
and #6800 are #20 and #-16 respectively - this could be intepreted as a JR
NZ, $+24 instruction. To fmd out where this branch would go on a Non-Zero
condition simply press 0 when the Memory Pointer is addressing the displacement
byte #16. The display will then update 10 centre around #6817, the required
destination of the branch.

Remember that relative dispiacements of greater then #7F (127) are lrea!ed as
negative by the ZBO processor; 0 takes this into accoWlt

See also the u command in connection with o .

p fill memory

till memory between specified limits with a specified byte.

P prompts for First :, Last: and With:. Enter hexadecimal numbers in
response to these prompts; respectively, the sran. and end addresses (inclusive) of
the block that you wish to fill and the byte with which you want to fill the block of
memory.

Example:

p
First:7000 [ENTER]
Last:77FF [ENTER}
With:55 [ENTER)

will fill locations i 7 0 00 to # 7 7 FF (inclusive) with the byte is 5 (U).

If the start address is greater than the end address then P will be aborted.

Page Mon-8 HiSoft Devpac 4/lX Spectrum

Q flip register sets

On entry to the front panel display the set of registers displayed is the Standard
register set (AF, HL, DE, BC).1lle use of Q will display the Alternate register set
(AF ', HL', DE I, BC') which is distinguished from the Standard set by the single
quote ' after the register name.

[f Q is used when the Alternate register set is displayed then the Standard set will
be shown.

[SYMBOL SHIFT] T skip call

set a breakpoint after the current instruction and continue execution.

Example:

9 000 B7 OR A
9001 C20098 CALL NZ,#9800
9004 010000 10 Be,O
9800 21FFFF 10 HL,-l

You are single-stepping the above code and have reached #9001 with a non-zero
value in register A. thus the Zero flag will be in a NZ state after the OR A

instruction. If you now use "z to continue single-stepping then execution will
continue at address 19800, the address of the subroutine. If you do not wish to

single-step through this routine then issue the AT command when at address
' 9001 and the CALL will be obeyed automatically and execution stopped at
uddress t 900 4 for you to continue single-stepping.

Remember. AT sets a breakpoint after the current inSlruction and then issues a "K

conunand.

See the A Z command for an extended example of single-stepping.

T disassemble

dis-assemble a block of code, optionally to the printer and/or microdrive.

You are first prompted to enter the First : and Last: addresses of the code
Ihlll you wish to dis-assemble; enter these in hexadecimal as detailed in Section I.

Ill$oft Devpac 4/lX Spectrum Page Mon-9

If the start address is greater than the end address then the command is aborted.
After entering these addresses you will be prompted with Prin t e r ?; answer 'i

(capital Y only) to direct the dis-assembly to your Printer stream or any other
value to send output to the screen.

Now you are prompted with Text : to enter, in hexadecimal, the start address of
any textft1e that you wish the dis-assembler to produce. If you do not want a
texlfile to be generated then simply press [ENTE R] after this prompt If yOU
specify an address then a textfl1e of the dis-assembly will be produced, starting at
thal address, in a fonn suitable for use by GENS4. If you want to load a textlile
with GENS4 then you shou ld nou: down the start and end addresses of the text
file return to BASIC and save the text as a CODE fde. You will then be able to
load it into the GENS4 editor direct1y using the G command.

Alternatively, instead of typing an address in response 10 Te xt : , you can enter a
microdrive filename and the teXI will be saved directly to microdrive as it is

disassembled. Example:

Test: 2;DCODE [ENTER]

will save the disassembly to microdrive 2 under the name DCOD E. No listing will
be produced on the screen if you are disassembling to micnxlrive. The file
produced on the microdrive is direct1y-loadable using the assembler' s G editor

command.

If, at any stage when you are generating a textfile, the text would overwrite
MONS4 then the dis-assembly is aborted - press any key to return to the Front

PaneL

If you specified a textfile address you are now asked to specify a workspace :
address - this should be the start of a spare area of memory which is used as a
primitive symbol table for any labels generated by the dis-assembler. The ~ount
of memory needed is 2 bytes for each label generated. if you default by stmply
hitting [ENTER) then 4K of space below MONS4 is allocated.

After this, you are asked repeatedly for the F i rst: and Last ; (inclusive)
addresses of any data areas that exist within the block that you wish to dis­
assemble. Data areas are areas of. say. text that you do not wish 10 be interpreted
as Z80 instruclions - instead these data areas cause OEFB assembler directives to
be generated by the dis-assembler.

