Z88 Developers' Notes
Previous Contents Next

26. The Z88 Motherboard Hardware and periphial cards

The Z88 is organized around four integrated circuits: the Z80 microprocessor, a specialized gate-array called 'Blink', the ROM chip and a pseudo-static RAM chip. There are 8 connectors on the motherboard. This part describes the pinout, the usage and modifications if they are possible.
 

Integrated circuits
Z80 CPU (IC1)
RAM (IC2)
ROM (IC3)
Blink gate-array (IC4)
Connectors
Slot connector
Expansion port
Serial port
Keyboard connectors
LCD connector
External hardware via slot connector
Flash EPROMs.

The Z80 CPU

The microprocessor is a standard Z80 running in CMOS version for low working and standby power consumption. For Z88, 4MHz and 6MHz capable Z80 CMOS were used : Z84C004PSC or Z84C0006PSC.

       Z80 CPU Pinout
      +--------------+
A11   |1    +--+   40| A10
A12   |2           39| A9
A13   |3           38| A8
A14   |4           37| A7
A15   |5           36| A6
CLK   |6           35| A5
D4    |7           34| A4
D3    |8           33| A3
D5    |9           32| A2
D6    |10  Z84C00  31| A1
VCC   |11   CPU    30| A0
D2    |12          29| GND
D7    |13          28| /RFSH
D0    |14          27| /M1
D1    |15          26| /RST
/INT  |16          25| /BUSRQ
/NMI  |17          24| /WAIT
/HALT |18          23| /BUSAK
/MREQ |19          22| /WR
/IORQ |20          21| /RD
      +--------------+

Z80 Clocks
Two clocks are driving the Z80. MCK, the master clock and SCK, the standby clock. The MCK (3.2768 MHz) is generated by a 9.8304 Xtal to the Blink and divided by 3, given to the pin 6. The SCK pulses at 25.6 KHz and is active on COMA state.

It is perhaps possible to overclock the Z80 if the Blink supports it! Actually, up to 20MHz Z80 CMOS CPU are available. 8MHz would be reasonable. But it must be verified that the LCD and the Blink will support these frequencies (unfortunately only documented in the Blink datasheets which is not available to the Z88 community) There will probably be troubles with the Z88 clock. The current RST routines assigned to interrupts will have to be rewritten...

Interrupts
There are three pins for dealing with interruptions :
BUSRQ (Bus Request) : used for DMA (not connected on the Z88)
NMI (Non Maskable Interrupt) : Jumps to $0066 (BatLow, RTC...)
INT (Ordinary Interrupt) : used in mode 1 (IM1)

For dealing with the maskable interruptions (INT), the Z80 can be switch in three modes.
The interrupt mode 0 (IM0) : for 8080 compatibility
The interrupt mode 1 (IM1) : for non-zilog environnemt (our case)
The interrupt mode 2 (IM2) : for zilog environnement

On reset, OZ puts the Z80 in IM1.
If interrupts are enabled via an OZ_EI, every INT signal jumps to $0038.
This routines deals with the keyboard, the bleep, the alarms...
 

The RAM

RAM types
The serial chip is a NEC uPD42832C. This is a 32K pseudo-static RAM chip. These chips are like dynamic RAM but have the ability to retain data under a standby voltage (around 2V) with a self refresh circuitry.Dynamic RAM chip are incompatible. Static RAM chip can be use without any problem. The replacement is recommended because theyre power drain is very lowest (1/10 ratio).

RAM socket
The motherboard layout has 32 pins. It is tracked for a 128K chip. On issue 4 machine a 32K chip is soldier using the 28 low pins. Here is the socket pinout from the component side view.

    +--------------+
POE |1    +--+   32| VCC
A16 |2           31| A15
A14 |3           30| VCC
A12 |4           29| WE
A7  |5           28| A13
A6  |6           27| A8
A5  |7    Z88    26| A9
A4  |8    RAM    25| A11
A3  |9    PCB    24| POE
A2  |10          23| A10
A1  |11          22| CE
A0  |12          21| D7
D0  |13          20| D6
D1  |14          19| D5
D2  |15          18| D4
VSS |16          17| D3
    +--------------+


This table describes the 128K chip pinout and Blink signals.

Pin     Chip    Blink   Pin     Chip    Blink
1       POE     POE     32      -       VCC
2       A16     MA16    31      A15     MA15
3       A14     MA14    30      [CS]    VCC
4       A12     MA12    29      [WE]    WRB
5       A7      MA7     28      A13     MA13
6       A6      MA6     27      A8      MA8
7       A5      MA5     26      A9      MA9
8       A4      MA4     25      A11     MA11
9       A3      MA3     24      [OE]    POE
10      A2      MA2     23      A10     MA10
11      A1      MA1     22      [CE]    IRCE (internal RAM chip enable)
12      A0      MA0     21      D7      MDH
13      D0      MDA     20      D6      MDG
14      D1      MDB     19      D5      MDF
15      D2      MDC     18      D4      MDE
16      VSS     GND     17      D3      MDD

Internal RAM upgrade
It is easily possible to upgrade the internal RAM to 128K. For a 512K upgrade some hardware modification are needed. The OZ version 4 is the only one able to recognize a 512K internal upgrade. For a 128K upgrade you can put a Toshiba TC551001 static RAM chip. It is very cheap (about £4). First, make a backup of your important files.
Disassembly the box without batteries. Deconnect the two keyboard ribbons, the screen ribbon. Put your motherboard on a dry table without metal. Unsolder the old chip. Solder a 32 pins flat socket, and insert the new chip. You will have to cut some plastic structures (like an X) in the keyboard plastic support.

For a 512K upgrade, you will have to wire the A17 and A18 pins with a link directly to address lines on to corresponding slot connector pins. Only OZ version 4 (UK) is able to recognise 512K internal RAM.

Replacing the old 42832 Ram will spare your battery life time. The slowest rams consumes the least (120 or 150 ns). For example :

Size    Chip    Type            Speed           Power (mW)      Manufacturer
(K)                             (ns)            Act/Stdby
32K  (PS)       uPD42832C       -15L (150)      220 / 2.75      Nec
128K (S)        TC551001BPL     -10L (100)      27.5/ 0.02      Toshiba
512K (S)        TC554001BPL     -70 (70)        50.0/ 0.30      Toshiba
128K (PS)       TC518128PL      -12 (120)       275 / 0.55      Toshiba
512K (PS)       TC518512PL      -10 (100)       275 / 1.00      Toshiba
128K (PS)       HM658128ALP                                     Hitachi
512K (PS)       HM658512LP                                      Hitachi

(PS=Pseudo-static RAM chip, S=Static RAM chip)

The ROM

ROM types
The serial rom chip is an UV eprom NEC uPD23C1000C for foreign OZ. The UK version may be an eprom chip for v2.2, the v3.0 supports exactly the same software but have been put in a ROM which have only 28 pins. The last v4.0 is fitted on an EPROM chip. The socket layout isn't standard according to the NEC standard (see below). If you wish to fit a new eprom, be very careful, pins 2 and 24 must be exchanged according to the JEDEC standard. Particulary if you want to use actual 128K Eprom chip, like 27C1001. In theory, you can fit larger eprom (like 27C2000 or 27C4000), if you wire the addresses lines.

ROM socket
The mother has 32 pins tracked to the NEC standard.

    +--------------+
VCC |1    +--+   32| VCC
ROE |2           31| VCC
A15 |3           30| VCC
A12 |4           29| A14
A7  |5           28| A13
A6  |6           27| A8
A5  |7    Z88    26| A9
A4  |8    ROM    25| A11
A3  |9    PCB    24| A16
A2  |10          23| A10
A1  |11          22| CE
A0  |12          21| D7
D0  |13          20| D6
D1  |14          19| D5
D2  |15          18| D4
VSS |16          17| D3
    +--------------+
This table describes the 128K chip pinout and Blink signals.
Pin     Chip    Blink   Pin     Chip    Blink
1       VPP     VCC     32      VCC     VCC
2       [OE]    ROE     31      [PGM]   VCC
3       A15     MA15    30      VCC     VCC
4       A12     MA12    29      A14     MA14
5       A7      MA7     28      A13     MA13
6       A6      MA6     27      A8      MA8
7       A5      MA5     26      A9      MA9
8       A4      MA4     25      A11     MA11
9       A3      MA3     24      A16     MA16
10      A2      MA2     23      A10     MA10
11      A1      MA1     22      [CE]    IPCE (Internal PROM chip enable)
12      A0      MA0     21      D7      MDH
13      D0      MDA     20      D6      MDG
14      D1      MDB     19      D5      MDF
15      D2      MDC     18      D4      MDE
16      VSS     GND     17      D3      MDD