Page Men-IQ HiSOft Devpac 4/lX Spectrum

If the value of the data byte is between 32 and 127 ('20 and f7F) inclusive then

the ASCD interpretaion of the byte is given e.g. f 41 is changed to A after a OEFB.
When you have finished specifying data areas, or if you do not wish to specify
any, simply type [ENTER] in ICSponse to both prompts. The T conunand uses an
area at the end of MONS4 lO store the data area addresses and so you may set
as many data areas as there is memory available; each data area requires 4 bytes
of storage. Note that using T destroys any breakpoints that were previously set -

see the IN command.

The byte after a RST 8 instruction is disassembled as DEFB n since this byte is
picked up by the Spectrum ROM and never executed.

TIle screen will now be cleared. If you asked for a textfile to be created then
there will be a short delay (depending on how large a seclion of memory you wish
10 dis-assemble) while the symbol table is constructed during pass 1. This having
been done, the dis-assembly listing will appear on the screen or printer unless you
are disassembling 10 microdrive when no listing is produced. You may pause the
listing at the end of a line by hitting [ENTER) or [SPACE], subsequently hit
I EO I T] to rerum to the front panel display or any other key to continue the dis­

Ilssembly.

If an invalid opcode is encountered then it is dis-assembled as NOP and flagged
with an asterisk * after the opcode in the listing. At the end of the dis-assembly
the display will pause and. if you have asked for a textfile to be produce.d. the

message End of text xxxxx will be displayed.

When the dis~assembly has fmished, press any key to return to the front panel.

Labels are generated, where relevant (e.g. in C30078), in the fonn LXXXX where
xxxx is the absolute hex address of the label, but only if the address concerned is
within the limits of the dis-assembly. If the address lies outside this range then a
label is not generated, simply the hexadecimal or decimal address is given.

For example, if we were dis-assembling between '7000 and j8000, then the
instruction C30078 would be dis-assembled as JP L7800; on the other hand, if
we were dis-assembling between '9000 and '9800 then the C30078 instruction
would be rus- assembled as JP '7800 or JP 30720 if a decimal display is being

used.

IlI50ft Devpoc 4/lX Spectrum Page Men-ll

If a particular address has been referenced in an insuuction within the dis­
assembly then its label will appear in the label field (before the mnemonic) of the

dis-assembly of the instruction at that address but only if the listing is directed to a

textfile.

Example:

T
F i rst : 88 [8NTER I
Last : 9E [ENTER]
Printer?Y
Text : (ENTER]
Fir s t:95 {ENTER]
Las t : 9 E (ENTERJ
first : (ENTER]
Last : (ENTER]

would produce something like :

00 8 B FE16 CP
0080 3 801 J R
008r 23 INC
0090 37 SC.
0091 22 SDSC LD
009 4 C. RET
0095 BFS24E DEFB
0098 C4494E DEFB
00 96 4B4559 DEFB
0 0 9E A' DEFB

U

11 6
C,L0090
HL

(lSCSD) , HL

iBF,"R","N"
' C4, " I ", "N"
"K"," E" , "Y"
fA'

back to offset

Llsed in conjullCtion with the 0 conunand.

Remember that 0 updates the memory display according 10 a relative
displacement i.e. il shows the effect of a JR or DJN Z in~truc[ion. U is used to

update the memory display back to where the lasl 0 was issued. Example:

1200 47
72 0 1 20

>7202 F2<
7203 06

display 1

71 F 3 11
71 F4 C9

>71FS F5 <
7lF6 CS

display 2

You are on display 1 and wish to know where the relative jump 20 F2 branches.
So you press 0 and the memory display updates to display 2.

Page Moo-12 H&>ft Devpac 4/ ZX Spectrum

So you press 0 and the memory display updates to display 2 Now you investigate
~ code following t 71FS for a while: and then wish to rerum to the code
following the original relative jump in order to see what happens if the zero flag is
set. So prus U and the memory display will return to display I. Note that you can
only use U to return to the last occurrence of the 0 command, all previous uses of
o are lost

v retum to indirecllon

used in conjunction with the X command..

v is similar to the u conunand in effect except that it updates the memory display
10 where it was before the last X conunand was issued. Example:

8102 AF
8 70 3 CD

>8 70 4 2F<
810 5 44

display 1

8420 18
842E A2

>8 42F E5<
8430 21

display 2

You are on display 1 and wish to look at the subroutine at ,84.2F. So you press X
with the display centred as shown; the memory display lhen updates to display 2.
You look at this routine for a while and then wish to return to the code after the
original calJ to the subroutine. So press V and display 1 will reappear. As with U
you can use litis command only to reach the address at which the last X command

was issued, all previous addresses at which X was used are lost.

w sel a breakpoint

A brea/q:xJint, as far as MONS4 is concerned, is simply a CALL instruction into
a routine within MONS4 that displays the front panel thus enabling the
programmer to halt the execution of a program and inspect the Z80 registers, flags

and any relevant memory locations.