The BLINK gate array

This secret chip is a NEC uPD65031. It is CMS soldered on the PCB. It manages the memory bank switching, the LCD, the serial port, the interrupts -the heart of the machine. Unfortunately we only know about it's pinout and the description of some registers. Somehow the original notes as supplied to Cambridge Computer were lost during the time of the company's move from Cambridge to Scotland.

Pin     Chip    Z80             Pin     Chip
1       GND                     52      VDD
2       VDD                     53      GND
3       IOR     [IORQ]          54      MA16
4       CRD     [RD]            55      MA15
5       MRQ     [MREQ]          56      MA14
6       HLT     [HALT]          57      MA12
7       NMIB    [NMI]           58      MA7
8       INTB    [INT]           59      MA13
9       CDB     D1              60      MA6
10      ROUT    [RST]           61      MA8
11      CDA     D0              62      MA5
12      CMI     [MI]            63      WRB
13      CDH     D7              64      MA9
14      CDC     D2              65      MA4
15      CA0     A0              66      MA11
16      CDG     D6              67      MA3
17      CA1     A1              68      IPCE    (ROM.0 CE) 
18      CDF     D5              69      MA2
19      CA2     A2              70      MA10
20      CDD     D3              71      MA1
21      CA3     A3              72      MA0
22      CDE     D4              73      MDH
23      CA4     A4              74      MDA
24      CA5     A5              75      MDG
25      CA15    A15             76      MDB
26      CA6     A6              77      MDF
27      CA14    A14             78      MDC
28      GND                     79      VDD
29      VDD                     80      GND
30      CA13    A13             81      MDE
31      CA7     A7              82      MDD
32      CA8     A8              83      MA17
33      CA12    A12             84      MA18
34      CA9     A9              85      MAW(19)
35      CA11    A11             86      SE1     (slot1 CE)
36      CA10    A10             87      POE
37      TxD     (serial)        88      ROE
38      RCS     (serial)        89      PGMB    (PGM low)
39      IRCE    (RAM.0 CE)      90      EOE
40      GND                     91      SE3     (slot3 CE)
41      RxD     (serial)        92      FLP     (flap)
42      CTS     (serial)        93      SE2     (slot2 CE)
43      DCD     (serial)        94      SNS     (sens line)
44      PN1     (display)       95      VPON    (VPP on)
45      LD      (display)       96      BTL     (Batt low)
46      FR      (display)       97      RIN
47      XSCL    (display)       98      MCK
48      LD0     (display)       99      SCK
49      LD1     (display)       100     SPKR    (speaker)
50      LD2     (display)
51      LD3     (display)

The Flash Eproms

The new Flash Eprom cards represent a new way for Z88 storage. Its main feature is an integrated electrical erasure. The prototype cards are built with an Intel 28F008SA and the serial cards uses the Intel 28F008S5 (which is fastest). Theyre low relative cost make them the new media for 1 Megabyte application card and file storage.They have 44 pins in a PSOP format (0.5 mm between each pin). They are linked to the slot connector like standard eproms.