Thus, if you wish to halt the execution of a program at '98 76 , say, then use the
M conunand to set the Memory Pointer to 1987 6 and then use w to set a
breakpoinl at that address. 1he 3 bytes of code that were originally at , 9876 are
Stlved and then replaced with a CALL instruction that halts the execution when
obeyed. When this CALL insuuction is reached it causes the original 3 bytes to be
replaced at 19816 and the front panel to be displayed with all the registers and
fl ags in the state they were just before the breakpoint was executed. You can
!IOW use any of the facilities of MONS4 in the usuaJ way.

I !150ft Devpac 4/ ZX Spectrum Page Mon-13

Notes:

When the breakpoint is met, MONS4 will emit a tone through the Spectrum's
speaker and wait for you to hit a key before returning to the Front Panel.

MONS4 uses the area, at the end of itself, that originally contained the relocation
addresses in order to store breakpoint infonnation. This means mat you may set
as many breakpoints as there is memory available; each breakpoint requires 5
bytes of storage. When a breakpoint is executed MONS4 will automatically
restore the memory contents that existed prior to the setting of that breakpoint.

Note Ihat, since the T command also uses this area, all breakpoints are lost when
the T command is used. Breakpoints can only be set in RAM. Since a breakpoint
consists of a 3 byte CALL instruction a certain amount of care must be exercised
in certain exceptional cases e.g. consider the code:

8000 3E 8008 00
8001 01 8009 00
8002 18 80QA 06
8003 06 800B 02

>8004 AF< 800C 18
8005 OE BODO F7
8006 FF BODE 06
8007 01 800F ..

Assuming the code on the previous ' page. if you set a brcakpoiOl at #8004 and
then begin execuLion of the code from location '8000 then register A will be
loaded with the value I , execution transferred to ,800A, register B loaded with
the value 2 and execution transferred to location f8005. But '8005 has been
overwritten with. the low byte of the breakpoint call and thus we now have
corrupted code and unpredictable results will occur. This type of situation is rather
unu sual but you must attempt to guard againsl it - in this case single- stepping the
code would provide the answer; see the ... Z command below for a detailed

example of single-stepping.

x go to indirection

used 10 update the Memory Pointer with the destination of an absolute CALL or JP
instruction.

Page Mon-I4 HiSOft Devpoc 4 / lX Spectrum

)(takes the the 16 bit addrus specified by the byte at the Memory Pointer and the
byte at the Memory Pointer + I and then updates the memory display so that it is
centred around that address. Remember that the low order half of the address is
specified by the rust byte and the high order half of the address is given by the
KeCOnd byte - Intel fonnat. Example:

say you wish to look at the routine that the code CD0563 calls: set the Memory
Pointer (using M) so that it addresses the 05 within the CALL instruction and then
press X. The memory display will be updaJed so that it is centred around location .
'6305.

See also the V conunand in conoectioo with x.

Y enter ASCII

y gives you a new line on which you can enter ASCII characters directly from
the keyboard. These characters an: echoed and their hexadecimal equivalents are
entered into memory starting from the current value of the Memory Pointer. The
string of characters should be terminated by [EDIT] and DELETE ([CAPS
SHIFT] 0) may be used to delete characters from the string.

When you have finished entering the ASCll characters (and typed [EDIT]) then
the display is updated SO that the Memory Pointer is positioned just after the end
of the suing as it was entered into memory.

[SYMBOL SHIFT] Z single-step

Prior to the use of A Z (or AT) the Program Counter (PC) must be set to the
address of the instruction that you wish to execute.

"z simply executes the current instruction and then updates the front panel to
reflect the changes caused by the executed instruction.

Note that you can single·step anywhere in the memory map (RAM or ROM) but
that you cannot single-step the Interface I ROM.

11lere now follows an extended example which should clarify the use of many of
Ihe debugging commands available within MONS4 • you are urged to study it
<:~II"t:fully and try it out for yourself.

IIISoH Devpac 4/lX Spectrum Page Mon-1S

Let us asswne that we have the 3 sections of code shown ~Iow in lhe machine, Now we wish to investigate the above code either to see if it works or maybe
the fi rst section is the main program which loads HL and DE with numbers and how it works. We can do this with the following set of commands • it should be
then calls a routine to multiply them together (the second section) with the result noted that this is merely one way of stepping through the code, it is not necessarily
in HL and fmally calls a routine twice to output the result of the multiplication to efficient but should serve to demonstrate single-stepping:
the screen (third section).

M:7080 [ENTER] set Memory Pointer to 17080.
7080 2AOO72 10 HL , ('7200) ;SECTION 1 7080 . set Program CouRIer to ,7 0 8 O.
7083 E0 5B0272 LD DE , (17202)

" Z single step. 7087 CDOO71 CALL Mu l t
708A 7C LD A,H " Z single step.
708B CDID71 CALL Aout

" Z follow the CALL. 708E 70 LD A,L
708F CD1D7 1 CALL Aout M: 7115 [ENTER] skip the pre-processing of the numbers.
7092 210000 LD HL , O w set a breakpoint.
7100 AF Mul t XOR A ; SECTION 2 " K continue execution from '7100 up to breakpoint.
710 1 E05 2 SBC HL,DE

"Z single step. 7103 19 ADD HL , DE
7104 3001 JR NC , Mu1 "Z follow the relative jump.
7106 EB EX DE , Ht

" Z single step. 7107 B2 Mul OR 0
7108 37 SCF " Z
7109 CO RET NZ

" Z 710A B3 OR E
710B SA LD E,D " Z
710C 2007 JR NZ , Mu4

" Z " nOE EB EX DE , Ht
7l0F C9 RET Z
7110 EB Mu2 EX DE , Ht

Z 7111 19 ADD HL , DE
7112 EB EX OE , HL Z return from mUltiply routine .
7113 29 Mu3 ADD HL,HL

"Z single step. 7114 08 RET C
7115 IF Mu4 RRA Z follow the CALL.
7116 30FB JR NC , Mu3

M:7128 [ENTER] set Memory Pointer to interesting bit. 7118 B7 OR A
7119 20FS JR NZ , Mu2 w set breakpoint.
711B 19 ADD HL , DE

"K continue execution from ' 7110 to breakpoint. 711C C9 RET

;SECTION 3
" Z single step.

7110 F5 Aout PUSH AF
" Z 7 11E OF RRCA

711F OF RRCA "Z
7120 OF RRCA

"Z 7121 OF RRCA
7122 CD26 71 CALL Ni bble have a look at me return address
7125 F1 POP AF

set breakpoint tllere 7126 E6 0F Nibble AND %11 11 W

1128 C6 90 ADD A, i90 " K and continue.
712A 27 DAA

"Z single step. 712B CE40 ADC A, '40
7120 27 DAA return from Aout routine
712E FD2 13ASC LD IY, , 5C3A W 7132 07 RST 110 "K 7133 C9 RET , single step.
7200 1B2A DEFW 10779

"
obey the whole CALL to Aout . 7202 0300 DEFW 3

Page Mon-16 HiSoft Devpac 4 / lX Spectrum I " ;011 Devpac 4 / lX Spectrum Page Mon-17

Please do work through the above example, first typing in the cOOe of the routines
(see Modifying Memory below), Of using GENS4, and then obeying the
commands delailed above. You will fmd the example invaluable as an aid to

understanding how to trace a palb Ihrough a program.

" [SYMBOL SHIFT] P Print list

lhis command is exactly the same as the List command except Ibat the output

goes 10 the Printer stream instead of to the screen. Remember that, at the end of a
page. you press [EDIT} to retwn to the front panel or any other key 10 get

another page.

Modifying Memory

The contents of rhe address given by the Memory Pointer may be modified by

entering a hexadecimal nwnber foUowed by a terminator (see Section 1). TIle
two least significant hex digits (if only one digit is enlered then it is padded to the
left with a zero) are entered into the location currently addressed by the Memory
Pointer and then the command (if any) specified by the terminator is obeyed. If
the terminator is not a valid conunand then it is ignored. Examples:

f2 [ENTER] ' f 2 is entered & the Memory Pointer advanced by 1.

123 [CAPS SHIfT] BI23 is entered & the Memory Pointer advanced by 8.

EM:E OO

8CO

2A5D

Page Man-le

'OE is entered at the current Memory Pointer and
then the Memory Pointer is updaled to 'EOO. Notice

that a space C) has been used to tenninate the M

command here.