    +--------------+
VPP |1    +--+   44| VCC
RP# |2           43| -
A11 |3           42| A12
A10 |4           41| A13
A9  |5           40| A14
A8  |6           39| A15
A7  |7           38| A16
A6  |8           37| A17
A5  |9           36| A18
A4  |10          35| A19
-   |11   Intel  34| -
-   |12  28F008  33| -
A3  |13   SA/S5  32| -
A2  |14          31| -
A1  |15          30| WE#
A0  |16          29| OE#
D0  |17          28| -
D1  |18          27| D7
D2  |19          26| D6
D3  |20          25| D5
GND |21          24| D4
GND |22          23| VCC
    +--------------+
The table below describes the links between the edge connector and the chip.
Slot signal     Flash Signal
1 MA16  A16     38
2 MA15  A15     39
3 MA12  A12     42
4 MA7   A7      7
5 MA6   A6      8
6 MA5   A5      9
7 MA4   A4      10
8 MA3   A3      13
9 MA2   A2      14
10 MA1  A1      15
11 MA0  A0      16
12 MDA  D0      17
13 MDB  D1      18
14 MDC  D2      19
15 SNS
16 GND  GND     21
17 GND  GND     22
18 MA14 A14     40
19 VPP  VPP     1
20 VCC  VCC     44,23
21 VCC  -
22 PGM  WE#     30
23 MA13 A13     41
24 MA8  A8      6
25 MA9  A9      5
26 MA11 A11     3
27 POE  -
28 EOE  OE#     29
29 MA10 A10     4
30 SE3  CE#     43
31 MDH  D7      27
32 MDG  D6      26
33 MDD  D3      20
34 MDE  D4      24
35 MDF  D5      25
36 MA17 A17     37
37 MA18 A18     36
38 MA19 A19     35

Other pins:

Pin 1 : Vpp
Pin 23: Vcc
Pin 44: Vcc
Must be connected to a 100nF ceramic capacitor.

Pin 2 : RP# connected to VCC

NB: all the VCC and GND pins have to be connected.


The Connectors

The slot connectors

It is private format connector wiring 38 pins. They are devoted for memory addressing. Each slot is able to address 1024K. The slot 3 present a Vpp (12V) line, useful for Eprom programming. Pseudo-static RAM, static RAM, EPROM and Flash EPROM can be used.

Slot    RAM/ROM RAM/ROM Eprom   Pins for
pins    Slot 1 Slot 2   Slot 3  32K     128K    32K 
        Signals Signals Signals EPROM   EPROM   RAM
1       A16     A16     A16     -       24      -
2       A15     A15     A15     -       3       -
3       A12     A12     A12     2       4       2
4       A7      A7      A7      3       5       3
5       A6      A6      A6      4       6       4
6       A5      A5      A5      5       7       5
7       A4      A4      A4      6       8       6
8       A3      A3      A3      7       9       7
9       A2      A2      A2      8       10      8
10      A1      A1      A1      9       11      9
11      A0      A0      A0      10      12      10
12      D0      D0      D0      11      13      11
13      D1      D1      D1      12      14      12
14      D2      D2      D2      13      15      13
15      SNSL    SNSL    SNSL    -       -       -
16      GND     GND     GND     14      16      14
17      GND     GND     GND     14      16      14
18      A14     A14     A14     27      29      1
19      VCC     VCC     VPP     1       1       -
20      VCC     VCC     VCC     28      32      -
21      VCC     VCC     VCC     -       -       28
22      WEL     WEL     PGML    -       31      -
23      A13     A13     A13     26      28      26
24      A8      A8      A8      25      27      25
25      A9      A9      A9      24      26      24
26      A11     A11     A11     23      25      23
27      POE     POE     POE     -       -       22
28      ROE     ROE     EOE     22      2 -
29      A10     A10     A10     21      23      21
30      SE1     SE2     SE3     20      22      20
31      D7      D7      D7      19      21      19
32      D6      D6      D6      18      20      18
33      D3      D3      D3      15      17      15
34      D4      D4      D4      16      18      16
35      D5      D5      D5      17      19      17
36      A17     A17     A17     -       -       -
37      A18     A18     A18     -       -       -
38      A19     A19     A19     -       -       -

The expansion port connector

It is a standard 2.54mm double sided 48 pins male connector for expansion. It presents all the Z80 bus signals. On the issue 4 version, the flap has been sealed because expansion insertion may result in a crash due to static electricity. Cambridge Computer decided that it was to too dangerous to leave it open for prying eyes - too many faulty Z88's returned!