'BC is entered and !hen the Memory Pointer is
updated (because of the use of the 0 command) to
the destination of the relative offset t SC i.e. 10 its

cumnt value - 115.

f 50 is entered and the Memory Pointer is not changed

since the terminalOr is a space, nOI a command.

HiSoft Devpoc 4/lX Spectrum

Modifying Registers

I r • hexadecimal number is enlered in response to the > prompt and is tenninated
by a period, • I then the nwnber specified will be entered inlo the Z80 register
currently addressed by the right arrow>.

On entry to MONS4 > points to the Program Counter (PC) and so using . as a
Icnninator to a hex nwnber initially will modify the Program COWlter. Should you
wish to modify any other register then use • by itself (not as a terminator) and the
pointer > will cycle round the registers PC to AF. Note that it is not possible to
nddress (and thus change) either the Stack Pointer (SP) or the IR registers.

Examples:

Assume that the register pointer > is initially addressing the PC.

o.

123.

t~2A7 .

n'oo.

HOOO .

point to H.
point to IX.
set IX to zero.
point to HL.
set HL 10 1123.
poinl1O DE.

point to BC.
set BC to IE2A7.
point to M.

set A to I ff and reset all the flags .
point to the PC.
set the PC to ,SOOO.

Note that . can also be used to modify the Alternate register sel if this is
displayed. Use the Q command to flip the display of the register sets.

Ill' .. ,ft Oevpac 4 / lX. Spectrum Page Moo-IQ

Page Mon-20 HiSoft Devpac 4/lX. Spectrum

APPENDIX

AN EXAMPLE FRONT PANEL DISPLAY
?IOe 2001 JR NZ,f1115

>PC HOC 20 01 EH C9 EH 19 EH
SP D()AF 8A 1 0 06 03 OA 03 OD
IY er6A OD 11 DC or 09 18 18
IX D09F 04 03 04 00 00 00 IB
HL 2A 18 DF FE 29 28 02 er 02
DE 000 0 f3 AF 11 Fr FF C) CB
BC 0004 Fr C3 CB 11 21. 5D se
AF 0304 V
IR 3F1 C ON

71 0 0 M 71 0 8 " 1110 C"
71 0 1 W 110 9 co nu " 11 02 " n OA "' 7112 C"
110 3 " nOB " 1113 " 710 4 '" >?1 0C ,0< 1114 " 110 5 "' n OD " 7115 " 110 6 C" 11 0E C" 7116 '" 7107 "' no. " 7lU " >

~hown above is a fairly typical front paneJ display - the display is one obtained
while single-stepping the Mu 1 t routine given in the example of the Z command.

'Ihe first 9 lines of the display contain the Z80 registers; the name of the register
II!'SI (PC to IR), then (for PC to BC) the value presently held in the register and

fina lly the contents of the 7 memory locations Slarting from the address held in the
reg ister. The Flag register is decoded to show the flags currently set in the bit
order that they are used wjthin the register - if the Flag register was set to i FF
Ihcn the display following AF would look like QOFF 5Z H VNC i.e. the sign,
lcro, half-carry, parity/overflow, add/subtract and cany flags are all set. To the
light of the I R registers is the word ON or OFF that indicates the current stale of
Ihe interrupts. A Register pointer > points to the register currently addressed; see
,'cetioR 2 - Modirying Registers.

'Ille 24 byte memory display below the register display is organised as the address
(2 bytes, 4 characters) followed by the contents (1 byte, 2 characters) of the
memory at that address. The display is centred around the current Memory
!'Qimer value, indicated by > <.

(\ lItull:lnds (see Section 2) are entered at the bottom of the screen in response (0

11 111 prompt >. The display is updated after each command is processed.

j 11' ,Oil Oevpac 4/lX. Spectrum Page Mon-21

Bibliography

TIle following books w"e recommended when programming the
Spectrum In assembler-language.

111e Complete Spectrum Dr. ran Logan Melbourne House
ROM Disassembly & Dr. F O'Hara ISDN 0 86759 117 X

Programming the ZBO RodneyZaks Sybex]982

Mastering Machine Cooe Toni Baker Interface
on the ZX Spectrum

280 Assembly Language Zilog ZlIog (UK)
Programming Marlual (0628) 39200

Mas teryour ZX Microdrive Andrew Pennell Sunshine
ISBN 0 946408 19 X

Page Mon-22 HiSoft Devpoc 4/l)(Spectrum

•

•

,

Printed by Jifly Print L ,mited. Luton. B&ds.

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