Component       P C B
Side A Edge     Side B 
GND     1       SNSL see below
A11     2       +12v
A12     3       A10
A13     4       A9
A14     5       A8
A15     6       A7
clock   7       A6
D4      8       A5
D3      9       A4
D5      10      A3
D6      11      A2
VCC     12      A1
D2      13      A0
GND     14      GND
D0      15      D7
D1      16      M1L
INTL    17      FLP (flap switch)
slot    18      slot
HALTL   19      NMIL
MREQL   20      WRL
IORQL   21      RDL
MAWL    22      RESETL Resets Z88 (2 pulses required)
-BT     23      SVCC 5.4v while the machine is 'on.'
GND     24      SNSL
SNSL allows the machine to be automaticly placed into comotose state buy causing a 'power fail interupt' when an edge connector is plugged into to the expansion slot of the Z88.

The Serial Port Connector

This is a DB9 male connector with a private pinout describe below.

Pin     Signal  Description             Sens
1       -       unswitched +5v at 10 uA output
2       TxD     transmit data           output
3       RxD     receive data            input
4       RTS     ready to send           output 
5       CTS     clear to send           input
6       -       reserved for future use
7       GND     Ground
8       DCD     data carrier detect     input
9       DTR     switched +5v at 1mA     output

Note : DTR is high when the machine is awake. The machine is always awake when the screen is active, but even if asleep the machine will wake every minute or so to carry out various housekeeping tasks, such as checking for alarms, and at these time DTR will go high. Pin 1 will show a signal if there is power available to the machine.

The keyboard connectors

The keyboard is just 8 * 8 matrix between the Z80 address and data buses. It is connected on SK6 and SK7. In theory it is possible to replace the membrane by a PCB with mechanical keys (and resistors in serial). The rubber keyboard technology seems to consume a lot of power.

SK6 signals     SK7 signals
1       A14     1       D5
2       A15     2       D4
3       A13     3       D3
4       A12     4       D1
5       A11     5       D7
6       A10     6       D0
7       A9      7       D6
8       A8      8       D2
There are two issues for the keyboard membrane : a red one, the first, and the green one which is the last and the most common. The first issue (red) seems to be often unreliable with a lot of short circuits which sends a lot of unexpected characters... It is impossible to repair them. The green issues are very good. I have got mine since ten years and I am actually typing on it...The keyboard is probably the only part with which you encountered troubles. You can keep the same for all your life if you think to clean the contacts sometimes. After a long time, some carbon particle agglomerate on the membrane and generate short-circuits. The only thing to do is to clean the contact surfaces with some alcohol. Unscrew the case, deconnect the keyboard ribbons. Pull out the rubber and be very careful of the three slot. Clean all the keys surfaces on the rubber and the membrane with a tissue with a few standard alcohol (90°). Dry it before reassembling. Do it carefully especially on the cursor, tab, diamond, square, enter and shift keys.
 

The LCD connector

The most common LCD module is the DMF690N produced by OPTREX. Some previous versions exist, with more failure and less contrast. This unit has its own PCB. The LCD panel is a dot matrix of 640*64 pixels, the NRD7482. It is driven by nine CMS chips. One SED1610 : a 86 lines driver and eight SED1600 : 80 rows dirvers. Another IC is devoted to voltage generation. The module is connected by a special ribbon with 14 links on SK5.

LCD Ribbon signals:
14 is the left one, 1 is on the right in top view.

Pin     Symbol  Level   Function
1       VDD     -       Base supply (0V)
2       VSS     -       Power supply for Logic
3       VLCD    -       Power supply for LCD driving
4       LP      H>L     Date Latch signal
5       FR      H/L     Alternate signal for LCD driving
6       YDIS    L       Display off signal
7       NC      -       No connection
8       DIN     H       Frame signal
9       XSCL    H>L     Clock signal for shifting serial data
10      NC      -       No connection
11      D0      H/L     Display data
12      D1      H/L     Display data
13      D2      H/L     Display data
14      D3      H/L     Display data
All of these signals are directly managed by the blink. It builts the screen by reading directly in the memory the different character set and screen base. The cursor is hardware managed too.
 


Previous Contents Next
Manipulating the Blink Registers Z88 Motherboard Hardware Developing software for the Z88